ಪಾಲುಗಳು (fractions) – ಭಾಗ 2

ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ಪಾಲುಗಳೆಂದರೇನು ಮತ್ತು ಅದರ ಮೂರು ಬಗೆಗಳಾದ ತಕ್ಕುದಾದ ಪಾಲುಗಳು, ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳು ಹಾಗು ಬೆರಕೆ ಪಾಲುಗಳ ಬಗ್ಗೆ ತಿಳಿದುಕೊಂಡೆವು, ಇನ್ನೂ ಮುಂದುವೆರೆದು ಅದರ ಮತ್ತಿತರ ಬಗೆಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳೋಣ.

4. ಸರಿಬೆಲೆಯ ಪಾಲುಗಳು (Equivalent fractions):

ಯಾವುದೇ ಒಂದಿಷ್ಟು ಪಾಲುಗಳು ಒಂದೇ ಬೆಲೆಯನ್ನು ಹೊಂದಿದ್ದರೆ ಅವುಗಳು ಸರಿ ಪಾಲುಗಳಾಗಿರುತ್ತವೆ.
ಉದಾಹರಣೆಗೆ ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ಮೂರು ದುಂಡುಕಗಳನ್ನು ಎರಡು ಸರಿಪಾಲಾಗಿ, ನಾಲ್ಕು ಸರಿಪಾಲಾಗಿ ಮತ್ತು ಎಂಟು ಸರಿಪಾಲಾಗಿ ಕತ್ತರಿಸಲಾಗಿದೆ, ಹಾಗು ಎಲ್ಲಾ ದುಂಡುಕದ ಅರ್ಧಪಾಲಿಗೆ ಬಣ್ಣ ಹಚ್ಚಲಾಗಿದೆ. ಮೂರು ದುಂಡುಕಗಳಲ್ಲಿ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲುಗಳು ಒಂದೇ ಬೆಲೆಯನ್ನು ಹೊಂದಿದೆ, ಅಂದರೆ ಎಲ್ಲಾ ದುಂಡುಕಗಳಲ್ಲಿ ಅರ್ಧ ಭಾಗಕ್ಕೆ ಬಣ್ಣ ಹಚ್ಚಲಾಗಿದೆ ಎಂದು ತೋರಿಸಬಹುದು. ಆ ಬಗೆಗಳನ್ನು ಕೆಳಗೆ ನೋಡೋಣ.

(ಗಮನಿಸಿ: ಸರಿಬೆಲೆಯ ಪಾಲುಗಳನ್ನು ಗುರುತಿಸುವಾಗ ತಕ್ಕುದಾದ ಪಾಲುಗಳನ್ನೂ ತೆಗೆದುಕೊಳ್ಳಬಹುದು ಅಥವಾ ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳನ್ನೂ ತೆಗೆದುಕೊಳ್ಳಬಹುದು, ನಾವು ಇಲ್ಲಿ ತಕ್ಕುದಾದ ಪಾಲುಗಳನ್ನು ಉದಾಹರಣೆಯಾಗಿ ನೀಡಿದ್ದೇವೆ).

fractions_2_1

ಬಗೆ 1:
ಯಾವುದೇ ಒಂದು ಪಾಲಿನ ಮೇಲೆಣಿ ಮತ್ತು ಕೀಳೆಣಿಗೆ ಒಂದೇ ರೀತಿಯ ಸಂಖ್ಯೆಯಿಂದ ಗುಣಿಸಿದಾಗ ಮತ್ತೊಂದು ಪಾಲಿನ ಬೆಲೆ ಬಂದರೆ ಅವೆರೆಡು ಸರಿಬೆಲೆಯ ಪಾಲುಗಳಾಗುತ್ತವೆ.

ಮೊದಲನೇ ದುಂಡುಕದ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲು 1/2, ಮೇಲೆಣಿ ಮತ್ತು ಕೀಳೆಣಿಗೆ 4 ನ್ನು ಗುಣಿಸಿದಾಗ (4×1)/(4×2) = 4/8 ಆಗುತ್ತದೆ.

ಎರಡನೇ ದುಂಡುಕದ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲು 2/4, ಮತ್ತು ಕೀಳೆಣಿಗೆ 2 ನ್ನು ಗುಣಿಸಿದಾಗ (2×2)/(2×4) = 4/8 ಆಗುತ್ತದೆ.

ಮೂರನೇ ದುಂಡುಕದ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲು 4/8, ಮತ್ತು ಕೀಳೆಣಿಗೆ 1 ನ್ನು ಗುಣಿಸಿದಾಗ (1×4)/(1×8) = 4/8 ಆಗುತ್ತದೆ.

ಮೊದಲನೇ, ಎರಡನೇ ಮತ್ತು ಮೂರನೇ ದುಂಡುಕಗಳಲ್ಲಿ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲುಗಳ ಬೆಲೆಗಳು ಒಂದೇ ಆಗಿರುವುದರಿಂದ ಮೂರು ದುಂಡುಕಗಳಲ್ಲಿ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲುಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಾಗಿದೆ ಎಂದು ಹೇಳಬಹುದು. ಹಾಗಾಗಿ ಕೊಟ್ಟಿರುವ ಪಾಲುಗಳು ಸರಿಬೆಲೆಯ ಪಾಲುಗಳಾಗಿವೆ.

ಗಮನಿಸಿ: ಎಲ್ಲಾ ಪಾಲುಗಳ ಬೆಲೆ 4/8 ಎಂದು ನಾವು ತೋರಿಸಿಯಾಯಿತು ಹಾಗು ಇಲ್ಲಿ ಎಂಟರಲ್ಲಿ ನಾಲ್ಕು ಅಂದರೆ ಅರ್ಧಭಾಗ ಎಂದಾಯಿತು, ಹಾಗಾಗಿ ಎಲ್ಲಾ ದುಂಡುಕದ ಅರ್ಧ ಭಾಗಕ್ಕೆ ಬಣ್ಣವನ್ನು ಹಚ್ಚಲಾಗಿದೆ.

ಬಗೆ 2:

ಎರಡು ಪಾಲುಗಳನ್ನು ಓರೇ ಗುಣಾಕಾರ ಮಾಡಿ ಪಾಲುಗಳು ಒಂದೇ ಬೆಲೆಯನ್ನು ಹೊಂದಿದೆ ಎಂದು ಕಂಡು ಹಿಡಿಯಬಹುದು. ಒಂದನೇ ಪಾಲು, ಪಾಲು1 = ಮೇಲೆಣಿ1/ಕೀಳೆಣಿ1 ಮತ್ತು ಎರಡನೇ ಪಾಲು , ಪಾಲು2 = ಮೇಲೆಣಿ2/ಕೀಳೆಣಿ2 ಎಂದು ತೆಗೆದುಕೊಳ್ಳೋಣ.

ಮೇಲೆಣಿ ಮತ್ತು ಕೀಳೆಣಿಗಳನ್ನು ಓರೇ ಗುಣಾಕಾರ ಮಾಡಿದಾಗ ಮೊತ್ತ1= ಮೇಲೆಣಿ1 x ಕೀಳೆಣಿ2 , ಮೊತ್ತ 2= ಮೇಲೆಣಿ2 x ಕೀಳೆಣಿ1, ಮೊತ್ತ1 = ಮೊತ್ತ2 ಆದಾಗ ಅವುಗಳು ಸರಿ ಪಾಲುಗಳಾಗಿರುತ್ತವೆ.

ಈ ಬಗೆಯನ್ನು ಮೇಲೆ ಕೊಟ್ಟಿರುವ ದುಂಡುಕಗಳಿಗೆ ಹೋಲಿಸಿ ನೋಡೋಣ.

ಪಾಲು 1/2 ಮತ್ತು 2/4 ಗಳ ಕೀಳೆಣಿ ಮತ್ತು ಮೇಲೆಣಿಗಳನ್ನು ಮೇಲಿನ ಬಗೆಯಂತೆ ಓರೇ ಗುಣಾಕಾರ ಮಾಡಿನೋಡಿದಾಗ

(ಮೇಲೆಣಿ1 x ಕೀಳೆಣಿ2 ಮತ್ತು ಮೇಲೆಣಿ2 x ಕೀಳೆಣಿ1) 1 x 4 =4 ಮತ್ತು 2 x 2 =4

ಇಲ್ಲಿ ಓರೇ ಗುಣಾಕಾರಗಳು ಒಂದೇ ರೀತಿಯ ಮೊತ್ತ 4 ನ್ನು ಹೊಂದಿರುವುದರಿಂದ 1/2 ಮತ್ತು 2/4 ಪಾಲುಗಳು ಸರಿಬೆಲೆಯ ಪಾಲುಗಳಾಗಿವೆ.

ಪಾಲು 2/4 ಮತ್ತು 4/8 ಗಳ ಕೀಳೆಣಿ ಮತ್ತು ಮೇಲೆಣಿಗಳನ್ನು ಮೇಲಿನ ಬಗೆಯಂತೆ ಓರೇ ಗುಣಾಕಾರ ಮಾಡಿನೋಡಿದಾಗ (ಮೇಲೆಣಿ1 x ಕೀಳೆಣಿ2 ಮತ್ತು ಮೇಲೆಣಿ2 x ಕೀಳೆಣಿ1) 2 x 8 =16 ಮತ್ತು 4 x 4 =16

ಇಲ್ಲಿ ಓರೇ ಗುಣಾಕಾರಗಳು ಒಂದೇ ರೀತಿಯ ಮೊತ್ತ 16 ನ್ನು ಹೊಂದಿರುವುದರಿಂದ 2/4 ಮತ್ತು 4/8 ಪಾಲುಗಳು ಸರಿಬೆಲೆಯ ಪಾಲುಗಳಾಗಿವೆ.

ಪಾಲು 1/2 ಮತ್ತು 4/8 ಗಳ ಕೀಳೆಣಿ ಮತ್ತು ಮೇಲೆಣಿಗಳನ್ನು ಮೇಲಿನ ಬಗೆಯಂತೆ ಓರೇ ಗುಣಾಕಾರ ಮಾಡಿನೋಡಿದಾಗ (ಮೇಲೆಣಿ1 x ಕೀಳೆಣಿ2 ಮತ್ತು ಮೇಲೆಣಿ2 x ಕೀಳೆಣಿ1) 1 x 8 =8 ಮತ್ತು 4 x 2 =8, ಇಲ್ಲಿ ಓರೇ ಗುಣಾಕಾರಗಳು ಒಂದೇ ರೀತಿಯ ಮೊತ್ತ 8 ನ್ನು ಹೊಂದಿರುವುದರಿಂದ 1/2 ಮತ್ತು 4/8 ಪಾಲುಗಳು ಸರಿಬೆಲೆಯ ಪಾಲುಗಳಾಗಿವೆ.
ಹಾಗಾಗಿ 1/2 , 2/4 ಮತ್ತು 4/8 ಪಾಲುಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಬೆಲೆಯ ಪಾಲುಗಳಾಗಿವೆ.

