ಏನಿದು GPS?

ಜಾಗವೊಂದನ್ನು ತಿಳಿದುಕೊಳ್ಳಲು ಕಯ್ವಾರ (compass) ಮತ್ತು ನಕಾಶೆಗಳನ್ನು ಬಳಸುವುದು ಹಿಂದಿನಿಂದ ನಡೆದುಕೊಂಡು ಬಂದಿದೆ. ಯಾವುದೇ