ಚಟುವಟಿಕೆ1:

ಒಂದೇ ಅಳತೆಯ ಮೂರು ಕಾಗದದ ತುಂಡುಗಳಲ್ಲಿ ನೀಲಿಬಣ್ಣವನ್ನು ಬಳಿಯಲಾಗಿರುವ ಪಾಲುಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಾದ ಪಾಲುಗಳಲ್ಲ ಎಂದು ತೋರಿಸಿ.

fractions_2_2

ನಾವು ಇಲ್ಲಿ ಮೇಲೆ ಹೇಳಿದ ಮೊದಲ ಬಗೆ1 ನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ.

ಮೊದಲನೇ ಕಾಗದದ ನೀಲಿ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲು 1/3, ಮೇಲೆಣಿ ಮತ್ತು ಕೀಳೆಣಿಗೆ 4 ನ್ನು ಗುಣಿಸಿದಾಗ (4×1)/(4×3) = 4/12 ಆಗುತ್ತದೆ.

ಎರಡನೇ ದುಂಡುಕದ ನೀಲಿ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲು 1/6, ಮತ್ತು ಕೀಳೆಣಿಗೆ 2 ನ್ನು ಗುಣಿಸಿದಾಗ (2×1)/(2×6) = 2/12 ಆಗುತ್ತದೆ.

ಮೂರನೇ ದುಂಡುಕದ ನೀಲಿ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲು 3/12, ಮತ್ತು ಕೀಳೆಣಿಗೆ 1 ನ್ನು ಗುಣಿಸಿದಾಗ (1×3)/(1×12) = 3/12 ಆಗುತ್ತದೆ.

ಮೊದಲನೇ, ಎರಡನೇ ಮತ್ತು ಮೂರನೇ ಕಾಗದದಗಳಲ್ಲಿ ನೀಲಿ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಗುಣಿಸಿದಾಗ ಬೆಲೆಗಳು ಬೇರೆ ಬೇರೆ ಬರುವುದರಿಂದ ಮೂರು ಕಾಗದದಗಳಲ್ಲಿ ನೀಲಿ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲುಗಳ ಮೊತ್ತವು ಒಂದಕ್ಕೊಂದು ಹೊಂದಾಣಿಕೆಯಾಗಿಲ್ಲ ಎಂದು ಹೇಳಬಹುದು. ಹಾಗಾಗಿ ನೀಲಿ ಬಣ್ಣ ಹಚ್ಚಿದ ಪಾಲುಗಳು ಸರಿ ಪಾಲುಗಳಲ್ಲ.

ಚಟುವಟಿಕೆ2:

1/2, 2/3, 5/7, 6/18, 7/28, 9/4, 9/45, 7/2 ಪಾಲುಗಳಿಗೆ ಸರಿಬೆಲೆಯ ಪಾಲುಗಳನ್ನು ಬರೆಯಿರಿ ಮತ್ತು ಅವುಗಳನ್ನು ತಕ್ಕು ಪಾಲುಗಳು ಮತ್ತು ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳನ್ನಾಗಿ ಗುರುತಿಸಿ.

ಪಾಲಿನ ಮೇಲೆಣಿ (Numerator) ಮತ್ತು ಕೀಳೆಣಿಗಳಿಗೆ (Denominator) ಬಿಡಿ ಸಂಖ್ಯೆಯನ್ನು (Whole number) ಗುಣಿಸಿ ಅದರ ಇನ್ನೊಂದು (Multiply) ಸರಿಬೆಲೆಯ ಪಾಲುಗಳನ್ನು ಕಂಡುಕೊಳ್ಳಬಹುದು. ಉದಾಹರಣೆಗೆ 5/7 = (2 x 5)/(2 x 7) = 10/14, ಆದ್ದರಿಂದ 5/7 ರ ಸರಿಬೆಲೆಯ ಪಾಲು 10/14.

ಮೇಲೆಣಿಯು (Numerator) ಕೀಳೆಣಿಗಿಂತ (Denminator) ಕಡಿಮೆಯಿದ್ದರೆ ಅದು ತಕ್ಕುದಾದ ಪಾಲುಗಳಾಗಿರುತ್ತವೆ (Proper fraction).

ಪಾಲೆಣಿಕೆಯಲ್ಲಿ ಮೇಲೆಣಿಯು (Numerator) ಕೀಳೆಣಿಗಿಂತ (Denominator) ಹೆಚ್ಚಿದ್ದರೆ ಅಥವಾ ಸರಿಯಾಗಿದ್ದರೆ ಅದು ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳಾಗಿರುತ್ತವೆ (Improper fraction).

fractions_2_9
5. ಸರಿಕೀಳೆಣಿ ಪಾಲುಗಳು (Like fractions):
ಪಾಲುಗಳಲ್ಲಿ ಕೀಳೆಣಿಗಳು (Denominator) ಒಂದೇ ರೀತಿಯಲ್ಲಿದ್ದರೆ ಅದನ್ನು ಸರಿಕೀಳೆಣಿ ಪಾಲುಗಳು ಎಂದು ಕರೆಯಬಹುದು.
ಉದಾಹರಣೆಗೆ ಮೂರು ಚೌಕಗಳಲ್ಲಿ ಒಂದನೇ ಚೌಕದ ನಾಲ್ಕನೇ ಒಂದು ಪಾಲಿಗೆ ಕೆಂಬಣ್ಣವನ್ನು ಹಚ್ಚಲಾಗಿದೆ ಮತ್ತು ಎರಡನೇ ಚೌಕದ ಎರಡನೇ ನಾಲ್ಕು ಪಾಲಿಗೆ ಕೆಂಬಣ್ಣವನ್ನು ಹಚ್ಚಲಾಗಿದೆ ಮತ್ತು ಮೂರನೇ ಚೌಕದ ನಾಲ್ಕನೇ ಮೂರು ಪಾಲಿಗೆ ಕೆಂಬಣ್ಣವನ್ನು ಹಚ್ಚಲಾಗಿದೆ.

fractions_2_3

ಕೆಂಪು ಬಣ್ಣವನ್ನು ಹಚ್ಚಿದ ಪಾಲುಗಳನ್ನು ಈ ಕೆಳಕಂಡಂತೆ ಬರೆಯೋಣ
• ಒಂದನೇ ಚೌಕದ ನಾಲ್ಕನೇ ಒಂದು ಪಾಲಿಗೆ ಕೆಂಬಣ್ಣವನ್ನು ಹಚ್ಚಲಾಗಿದೆ ಆದ್ದರಿಂದ ಪಾಲನ್ನು 1/4 ಎಂದು ಬರೆಯೋಣ.
• ಎರಡನೇ ಚೌಕದ ಎರಡನೇ ನಾಲ್ಕು ಪಾಲಿಗೆ ಕೆಂಬಣ್ಣವನ್ನು ಹಚ್ಚಲಾಗಿದೆ ಆದ್ದರಿಂದ ಪಾಲನ್ನು 2/4 ಎಂದು ಬರೆಯೋಣ.
• ಮೂರನೇ ಚೌಕದ ನಾಲ್ಕನೇ ಮೂರು ಪಾಲಿಗೆ ಕೆಂಬಣ್ಣವನ್ನು ಹಚ್ಚಲಾಗಿದೆ ಆದ್ದರಿಂದ ಪಾಲನ್ನು 3/4 ಎಂದು ಬರೆಯೋಣ.
• ಒಂದನೇ, ಎರಡನೇ ಮತ್ತು ಮೂರನೇ ಚೌಕಗಳ ಕೀಳೆಣಿಗಳು 4 ಆಗಿರುವುದರಿಂದ ಅವುಗಳು ಸರಿಕೀಳೆಣಿ ಪಾಲುಗಳಾಗಿವೆ.

6. ಹೋಲದ ಕೀಳೆಣಿ ಪಾಲುಗಳು (Unlike fractions):
ಪಾಲುಗಳಲ್ಲಿ ಕೀಳೆಣಿಗಳು (Denominator) ಬೇರೆ ಬೇರೆಯದ್ದಾಗಿದ್ದರೆ ಅದನ್ನು ಹೋಲದ ಕೀಳೆಣಿ ಪಾಲುಗಳು ಎಂದು ಕರೆಯಬಹುದು.

ಉದಾಹರಣೆಗೆ ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಮೂರು ಆರ್ಬದಿಗಳ (Hexagonal) ಬಣ್ಣ ಹಚ್ಚಿರುವ ಪಾಲುಗಳು ಹೋಲದ ಕೀಳೆಣಿ ಪಾಲುಗಳಾಗಿವೆ ಎಂದು ತೋರಿಸಬಹುದು.

fractions_2_4

• ಮೊದಲನೇ ಆರ್ಬದಿಯ ಎರಡನೇ ಒಂದು ಪಾಲಿಗೆ ಬಣ್ಣ ಹಚ್ಚಲಾಗಿದೆ, ಹಾಗಾಗಿ ಪಾಲನ್ನು 1/2 ಎಂದು ಬರೆಯಬಹುದು.
• ಎರಡನೇ ಆರ್ಬದಿಯ ಮೂರನೇ ಎರಡು ಪಾಲಿಗೆ ಬಣ್ಣ ಹಚ್ಚಲಾಗಿದೆ. ಹಾಗಾಗಿ ಪಾಲನ್ನು 2/3 ಎಂದು ಬರೆಯಬಹುದು.
• ಮೂರನೇ ಆರ್ಬದಿಯ ನಾಲ್ಕನೇ ಮೂರು ಪಾಲಿಗೆ ಬಣ್ಣ ಹಚ್ಚಲಾಗಿದೆ. ಹಾಗಾಗಿ ಪಾಲನ್ನು 3/4 ಎಂದು ಬರೆಯಬಹುದು.
• ಆರ್ಬದಿಯ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲುಗಳು 1/2, 2/3, 3/4, ಇಲ್ಲಿ ಪಾಲುಗಳ ಕೀಳೆಣಿಗಳು 2, 3 ಮತ್ತು 4 ಬೇರೆ ಬೇರೆಯಾಗಿವೆ, ಆದ್ದರಿಂದ ಇವುಗಳು ಹೋಲದ ಕೀಳೆಣಿ ಪಾಲುಗಳಾಗಿವೆ (Unlike Fractions).

ಚಟುವಟಿಕೆ: ನೀಲಿ ಬಣ್ಣದ ಪಾಲುಗಳನ್ನು ಹೊಂದಿದ ಎರಡು ದುಂಡುಕಗಳು (Circles) ಮತ್ತು ಹಸಿರು ಬಣ್ಣದ ಪಾಲುಗಳನ್ನು ಹೊಂದಿದ ಎರಡು ದುಂಡುಕಗಳನ್ನು ನೀಡಲಾಗಿದೆ. ಇವುಗಳಲ್ಲಿ ಯಾವ ಬಣ್ಣ ಹಚ್ಚಿದ ದುಂಡುಕ ಹೋಲದ ಕೀಳೆಣಿ ಪಾಲುಗಳನ್ನು ಹೊಂದಿದೆ?

fractions_2_5

• ಮೊದಲನೇ ದುಂಡುಕದ ಎಂಟನೇ ಮೂರು ಪಾಲಿಗೆ ಬಣ್ಣ ಹಚ್ಚಲಾಗಿದೆ, ಹಾಗಾಗಿ ಪಾಲನ್ನು 3/8 ಎಂದು ಬರೆಯಬಹುದು.
• ಎರಡನೇ ದುಂಡುಕದ ಎಂಟನೇ ಏಳು ಪಾಲಿಗೆ ಬಣ್ಣ ಹಚ್ಚಲಾಗಿದೆ, ಹಾಗಾಗಿ ಪಾಲನ್ನು 7/8 ಎಂದು ಬರೆಯಬಹುದು.
• ಮೂರನೇ ದುಂಡುಕದ ಎಂಟನೇ ನಾಲ್ಕು ಪಾಲಿಗೆ ಬಣ್ಣ ಹಚ್ಚಲಾಗಿದೆ, ಹಾಗಾಗಿ ಪಾಲನ್ನು 4/8 ಎಂದು ಬರೆಯಬಹುದು.
• ನಾಲ್ಕನೇ ದುಂಡುಕದ ನಾಲ್ಕನೇ ಎರಡು ಪಾಲಿಗೆ ಬಣ್ಣ ಹಚ್ಚಲಾಗಿದೆ, ಹಾಗಾಗಿ ಪಾಲನ್ನು 2/4 ಎಂದು ಬರೆಯಬಹುದು.
• ದುಂಡುಕದ ಬಣ್ಣದ ಪಾಲುಗಳು 3/8, 7/8, 4/8, 2/4. ಮೊದಲ ಮೂರು ದುಂಡುಕದ ಬಣ್ಣದ ಪಾಲಿನ ಕೀಳೆಣಿ 8 ಆಗಿದೆ, ನಾಲ್ಕನೇ ದುಂಡುಕದ ಬಣ್ಣದ ಪಾಲಿನ ಕೀಳೆಣಿ 4 ಆಗಿದ, ಆದ್ದರಿಂದ ಹಸಿರು ಬಣ್ಣ ಹಚ್ಚಿದ ನಾಲ್ಕನೇ ದುಂಡುಕವು ಹೋಲದ ಕೀಳೆಣಿ ಪಾಲುಗಳನ್ನು ಹೊಂದಿದೆ.

ಪಾಲುಗಳಲ್ಲಿ ದೊಡ್ಡ ಮತ್ತು ಚಿಕ್ಕ ಪಾಲುಗಳನ್ನು ಕಂಡುಹಿಡಿಯುವ ಬಗೆ:
ಯಾವುದೇ ಎರಡು ಹೋಲದ ಕೀಳೆಣಿ ಪಾಲುಗಳನ್ನು(Unlike fractions) ಕೊಟ್ಟಾಗ ಅವುಗಳಲ್ಲಿ ಯಾವುದು ದೊಡ್ಡದು ಮತ್ತು ಚಿಕ್ಕದು ಎಂದು ಕಂಡುಹಿಡಿಯಬಹುದು, ಹೇಗೆಂದರೆ ಪಾಲುಗಳ ಕೀಳೆಣಿಗಳನ್ನು ಸರಿ ಕೀಳೆಣಿ ಗಳಾಗಿರುವಂತೆ ಗುಣಿಸಬೇಕು. ಗುಣಿಸುವಾಗ ಅದೇ ಸಂಖ್ಯೆಯನ್ನು ಆಯಾ ಪಾಲುಗಳ ಮೇಲೆಣಿಗೂ ಕೂಡ ಗುಣಿಸಬೇಕು.

ಎರಡು ಪಾಲುಗಳು ಸರಿಕೀಳೆಣಿ ಆದಾಗ ಪಾಲುಗಳಲ್ಲಿ ಮೇಲೆಣಿ ಯಾವುದು ದೊಡ್ಡದಿದಿಯೋ ಅದು ದೊಡ್ಡಪಾಲಾಗುತ್ತದೆ ಮತ್ತು ಮೇಲೆಣಿ ಚಿಕ್ಕದಿದಿಯೋ ಅದು ಚಿಕ್ಕ ಪಾಲಾಗುತ್ತದೆ.

ಉದಾಹರಣೆಗೆ ಎರಡು ಪಾಲುಗಳು 5/6 ಮತ್ತು 4/5 ಎಂದು ಕೊಟ್ಟಾಗ ಪಾಲು 5/6 = (5 x 5)/(6 x 5) = 25/30 ಮತ್ತು ಪಾಲು 4/5 = (4 x 6)/(5 x 6) = 24/30, ನಾವುಗಳು ಈ ಎರಡು ಪಾಲುಗಳ ಕೀಳೆಣಿಗಳು ಸರಿಬರುವಂತೆ ಗುಣಿಸಬೇಕು. ಮೊದಲ ಪಾಲಿನ ಕೀಳೆಣಿ 6 ಕ್ಕೆ 5 ರಿಂದ ಗುಣಿಸಿದಾಗ 30 ಆಯಿತು ಎರಡನೇ ಪಾಲಿನ ಕೀಳೆಣಿ 5 ಕ್ಕೆ 6 ರಿಂದ ಗುಣಿಸಿದಾಗ 30 ಆಯಿತು, ಹೀಗಾಗಿ ಈ ಎರಡು ಪಾಲುಗಳು ಹೀಗಾಗಿ ಈ ಎರಡು ಪಾಲುಗಳು ಸರಿಕೀಳೆಣಿ ಪಾಲುಗಳಾದವು.

ಮೊದಲ ಪಾಲು 5/6 = 25/30 ನ್ನು ಎರಡನೇ ಪಾಲು 4/5 = 24/30 ಕ್ಕೆ ಹೋಲಿಸಿದಾಗ ಮೊದಲಿನ ಪಾಲಿನ ಮೇಲೆಣಿ ದೊಡ್ಡದಿದೆ ಹಾಗಾಗಿ ಪಾಲು 5/6 = 25/30 ದೊಡ್ಡ ಪಾಲಾಗಿದೆ ಮತ್ತು ಎರಡನೇ ಪಾಲು 4/5 = 24/30 ರಲ್ಲಿ ಮೇಲೆಣಿ ಎರಡನೇ ಪಾಲಿಗಿಂತ ಚಿಕ್ಕದಿದೆ ಹಾಗಾಗಿ ಇದು ಚಿಕ್ಕ ಪಾಲು.

ಚಟುವಟಿಕೆ: ಕೆಳಗಿನ ಜೊತೆ ಪಾಲುಗಳನ್ನು ಹೊಂದಿಸಿ ನೋಡಿ ಮತ್ತು ಯಾವುದು ದೊಡ್ಡ ಪಾಲು ಎಂದು ಬರೆಯಿರಿ.
ಪಾಲುಗಳು
fractions_2_10ಮೇಲೆ ಹೇಳಿದಂತೆ ಪಾಲುಗಳನ್ನು ಸರಿಕೀಳೆಣಿ ಪಾಲುಗಳನ್ನಾಗಿ ಬರೆದು ಯಾವುದು ದೊಡ್ಡದು ಎಂದು ಹಿಡಿಯಬಹುದು

fractions_2_11

ಎಣಿಕೆಯ ಗೆರೆ ಎಳೆದು ಪಾಲುಗಳ ಹತ್ತಿರವನ್ನು ಕಂಡುಹಿಡಿಯುವ ಬಗೆ:
• ಎರಡು ಪಾಲುಗಳ ಹತ್ತಿರವನ್ನು ಕಂಡುಹಿಡಿಯಲು ಗೆರೆ ಎಳೆದು ಅದರ ಮೇಲೆ ಪಾಲುಗಳ ಸಾಲುಗಳನ್ನು ಬರೆಯಿರಿ.
• ಎರಡು ಗೆರೆಗಳಲ್ಲಿ ಎಡಬದಿಯಿಂದ ಸೊನ್ನೆಯಿಂದ ಪಾಲುಗಳ ಸಾಲುಗಳನ್ನು ಗೆರೆಯ ಮೇಲೆ ಗುರುತಿಸಿ.
• ಎರಡು ಗೆರೆಗಳಲ್ಲಿ ಯಾವ ಪಾಲು ಹತ್ತಿರವಾಗಿದೆ ಎಂದು ಕಂಡುಹಿಡಿಯಿರಿ.

fractions_2_6

ಉದಾಹರಣೆ 1: ಒಂದರ ನಾಲ್ಕು ಪಾಲುಗಳಾದ 1/4, 1/2, 3/4 ಗಳನ್ನು ಗೆರೆಯ ಮೇಲೆ ಗುರುತಿಸಲಾಗಿದೆ ಮತ್ತು ಒಂದರ ಐದು ಪಾಲುಗಳಾದ 1/5, 2/5, 3/5, 4/5 ಗಳನ್ನು ಗೆರೆಯ ಮೇಲೆ ಗುರುತಿಸಲಾಗಿದೆ. ಈ ಎರಡು ಪಾಲುಗಳನ್ನು ಹೋಲಿಸಿ ನೋಡಿ ಯಾವ ಪಾಲುಗಳು ಹತ್ತಿರವಾಗಿದೆ ಎಂದು ಕಂಡುಹಿಡಿಯಿರಿ.

fractions_2_7

ಎರಡು ಪಾಲುಗಳನ್ನು ಹೋಲಿಸಿ ನೋಡಿದಾಗ 1/4 ಮತ್ತು 1/5, 3/4 ಮತ್ತು 4/5 ಪಾಲುಗಳು ಹತ್ತಿರದಲ್ಲಿವೆ ಎಂದು ಹೇಳಬಹುದು.

ಉದಾಹರಣೆ 2: ಒಂದರ ನಾಲ್ಕು ಪಾಲುಗಳಾದ 1/4, 1/2, 3/4 ಗಳನ್ನು ಗೆರೆಯ ಮೇಲೆ ಗುರುತಿಸಲಾಗಿದೆ ಮತ್ತು ಒಂದರ ಐದು ಪಾಲುಗಳಾದ 1/7, 2/7, 3/7, 4/7, 5/7, 6/7 ಗಳನ್ನು ಗೆರೆಯ ಮೇಲೆ ಗುರುತಿಸಲಾಗಿದೆ. ಈ ಎರಡು ಪಾಲುಗಳನ್ನು ಹೋಲಿಸಿ ನೋಡಿ ಯಾವ ಪಾಲುಗಳು ಹತ್ತಿರವಾಗಿದೆ ಎಂದು ಕಂಡುಹಿಡಿಯಿರಿ.

fractions_2_8

ಎರಡು ಪಾಲುಗಳನ್ನು ಹೋಲಿಸಿ ನೋಡಿದಾಗ 1/4 ಮತ್ತು 2/7, 1/2 ಮತ್ತು 4/7, 3/4 ಮತ್ತು 5/7 ಪಾಲುಗಳು ಹತ್ತಿರದಲ್ಲಿವೆ ಎಂದು ಹೇಳಬಹುದು.

ಮುಂದಿನ ಬರಹದಲ್ಲಿ ಪಾಲುಗಳ ವಿಶೇಷತೆ ಮತ್ತು ಅವುಗಳನ್ನು ಕೂಡುವುದು, ಕಳೆಯುವುದು, ಗುಣಿಸುವುದು ಭಾಗಿಸುವುದರ ಬಗ್ಗೆ ಹಾಗು ಪಾಲಿನ ಹಳಮೆಯ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳೋಣ

(ಮಾಹಿತಿ ಸೆಲೆಗಳು:
 learnnext.com,  ask-math.com, metal.brightcookie.comstudy.com/academy/basic-math-explained.commath-only-math.com, images.tutorvista.com, ilmoamal.org, ಐದನೇ ತರಗತಿಯ ಗಣಿತ ಪಠ್ಯಪುಸ್ತಕ)

ಪಾಲುಗಳು (fractions) – ಭಾಗ 1

ನಾವು ಅಂಗಡಿಗೆ ಹೋದಾಗ ಕಾಲು ಕೇಜಿ, ಅರ್ಧ ಕೇಜಿ, ಮುಕ್ಕಾಲು ಕೇಜಿ ತರಕಾರಿಗಳನ್ನು ಕೊಳ್ಳುತ್ತೇವೆ ಅಲ್ಲವೇ ಇವುಗಳೆಲ್ಲವೂ ಒಂದು ಕೇಜಿಯ ಪಾಲುಗಳು. ಹಣ್ಣುಗಳನ್ನು ಅರ್ಧ, ಕಾಲು ಎಂದು ಕತ್ತರಿಸಿದಾಗ ಅವುಗಳು ಹಣ್ಣಿನ ಅರ್ಧ ಭಾಗ, ಕಾಲು ಭಾಗಗಳಾಗುತ್ತವೆ ಇವೆಲ್ಲವೂ ಪಾಲುಗಳಿಗೆ (Fractions) ಸೇರುತ್ತವೆ. ನಾವುಗಳು ಬದುಕಿನಲ್ಲಿ ದಿನವೂ ಒಂದಲ್ಲ ಒಂದು ರೀತಿಯ ಪಾಲುಗಳನ್ನು ನೋಡುತ್ತಿರುತ್ತವೆ ಮತ್ತು ಅದರ ಬಗ್ಗೆ ಮಾತನಾಡುತ್ತಿರುತ್ತೇವೆ!

ಪಾಲುಗಳು (Fractions) ಅಂದರೇನು? :

ಒಂದು ವಸ್ತುವಿನಲ್ಲಿ ಮಾಡಿದ ಸಮ ಪ್ರಮಾಣದ ತುಂಡುಗಳನ್ನು ಸಮಪಾಲುಗಳು ಇಲ್ಲವೇ  ಪಾಲುಗಳು ಎಂದು ಕರೆಯುತ್ತಾರೆ.

 

ಉದಾಹರಣೆಗೆ, ಕೆಳಗಿನ ಉದ್ದಿನ ವಡೆಯ ಚಿತ್ರ ನೋಡಿ.

fraction_vade

ಮೊದಲ ಚಿತ್ರದಲ್ಲಿ ವಡೆ ಇಡಿಯಾಗಿದೆ. ಎರಡನೆಯ ಚಿತ್ರದಲ್ಲಿ ವಡೆಯನ್ನು ಸಮನಾದ ಎರಡು ತುಂಡುಗಳನ್ನಾಗಿ ಮತ್ತು ಮೂರನೇ ಚಿತ್ರದಲ್ಲಿ ಸಮನಾದ ನಾಲ್ಕು ತುಂಡುಗಳನ್ನಾಗಿ ಮಾಡಲಾಗಿದೆ. ಇವೇ ವಡೆಯ ಪಾಲುಗಳು.

ಇಲ್ಲಿ ಮುಖ್ಯವಾಗಿ ಗಮನಿಸಬೇಕಾದುದೆಂದರೆ, ಗಣಿತದ ಈ ವಿಷಯದಲ್ಲಿ ’ಪಾಲುಗಳು’ ಇಲ್ಲವೇ ’ಪ್ರಾಕ್ಶನ್ಸ್’ (fractions) ಅಂದರೆ ’ಸಮ ಪ್ರಮಾಣದ’ ತುಂಡುಗಳು ಎಂದೇ ಅರ್ಥ. ತುಂಡುಗಳು ಸಮ ಪ್ರಮಾಣದಲ್ಲಿ ಇಲ್ಲದಿದ್ದರೇ ಅವು ಪಾಲುಗಳಲ್ಲ. (ಗಣಿತದ ಈ ವಿಷಯದ ಮಟ್ಟಿಗೆ)

ಇದನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಿಂದ ತಿಳಿದುಕೊಳ್ಳಬಹುದು. ಚಿತ್ರ 1 ರಲ್ಲಿ ಬಣ್ಣ ತುಂಬಿದ ತುಂಡುಗಳು ಬೇರೆ ಬೇರೆ ಪ್ರಮಾಣದಲ್ಲಿವೆ. ಇಂತಲ್ಲಿ ಪ್ರತಿಯೊಂದು ತುಂಡನ್ನು ಗಣಿತದ ಈ ವಿಷಯದ ಮಟ್ಟಿಗೆ ’ಪಾಲುಗಳು’ ಎನ್ನಲು ಬರುವುದಿಲ್ಲ. ಅದೇ ಚಿತ್ರ 2 ರಲ್ಲಿ ಬಣ್ಣ ತುಂಬಿದ ಎಲ್ಲ 3 ತುಂಡುಗಳೂ ಸಮ ಪ್ರಮಾಣದಲ್ಲಿವೆ ಹಾಗಾಗಿ ಅವುಗಳನ್ನು ’ಪಾಲುಗಳು’ ಎಂದು ಕರೆಯಬಹುದು.

fraction_unequal
ನಮ್ಮ ದಿನ ಬಳಕೆಯಲ್ಲಿ ’ಪಾಲುಗಳು’ ಎಂದರೆ ಸಮ ಪ್ರಮಾಣದ್ದೇ ಆಗಿರಬೇಕು ಎಂದೇನಿಲ್ಲ ಆದರೆ ಗಣಿತದ ಈ ವಿಷಯದ ಮಟ್ಟಿಗೆ ಅದು ಸಮ ಪ್ರಮಾಣದ್ದಾಗಿರಬೇಕು. ಇಂಗ್ಲೀಶಿನ ಬಳಕೆಯಲ್ಲೂ ಹೀಗೆಯೇ ಇದೆ. ಪ್ರಾಕ್ಶನ್ಸ್ (fractions) ಅನ್ನುವ ಪದ ದಿನ ಬಳಕೆಯಲ್ಲಿ ಸಮ ಪ್ರಮಾಣದ ಅಲ್ಲದೇ ಇರುವುದಕ್ಕೂ ಬಳಕೆಯಾಗುತ್ತದೆ ಆದರೆ ಗಣಿತದ ವಿಷಯಕ್ಕೆ ಬಂದಾಗ ಅದು ಸಮ ಪ್ರಮಾಣದ್ದಾಗಿರಲೇಬೇಕು.

ಗಮನಿಸಿ:
ಪಾಲುಗಳು ವಸ್ತುಗಳಲ್ಲಿ ಮಾಡಿದ ತುಣುಕುಗಳಲ್ಲದೇ, ಅಳತೆಗಳ ಕಿರು ಅಳತೆಗಳೂ ಆಗಿರಬಹುದು. ಉದಾಹರಣೆಗೆ, ಅರ್ಧ ಮೀಟರ್ ಅಳತೆಯ ಬಟ್ಟೆಯು ಒಂದು ಮೀಟರ್ ಅಳತೆ ಬಟ್ಟೆಯ ಪಾಲು ಆಗಿರುತ್ತದೆ.

  • ಯಾವುದೇ ಒಂದು ಪಾಲನ್ನು a/b ಎಂದು ಗಣಿತದ ನಂಟು ಬಳಸಿ ಬರೆಯಬಹುದು. ಇಲ್ಲಿ a ಎಂಬುದು ವಸ್ತುವಿನ ಅಥವಾ ವಸ್ತುವಿನ ಅಳತೆಯ ಸಮನಾದ ಪಾಲು ಮತ್ತು b ಎಂಬುದು ವಸ್ತುವಿನ ಅಥವಾ ವಸ್ತುವಿನ ಅಳತೆಯ ಒಟ್ಟು ಪಾಲುಗಳು (Total quantity). ಇದರ ಬಗ್ಗೆ ಮುಂದೆ ಮತ್ತಷ್ಟು ತಿಳಿಯೋಣ.
  • a/b ಯಲ್ಲಿ a ಯು ಗೆರೆಯ ಮೇಲಿರುವುದರಿಂದ ಮೇಲೆಣಿ (Numerator) ಎಂದು b ಯು ಗೆರೆಯ ಕೆಳಗಿರುವುದರಿಂದ ಅದನ್ನು ಕೀಳೆಣಿ (Denominator) ಎಂದು ಕರೆಯಬಹುದು.
  • ಒಂದು ವಸ್ತುವನ್ನು ಒಟ್ಟು ಎಷ್ಟು ಸಮ ಪಾಲುಗಳನ್ನಾಗಿ ಮಾಡುತ್ತೇವೆಯೋ ಅದೇ ಅದರ ಕೀಳೆಣಿ (Denominator).
  • ಒಟ್ಟು ಪಾಲುಗಳಲ್ಲಿ ಎಷ್ಟು ಸಮ ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಂಡಿದ್ದೇವೋ ಅದೇ ಅದರ ಮೇಲೆಣಿ (Numerator).

ಕೆಳಗಿನ ನಾಲ್ಕು ಚಿತ್ರಗಳಲ್ಲಿ ಒಂದು ಇಡೀ ಸೇಬುಹಣ್ಣಿನ ಹಲವು ಪಾಲುಗಳನ್ನು ಕೊಡಲಾಗಿದೆ. ಅವುಗಳನ್ನು ಪಾಲುಗಳನ್ನಾಗಿ ಹೇಗೆ ತೋರಿಸಬಹುದೆಂದು ಒಂದೊಂದಾಗಿ ಈಗ ನೋಡೋಣ.

Sebu_palu

ಮೊದಲನೆಯ ಚಿತ್ರದಲ್ಲಿ ಇಡೀ ಸೇಬುಹಣ್ಣನ್ನು ತೋರಿಸಲಾಗಿದೆ. ಇದನ್ನು 1/1 ಎಂದು ಸೂಚಿಸಬಹುದು. ಇದರರ್ಥ ಇಡೀ ಸೇಬುಹಣ್ಣು ಹಾಗೆ ಇದೆ, ಪಾಲು ಮಾಡಿಲ್ಲ.

ಎರಡನೆಯ ಚಿತ್ರದಲ್ಲಿ ಸೇಬುಹಣ್ಣನ್ನು ಒಟ್ಟು 2 ಪಾಲುಗಳನ್ನಾಗಿ ಮಾಡಲಾಗಿದೆ. ಈಗ ಇದರಲ್ಲಿ ಪ್ರತಿಯೊಂದು ಪಾಲನ್ನು 1/2 ಎಂದು ಗುರುತಿಸಬಹುದು. ಅದು ಏಕೆಂದರೆ, ಮೇಲೆ ತಿಳಿಸಿದಂತೆ ಇಡೀ ಸೇಬುಹಣ್ಣನ್ನು ಒಟ್ಟು 2 ಪಾಲುಗಳನ್ನಾಗಿ ಮಾಡಿರುವುದರಿಂದ ಪಾಲನ್ನು ತೋರಿಸುವಾಗ ಅದರ ಕೀಳೆಣಿ 2 ಎಂದೂ ಮತ್ತು ಒಟ್ಟು ಪಾಲುಗಳಲ್ಲಿ 1 ನ್ನೇ ತೆಗೆದುಕೊಂಡಿರುವುದರಿಂದ ಅದರ ಮೇಲೆಣಿ 1 ಎಂದು ತೋರಿಸಬೇಕಾಗುತ್ತದೆ. ಹಾಗಾಗಿ ಎರಡನೆಯ ಚಿತ್ರದಲ್ಲಿರುವ ಪ್ರತಿ ಪಾಲು 1/2. ದಿನಬಳಕೆಯಲ್ಲಿ ಇದನ್ನು ಅರೆಪಾಲು ಇಲ್ಲವೇ ಅರ್ಧ ಪಾಲು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಮೂರನೆಯ ಚಿತ್ರದಲ್ಲಿ ಇಡೀ ಸೇಬುಹಣ್ಣನ್ನು ಒಟ್ಟು 3 ಪಾಲುಗಳನ್ನಾಗಿ ಮಾಡಲಾಗಿದೆ. ಅಂದರೆ ಪಾಲು ತೋರಿಸುವಾಗ ಅದರ ಕೀಳೆಣಿ 3 ಎಂದಾಯಿತು. ಹಾಗಾಗಿ ಈ ಚಿತ್ರದಲ್ಲಿರುವ ಪ್ರತಿಯೊಂದು ತುಣುಕನ್ನು 1/3 ಎಂದು ತೋರಿಸಬಹುದು.

ಇನ್ನು, ನಾಲ್ಕನೇ ಚಿತ್ರದಲ್ಲಿ ಇಡೀ ಸೇಬುಹಣ್ಣನ್ನು ಒಟ್ಟು 4 ಪಾಲುಗಳನ್ನಾಗಿ ಮಾಡಲಾಗಿದೆ. ಇದರಲ್ಲಿ ಕೀಳೆಣಿ 4 ಅನ್ನುವುದು ತಟ್ಟನೇ ಹೇಳಿಬಿಡಬಹುದಲ್ಲವೇ? ಇಲ್ಲಿ ಪ್ರತಿಯೊಂದು ಪಾಲನ್ನು 1/4 ಎಂದು ಸೂಚಿಸಬಹುದು. ದಿನಬಳಕೆಯಲ್ಲಿ ಇದನ್ನು ಕಾಲು ಇಲ್ಲವೇ ಕಾಲುಪಾಲು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಮೇಲಿನ ಚಿತಗಳನ್ನೇ ಮುಂದುವರೆಸುತ್ತಾ, 1 ತುಣುಕನ್ನು ತೆಗೆದುಕೊಂಡಾಗ 1/2 (ಚಿತ್ರ-2), 1/3 (ಚಿತ್ರ-3), 1/4 (ಚಿತ್ರ-4) ಎಂದು ತೋರಿಸಬಹುದೆಂದು ಕಂಡೆವು. ಅದೇ 1 ತುಣುಕಿನ ಬದಲಾಗಿ 2 ತುಣುಕುಗಳನ್ನು ತೆಗೆದುಕೊಂಡರೆ ಸಾಲಾಗಿ 2/2, 2/3, 2/4 ಎಂದು ಸೂಚಿಸಬೇಕಾಗುತ್ತದೆ.

ಕೆಳಗೆ ಇನ್ನೊಂದು ಉದಾಹರಣೆ ಇದೆ ನೋಡಿ. ಒಂದು ದೋಸೆಯಲ್ಲಿ ಒಟ್ಟು ಎಂಟು ಪಾಲುಗಳನ್ನು ಮಾಡಲಾಗಿದೆ.

dose_2_1

ಈ ಎಂಟು ಪಾಲುಗಳಲ್ಲಿ 1 ಪಾಲನ್ನು ತೆಗೆದುಕೊಂಡರೆ ಅಂತಹ ಪಾಲನ್ನು 1/8 ಎಂದೂ, 2 ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಂಡರೆ 2/8 ಎಂದೂ ಮತ್ತು 3 ಪಾಲನ್ನು ತೆಗೆದುಕೊಂಡರೆ 3/8 ಎಂದು ಬರೆಯಲಾಗುತ್ತದೆ.

dose_2_2

ಚುಟುಕಾಗಿ ಹೇಳಬೇಕೆಂದರೆ, ಪಾಲನ್ನು ಸೂಚಿಸಬೇಕಾದಾಗ

ವಸ್ತುವೊಂದರಲ್ಲಿ ಮಾಡಿದ ಒಟ್ಟು ಪಾಲುಗಳನ್ನು ಕೆಳಗಿನ ಸಂಖ್ಯೆಯಾಗಿ (ಕೀಳೆಣಿ) ಮತ್ತು ತೆಗೆದುಕೊಂಡ ಪಾಲುಗಳನ್ನು ಮೇಲಿನ ಸಂಖ್ಯೆಯಾಗಿ (ಮೇಲೆಣಿ) ತೋರಿಸಿದರೆ ಆಯಿತು.

ಪಾಲುಗಳನ್ನು ಓದುವುದು ಹೇಗೆ? :
ಮೇಲೆ ತಿಳಿದುಕೊಂಡಂತೆ ಪಾಲೊಂದರಲ್ಲಿ ಮೇಲೆಣಿ ಮತ್ತು ಕೀಳೆಣಿ ಸಂಖ್ಯೆಗಳೆನೋ ಇರುತ್ತವೆ ಆದರೆ ಅವುಗಳನ್ನು ಹೇಗೆ ಓದುವುದು? 1/2 ಪಾಲಿಗೆ ಅರೆಪಾಲು, 1/4 ಪಾಲಿಗೆ ಕಾಲು ಎಂದು ಕೆಲವು ದಿನಬಳಕೆಯ ಪಾಲುಗಳನ್ನು ಬಿಟ್ಟರೆ ಉಳಿದ ಪಾಲುಗಳನ್ನು ಓದಲು ಒಂದು ಬಗೆ ಬೇಕಾಗುತ್ತದೆ. ಪಾಲುಗಳನ್ನು ಕೆಳಗಿನ ರೀತಿಯಲ್ಲಿ ಓದಬಹುದು,

3/4 = 4 ರಲ್ಲಿ 3 ಇಲ್ಲವೇ 4 ನೇಯ 3 (ಈ ಪಾಲಿನಲ್ಲಿ ಒಟ್ಟು 4 ಪಾಲುಗಳಲ್ಲಿ 3 ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳಲಾಗಿದೆ)
7/21 = 21 ರಲ್ಲಿ 7 ಇಲ್ಲವೇ 21 ನೇಯ 7 (ಈ ಪಾಲಿನಲ್ಲಿ ಒಟ್ಟು 21 ಪಾಲುಗಳಲ್ಲಿ 7 ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳಲಾಗಿದೆ)

ಪಾಲುಗಳನ್ನು ಹಲವು ಬಗೆಗಳಿವೆ. ಈ ಬಗೆಗಳ ಬಗ್ಗೆ ಈಗ ತಿಳಿದುಕೊಳ್ಳೋಣ.

1. ತಕ್ಕುದಾದ ಪಾಲುಗಳು (Proper fraction):

ಪಾಲೊಂದರಲ್ಲಿ ಮೇಲೆಣಿಯು (Numerator) ಕೀಳೆಣಿಗಿಂತ (Denominator) ಕಡಿಮೆಯಿದ್ದರೆ ಅದನ್ನು ತಕ್ಕುದಾದ ಪಾಲುಗಳು (Proper fraction) ಎಂದು ಕರೆಯಬಹುದು.

ಉದಾಹರಣೆ1:

2/3, 8/11, 9/27 ಈ ಎಲ್ಲಾ ಪಾಲುಗಳಲ್ಲಿ ಮೇಲೆಣಿಯು ಕೀಳೆಣಿಗಿಂತ ಕಡಿಮೆ ಇದೆ. ಹಾಗಾಗಿ ಇವುಗಳು ತಕ್ಕುದಾದ ಪಾಲುಗಳಾಗಿವೆ.

ಉದಾಹರಣೆ2:
ಈ ಕೆಳಗಿನ ಚಿತ್ರಗಳಲ್ಲಿ ಬಣ್ಣದ ಗೆರೆ ಎಳೆದ ಭಾಗಗಳನ್ನು ಮತ್ತು ಪ್ರತಿ ಚಿತ್ರದಲ್ಲಿರುವ ಒಟ್ಟು ಭಾಗಗಳನ್ನು ಗಮನಿಸಿ.

shapes_palu

ಮೊದಲ ಚಿತ್ರವಾದ ಮೂರ್ಬದಿಯಲ್ಲಿ ಒಟ್ಟು ಮೂರು ಪಾಲುಗಳಿವೆ. ಅದರಲ್ಲಿ ಎರಡು ಪಾಲುಗಳಿಗೆ ಬಣ್ಣದ ಗೆರೆಗಳನ್ನು ಎಳೆಯಲಾಗಿದೆ. ಹಾಗಾಗಿ ಬಣ್ಣ ಎಳೆದ ಪಾಲುಗಳನ್ನು 2/3 ಎಂದು ಬರೆಯಬಹುದು. ಇದರಲ್ಲಿ 2 ಮೇಲೆಣಿಯಾಗಿದೆ ಮತ್ತು 3 ಕೀಳೆಣಿಯಾಗಿದೆ. ಇಲ್ಲಿ ಮೇಲೆಣಿಯು ಕೀಳೆಣಿಗಿಂತ ಕಡಿಮೆಯಿದೆ ಆದ್ದರಿಂದ ಇದು ಒಂದು ತಕ್ಕು ಪಾಲಿಗೆ ಉದಾಹರಣೆ.

ಎರಡನೆ ಚಿತ್ರವಾದ ಚೌಕದಲ್ಲಿ ಒಟ್ಟು ನಾಲ್ಕು ಪಾಲುಗಳಿವೆ. ಅದರಲ್ಲಿ ಮೂರು ಪಾಲುಗಳಿಗೆ ಬಣ್ಣದ ಗೆರೆಗಳನ್ನು ಎಳೆಯಲಾಗಿದೆ. ಹಾಗಾಗಿ ಬಣ್ಣ ಎಳೆದ ಪಾಲನ್ನು 3/4 ಎಂದು ಬರೆಯಬಹುದು. ಇದರಲ್ಲಿ 3 ಮೇಲೆಣಿಯಾಗಿದೆ ಮತ್ತು 4 ಕೀಳೆಣಿಯಾಗಿದೆ. ಇಲ್ಲಿಯೂ ಮೇಲೆಣಿಯು ಕೀಳೆಣಿಗಿಂತ ಕಡಿಮೆಯಿದೆ ಆದ್ದರಿಂದ ಇದೂ ಒಂದು ತಕ್ಕು ಪಾಲಾಗಿದೆ.

ಹಾಗೆನೇ ಮೂರನೆಯ ಚಿತ್ರ ನಾಲ್ಬದಿಯಲ್ಲಿ (Quadrilateral) ಒಟ್ಟು ಎಂಟು ಪಾಲುಗಳಿವೆ. ಅದರಲ್ಲಿ ಏಳು ಪಾಲುಗಳಿಗೆ ಬಣ್ಣದ ಗೆರೆಗಳನ್ನು ಎಳೆಯಲಾಗಿದೆ. ಹಾಗಾಗಿ ಇದನ್ನು 7/8 ಎಂದು ಬರೆಯಬಹುದು. ಇದರಲ್ಲಿ 7 ಮೇಲೆಣಿಯಾಗಿದೆ ಮತ್ತು 8 ಕೀಳೆಣಿಯಾಗಿದೆ. ಇಲ್ಲಿ ಕೂಡ ಮೇಲೆಣಿಯು ಕೀಳೆಣಿಗಿಂತ ಕಡಿಮೆಯಿದೆ ಆದ್ದರಿಂದ ಇದು ಒಂದು ತಕ್ಕು ಪಾಲಾಗಿದೆ.

ಗಮನಿಸಿ: ತಕ್ಕುದಾದ ಪಾಲಿನ ಬೆಲೆಯು ಯಾವಾಗಲೂ ಒಂದಕ್ಕಿಂತ ಕಡಿಮೆ ಇರುತ್ತದೆ.

ಚಟುವಟಿಕೆ1: ಕೆಳಗಿನ ಹೇಳಿಕೆಗಳನ್ನು ಪಾಲುಗಳನ್ನಾಗಿ ಬರೆಯಿರಿ ಮತ್ತು ಅವುಗಳು ತಕ್ಕುದಾದ ಪಾಲುಗಳೆಂದು ತೋರಿಸಿ.
ಅರ್ಧಪಾಲು, ಮೂರನೇ ಎರಡು, ಹತ್ತನೇ ಮೂರು , ಏಳನೇ ಐದು, ಹದಿನಾರನೇ ಐದು, ಹನ್ನೆರಡನೇ ಐದು, ಒಂಬತ್ತನೇ ಎಂಟು, ಒಂಬತ್ತನೇ ನಾಲ್ಕು, ನಾಲ್ಕನೇ ಮೂರು, ಐದನೇ ಎರಡು.

ಕೊಟ್ಟ ಹೇಳಿಕೆಗಳನ್ನು ಕೆಳಗೆ ಪಾಲಿನಲ್ಲಿ ಬರೆಯಲಾಗಿದೆ.

ಉದಾಹರಣೆಗೆ ಕೆಳಗಿನ ದುಂಡುಕದಲ್ಲಿ ಮೂರನೇ ಎರಡು ಪಾಲಿಗೆ ಹಸಿರು ಬಣ್ಣವನ್ನು ಹಚ್ಚಲಾಗಿದೆ. ಮೂರನೇ ಎರಡು ಎಂದರೆ ಒಟ್ಟುಪಾಲುಗಳು ಮೂರು ಎಂದು ಮತ್ತು ಬಣ್ಣ ಹಚ್ಚಿದ ಪಾಲುಗಳು ಎರಡು ಎಂದು, ಹಾಗಾಗಿ ಮೂರನೇ ಎರಡನ್ನು ಪಾಲಿನ ರೂಪದಲ್ಲಿ ಬರೆದಾಗ 2/3 ಆಗುತ್ತದೆ,

dunduka_palu

Picture1

ಗಮನಿಸಿ: ಮೇಲಿನ ಎಲ್ಲಾ ಪಾಲುಗಳಲ್ಲಿಯೂ ಮೇಲೆಣಿಯು ಕೀಳೆಣಿಗಿಂತ ಕಡಿಮೆಯಿದೆ ಆದ್ದರಿಂದ ಇವುಗಳು ಒಂದು ತಕ್ಕುಪಾಲಾಗಿದೆ.

ಚಟುವಟಿಕೆ2: ಕೆಳಗೆ ಅಂಚೆಕಾಗದಗಳನ್ನು ಐದು ಪಾಲನ್ನಾಗಿ ಮಾಡಲಾಗಿದೆ ಹಾಗು ಎಲ್ಲಾ ಐದು ಪಾಲುಗಳಲ್ಲಿ ತಲಾ ಮೂರು ಅಂಚೆಕಾಗದಗಳು ಬರುವಂತೆ ಹೊಂದಿಸಲಾಗಿದೆ. ಇದರಲ್ಲಿ ಐದನೇ ಎರಡು ಪಾಲುಗಳಶ್ಟು ಅಂಚೆಕಾಗದಗಳು ಎಂದರೆ ಎಷ್ಟು ಅಂಚೆ ಕಾಗದಗಳಾಗುತ್ತವೆ?

ೋಲಮಪಾ_palu

ಕೆಳಗೆ ಅಂಚೆ ಚೀಟಿಗಳನ್ನು ಐದು ಪಾಲನ್ನಾಗಿ ಮಾಡಲಾಗಿದೆ ಹಾಗು ಎಲ್ಲಾ ಐದು ಪಾಲುಗಳಲ್ಲಿ ತಲಾ ಮೂರು ಅಂಚೆಕಾಗದಗಳು ಬರುವಂತೆ ಹೊಂದಿಸಲಾಗಿದೆ. ಐದನೇ ಎರಡು ಪಾಲುಗಳಶ್ಟು ಅಂಚೆ ಕಾಗದ ಅಂದರೆ ಒಟ್ಟು ಪಾಲುಗಳು ಐದು ಎಂದು ಮತ್ತು ಆಯ್ಕೆಮಾಡಿಕೊಂಡ ಪಾಲುಗಳು ಎರಡು ಎಂದು, ಎಲ್ಲಾ ಪಾಲುಗಳು ತಲಾ ಮೂರು ಅಂಚೆ ಕಾಗದಗಳನ್ನು ಹೊಂದಿರುವುದರಿಂದ ಆಯ್ಕೆ ಮಾಡಿಕೊಂಡ ಎರಡು ಪಾಲುಗಳಿಂದ ತಲಾ ಮೂರರಂತೆ ನಮಗೆ ಒಟ್ಟು ಆರು ಅಂಚೆ ಚೀಟಿಗಳು ಸಿಗುತ್ತವೆ.

ಚಟುವಟಿಕೆ3: ಒಂದು ತರಕಾರಿಯ ಅಂಗಡಿಯಲ್ಲಿ 12 Kg ಗಳಶ್ಟು ಬೆಂಡೆಕಾಯಿಗಳಿರುತ್ತವೆ, ಮೊದಲನೇ ಕೊಳ್ಳುಗ ಸುಮಾರು 2 Kg ಬೆಂಡೆಕಾಯಿಯನ್ನು ಕೊಳ್ಳುತ್ತಾನೆ, ಎರಡನೇ ಕೊಳ್ಳುಗ ಸುಮಾರು 5 Kg ಬೆಂಡೆಕಾಯಿಯನ್ನು ಕೊಳ್ಳುತ್ತಾನೆ, ಮೂರನೇ ಕೊಳ್ಳುಗ ಸುಮಾರು 4 Kg ಬೆಂಡೆಕಾಯಿಯನ್ನು ಕೊಳ್ಳುತ್ತಾನೆ, ಹಾಗಾದರೆ ಅಂಗಡಿಯಲ್ಲಿ ಉಳಿದ ಬೆಂಡೆಕಾಯಿಯ ಪಾಲೆಷ್ಟು?.

  • ಬೆಂಡೆಕಾಯಿಗಳ ಒಟ್ಟು ತೂಕ 12 Kg ಗಳಾಗಿವೆ.
  • ಒಂದನೇ, ಎರಡನೇ ಮತ್ತು ಮೂರನೇ ಕೊಳ್ಳುಗರು 2 Kg, 5 Kg, 4 Kg ಗಳಶ್ಟು ಬೆಂಡೆಕಾಯಿಗಳನ್ನು ಕೊಳ್ಳುವರು, ಈ ಮೂವರು ಸೇರಿ ಕೊಂಡುಕೊಂಡ ಬೆಂಡೆಕಾಯಿಗಳ ಒಟ್ಟು ತೂಕ 2 + 5 + 4 = 11 Kg ಗಳಾಗಿವೆ.
  • ಉಳಿದ ಬೆಂಡೆಕಾಯಿಗಳ ತೂಕ = ಬೆಂಡೆಕಾಯಿಗಳ ಒಟ್ಟು ತೂಕ – ಕೊಂಡುಕೊಂಡ ಬೆಂಡೆಕಾಯಿಗಳ ಒಟ್ಟು ತೂಕ = 12 – 11 = 1 Kg ಆಗಿದೆ, ಹಾಗಾಗಿ ಅಂಗಡಿಯಲ್ಲಿ ಉಳಿದ ಬೆಂಡೆಕಾಯಿಯ ಪಾಲನ್ನು ಉಳಿದ ಬೆಂಡೆಕಾಯಿಗಳ ತೂಕ/ ಬೆಂಡೆಕಾಯಿಗಳ ಒಟ್ಟು ತೂಕ ಎನ್ನಬಹುದು, ಆದ್ದರಿಂದ ಬೆಂಡೆಕಾಯಿಯ ಪಾಲು 1/12 ಆಗುತ್ತದೆ.

ಚಟುವಟಿಕೆ4: 1) 8/5, 2) 9/2, 3) 11/17, 4) 13/4, 5) 19/23 ಪಾಲುಗಳಲ್ಲಿ ತಕ್ಕುದಾದ ಪಾಲುಗಳನ್ನು ಹೌದು ಅಥವಾ ಅಲ್ಲವೆಂದು ಗುರುತಿಸಿ.

ಪಾಲುಗಳಲ್ಲಿ ಮೇಲೆಣಿಯು (Numerator) ಕೀಳೆಣಿಗಿಂತ (Denominator) ಕಡಿಮೆಯಿದ್ದರೆ ಅವುಗಳು ತಕ್ಕುದಾದ ಪಾಲುಗಳಾಗಿರುತ್ತವೆ (Proper fraction), ಹಾಗಾಗಿ ಕೆಳಗಿನವುಗಳನ್ನು ತಕ್ಕುದಾದ ಪಾಲುಗಳು ಹೌದು ಅಥವಾ ಅಲ್ಲವೆಂದು ಗುರುತಿಸಬಹುದು.

Picture4
2. ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳು (Improper fractions):

ಪಾಲೊಂದರಲ್ಲಿ ಮೇಲೆಣಿಯು (Numerator) ಕೀಳೆಣಿಗಿಂತ (Denominator) ಹೆಚ್ಚಿದ್ದರೆ ಇಲ್ಲವೇ ಎರಡೂ ಸಮನಾಗಿದ್ದರೆ ಅಂತಹ ಪಾಲನ್ನು ತಕ್ಕುದಲ್ಲದ ಪಾಲು (Improper fractions) ಎಂದು ಕರೆಯಬಹುದು.

 

ಉದಾಹರಣೆ 1: 3/2, 11/7, 15/10, 6/6 ಈ ಎಲ್ಲಾ ಪಾಲುಗಳಲ್ಲಿ ಮೇಲೆಣಿಯು ಕೀಳೆಣಿಗಿಂತ ಹೆಚ್ಚಿದೆ ಇಲ್ಲವೇ ಸಮನಾಗಿದೆ. ಹಾಗಾಗಿ ಇವುಗಳು ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳಾಗಿವೆ.

ಉದಾಹರಣೆ 2: ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಉದ್ದಿನ ವಡೆಯ ಉದಾಹರಣೆಯ ಚಿತ್ರವನ್ನು ನೋಡಿ.

improper_fraction_vade

ಇಲ್ಲಿ 6 ವಡೆಯ ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳಲಾಗಿದೆ. ಅಂದರೆ ಪಾಲನ್ನು ತೋರಿಸುವಾಗ ಅದರ ಮೇಲೆಣಿಯನ್ನು 6 ಎಂದು ಬರೆಯಬೇಕು. ಅದೇ 1 ಇಡೀ ವಡೆಯಲ್ಲಿ ಒಟ್ಟು 4 ಪಾಲುಗಳನ್ನು ಮಾಡಲಾಗಿದೆ. ಅಂದರೆ ಪಾಲನ್ನು ತೋರಿಸುವಾಗ ಅದರ ಕೀಳೆಣಿ 4 ಎಂದು ತೋರಿಸಬೇಕು.

ಹಾಗಾಗಿ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿದ ಒಟ್ಟಾರೆ ಪಾಲುಗಳನ್ನು 6/4 ಎಂದು ಬರೆಯಬೇಕು. ಮೇಲೆಣಿಯು ಕೀಳೆಣಿಗಿಂತ ಹೆಚ್ಚಿಗೆ ಇರುವುದರಿಂದ ಈ ತರಹದ ಪಾಲನ್ನು ತಕ್ಕುದಲ್ಲದ ಪಾಲು ಅನ್ನುತ್ತಾರೆ.

ಗಮನಿಸಿ: ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳು ಒಂದೇ ವಸ್ತುವಿನಲ್ಲಿ ಮಾಡಿರುವ ಪಾಲುಗಳಾಗಿರುವುದಿಲ್ಲ. ಅವುಗಳು ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ವಸ್ತುಗಳಿಂದ ಪಡೆದ ಪಾಲುಗಳಾಗಿರುತ್ತವೆ.
ಮೇಲಿನ ಉದಾಹರಣೆಯಲ್ಲಿ ಎರಡು ವಡೆಗಳಿಂದ ಪಡೆದ ಪಾಲುಗಳನ್ನು ತೋರಿಸಿರುವುದನ್ನು ಗಮನಿಸಬಹುದು.

ಚಟುವಟಿಕೆ1: ನಿಮ್ಮಲ್ಲಿರುವ 25 ಚಾಕೊಲೇಟುಗಳಿಗೆ ಮತ್ತೆ 25 ಚಾಕೊಲೇಟುಗಳನ್ನು ಸೇರಿಸಿದಾಗ ಮೊದಲಿದ್ದ ಮತ್ತು ಒಟ್ಟು ಚಾಕೊಲೇಟುಗಳನ್ನು ಪಾಲುಗಳನ್ನಾಗಿ ಬರೆಯಿರಿ ಮತ್ತು ಅದು ಒಂದು ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಿದೆ ಎಂದು ತೋರಿಸಿ.

chakolate_palu

  • ಮೊದಲಿದ್ದ ಚಾಕೊಲೇಟುಗಳು 25
  • ಒಟ್ಟು ಚಾಕೊಲೇಟುಗಳು = ಮೊದಲಿದ್ದ ಚಾಕೊಲೇಟುಗಳು 25 + ನಂತರದ ಚಾಕೊಲೇಟುಗಳು 25 = 50 ಚಾಕೊಲೇಟುಗಳು
  • ಮೊದಲಿದ್ದ ಚಾಕೊಲೇಟುಗಳನ್ನು ಒಟ್ಟು ಚಾಕೊಲೇಟುಗಳಿಗೆ ಹೋಲಿಸಿದಾಗ ಬರುವ ಪಾಲು = 50/25
  • ಮೇಲೆಣಿಯು ಕೀಳೆಣಿಗಿಂತ ಹೆಚ್ಚಿಗೆ ಇರುವುದರಿಂದ ಈ ಪಾಲು ತಕ್ಕುದಲ್ಲದ ಪಾಲಾಗಿದೆ.

ಚಟುವಟಿಕೆ2: ಕೆಳಗಿನ ಪಾಲುಗಳಲ್ಲಿ ತಕ್ಕುದಲ್ಲದ ಪಾಲು ಹೌದು ಅಥವಾ ಅಲ್ಲವೆಂದು ಗುರುತಿಸಿ.

Picture3

ಪಾಲೆಣಿಕೆಯಲ್ಲಿ ಮೇಲೆಣಿಯು (Numerator) ಕೀಳೆಣಿಗಿಂತ (Denominator) ಹೆಚ್ಚಿದ್ದರೆ ಅಥವಾ ಸರಿಯಾಗಿದ್ದರೆ ಅದು ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳಾಗಿರುತ್ತವೆ (Improper fraction).

ಚಟುವಟಿಕೆ3: ಯಾವುದೇ ಒಂದು ಬಿಡಿ ಸಂಖ್ಯೆಯನ್ನು (Whole Number) ಕೂಡ ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳನ್ನಾಗಿ ಬರೆಯಬುದು ಎಂದು ತೋರಿಸಿ.

ನಾವು ಬಿಡಿ ಸಂಖ್ಯೆ 19 ನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ.19 ನ್ನು 19/1 ಎಂದು ಬರೆಯಬಹುದು, ಇದರ ಮೇಲೆಣಿ = 19 ಮತ್ತು ಕೀಳೆಣಿ = 1 ಆಗಿದೆ ಹಾಗು ಮೇಲೆಣಿಯು ಕೀಳೆಣಿಗಿಂತ ದೂಡ್ಡದಿದೆ, ಆದ್ದರಿಂದ ಇದು ತಕ್ಕುದಲ್ಲದ ಪಾಲಾಗಿದೆ. ಇಲ್ಲಿ 1 ನ್ನು ಕಾಣದ ಕೀಳೆಣಿ (Invisible Denominator) ಎಂದು ಕರೆಯುತ್ತಾರೆ.

3. ಬೆರಕೆಯ ಪಾಲುಗಳು (Mixed fractions):

ಒಂದು ಇಡೀ ಸಂಖ್ಯೆಯ ಜತೆಗೆ ತಕ್ಕುದಾದ ಪಾಲನ್ನು ಹೊಂದಿರುವ ಪಾಲುಗಳಿಗೆ ’ಬೆರಕೆಯ ಪಾಲುಗಳು’ ಎನ್ನುತ್ತಾರೆ.

 

ಈ ಬಗೆಯ ಪಾಲನ್ನು c a/b ರೂಪದಲ್ಲಿ ಬರೆಯಲಾಗುತ್ತದೆ. ಇಲ್ಲಿ c ಇಡೀ ಸಂಖ್ಯೆಯಾಗಿದ್ದರೆ a/b ಎಂದಿನಂತೆ ಪಾಲನ್ನು ತೋರಿಸುತ್ತದೆ (a-ಮೇಲೆಣಿ, b-ಕೀಳೆಣಿ), ಉದಾಹರಣೆಗೆ 5  1/2, 1  1/4, 2  3/4,

ಮೇಲಿನ ಹೇಳಿಕೆಯನ್ನು ಕೆಳಗಿನಂತೆಯೂ ಬರೆಯಬಹುದು

ಇಡೀ ಸಂಖ್ಯೆ ಮೇಲೆಣಿ/ಕೀಳೆಣಿ = ಇಡೀ ಸಂಖ್ಯೆ + ಮೇಲೆಣಿ/ಕೀಳೆಣಿ = (ಕೀಳೆಣಿ x ಇಡೀ ಸಂಖ್ಯೆ+ ಮೇಲೆಣಿ)/ಕೀಳೆಣಿ = (ca+b)/c

ಉದಾಹರಣೆ1: ಕೆಳಗಿನ ಚಿತ್ರ ನೋಡಿ.

mixed_fraction_vade

ಇಲ್ಲಿ 1 ಇಡೀ ವಡೆಯ ಜತೆಗೆ ಇನ್ನೊಂದು ವಡೆಯಲ್ಲಿ ಮಾಡಿದ ಒಟ್ಟು 4 ಪಾಲುಗಳಲ್ಲಿ 3 ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳಲಾಗಿದೆ. ಈ ಪಾಲನ್ನು 1 3/4 ಎಂಬಂತೆ ಬೆರಕೆಯ ಪಾಲನ್ನಾಗಿ ಬರೆಯಲಾಗುತ್ತದೆ. ಅಂದರೆ 1 ಇಡೀ ವಡೆ ಮತ್ತು 3/4 ಪಾಲು ವಡೆಗಳು.

ಗಮನಿಸಿ: ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳಂತೆ (improper fractions) ಬೆರಕೆಯ ಪಾಲುಗಳೂ (mixed fractions) ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಇಡೀ ವಸ್ತುವಿನಿಂದ ಪಡೆದ ಪಾಲುಗಳಾಗಿರುತ್ತವೆ. ಹಾಗೇ ನೋಡಿದರೆ ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳನ್ನು ಬೆರಕೆಯ ಪಾಲುಗಳಾಗಿಯೂ ಮತ್ತು ಬೆರಕೆಯ ಪಾಲುಗಳನ್ನು ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳಾಗಿ ಬದಲಾಯಿಸಲು ಬರುತ್ತದೆ.

ಚಟುವಟಿಕೆ1: ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಎರಡು ಗಾಜಿನ ತುಂಡುಗಳನ್ನು ಸೇರಿಸಿ ಬೆರಕೆ ಪಾಲಿನ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.

gajina_palu

  • ಮೊದಲನೇ ಬಣ್ಣದ ಗಾಜಿನ ತುಂಡನ್ನು ಒಂದು ಬಿಡಿ ತುಂಡನ್ನಾಗಿ (Whole part) ತೆಗೆದುಕೊಳ್ಳೋಣ, ಅದರ ಬೆಲೆ 1 ಆಗಿರಲಿ.
  • ಮೊದಲನೇ ಗಾಜಿನ ತುಂಡಿನಶ್ಟೇ ಉದ್ದವಿರುವ ಎರಡನೇ ಬಣ್ಣದ ಗಾಜಿನ ತುಂಡಿನಲ್ಲಿ ಐದನೇ ಎರಡು ಪಾಲಿಗೆ ಬಣ್ಣ ಹಚ್ಚಲಾಗಿದೆ, ಆದ್ದರಿಂದ ಎರಡನೇ ತುಂಡಿನಲ್ಲಿ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಪಾಲನ್ನು 2/5 ಎಂದು ಬರೆಯಬಹುದು.
  • ಎರಡು ಗಾಜಿನ ತುಂಡುಗಳನ್ನು ಸೇರಿಸಿ ಬಣ್ಣ ಹಚ್ಚಿದ ಭಾಗಗಳನ್ನು ಪಾಲಿನ ರೂಪದಲ್ಲಿ ಬರೆದಾಗ
    ಬಣ್ಣ ಹಚ್ಚಲಾದ ಮೊದಲ ಇಡೀ ಗಾಜಿನತುಂಡು+ ಐದನೇ ಎರಡರಶ್ಟು ಪಾಲಿಗೆ ಬಣ್ಣ ಹಚ್ಚಲಾದ ಎರಡನೇ ಗಾಜಿನ ತುಂಡು = 1+2/5 = 1 2/5.

ಬೆರಕೆಯ ಪಾಲನ್ನು ತಕ್ಕುದಲ್ಲದ ಪಾಲಾಗಿ ಬದಲಾಯಿಸುವ ಬಗೆ:

ಕೆಳಗಿನ ಕ್ರಮವನ್ನು ಬಳಸಿ ಬೆರಕೆಯ ಪಾಲನ್ನು ತಕ್ಕುದಲ್ಲದ ಪಾಲಿನ ಬಗೆಯಾಗಿ ಬದಲಾಯಿಸಬಹುದು.

conversion_mix_improper

ಮೇಲೆ ತೋರಿಸಿರುವಂತೆ,

1. ಬೆರಕೆಯ ಪಾಲಿನ ಕೀಳೆಣಿಯನ್ನು ಇಡೀ ಸಂಖ್ಯೆಗೆ ಗುಣಿಸಬೇಕು. (3 x 1 = 3)

2. ಗುಣಿಸಿ ಪಡೆದ ಸಂಖ್ಯೆಯನ್ನು ಮೇಲೆಣಿಗೆ ಕೂಡಿಸಬೇಕು. (3 + 2 = 5)

3. ಹೀಗೆ ಪಡೆದ ಸಂಖ್ಯೆಯನ್ನು ಮೇಲೆಣಿಯಾಗಿ ಈಗ ಬರೆಯಬೇಕು ಮತ್ತು ಕೀಳೆಣಿಯನ್ನು ಮೊದಲು ಇರುವುದನ್ನೇ ಇಟ್ಟುಕೊಳ್ಳಬೇಕು. ( 5/3)

ತಕ್ಕುದಲ್ಲದ ಪಾಲನ್ನು ಬೆರಕೆಯ ಪಾಲನ್ನಾಗಿ ಬದಲಾಯಿಸುವ ಬಗೆ:

ಇದಕ್ಕಾಗಿ ಕೆಳಗಿನ ಕ್ರಮವನ್ನು ಬಳಸಬಹುದು.

1) 5 ನ್ನು 3 ರಿಂದ ಭಾಗಿಸಿ

2) ಹೀಗೆ ಭಾಗಿಸಿದಾಗ 1 ಇಡೀ ಸಂಖ್ಯೆ ದೊರೆತು 2 ಉಳಿಯುತ್ತದೆ

3) ಆಗ ಇಡೀ ಸಂಖ್ಯೆಯನ್ನು ಮೊದಲಿಗೆ, ಉಳಿದ ಸಂಖ್ಯೆಯನ್ನು ಮೇಲೆಣಿಯಾಗಿ ಮತ್ತು ಕೀಳೆಣಿಯನ್ನು ಮೊದಲಿದ್ದ ಸಂಖ್ಯೆಯನ್ನೇ ಬರೆಯುವುದು.

ಅಂದರೆ, 1 2/3

ಚಟುವಟಿಕೆ1: 3 1/2 ಎಂಬ ಬೆರಕೆ ಪಾಲು ತಕ್ಕುದಲ್ಲದ ಪಾಲಾಗಿದೆ (Improper Fraction) ಎಂದು ತೋರಿಸಿ.
3 1/2 ಬೆರಕೆ ಪಾಲನ್ನು ಎಣಿಕೆಯರಿಮೆಯ ಪಾಲಿನ ರೂಪದಲ್ಲಿ ಬರೆದಾಗ (2 x 3 + 1)/2 = 7/2 ಎಂದಾಗುತ್ತದೆ.
ನಮಗೆ ಸಿಕ್ಕ 7/2 ಪಾಲಿನಲ್ಲಿ ಮೇಲೆಣಿ 7 (Numerator) ಕೀಳೆಣಿ 2 ಕ್ಕಿಂತ (Denominator) ಹೆಚ್ಚಿದೆ ಆದ್ದರಿಂದ ಇದು ತಕ್ಕುದಲ್ಲದ ಪಾಲಾಗಿದೆ (Improper fraction).

ಚಟುವಟಿಕೆ2: 1 2/3, 4 6/7, 10 3/11, 6 8/9, 5 2/5, 7 1/6 ಬೆರಕೆ ಪಾಲುಗಳನ್ನು ತಕ್ಕುದಲ್ಲದ ಪಾಲಿನ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
Picture4

ಇಲ್ಲಿ ಮೇಲೆಣಿಯು (Numerator) ಕೀಳೆಣಿಗಿಂತ (Denominator) ಹೆಚ್ಚಿದೆ ಆದ್ದರಿಂದ ಇದು ಒಂದು ತಕ್ಕುದಲ್ಲದ ಪಾಲಾಗಿದೆ (Improper fraction).

ಮುಂದಿನ ಬರಹದಲ್ಲಿ ಪಾಲುಗಳ ಇನ್ನಷ್ಟು ವಿಷಯಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳೋಣ.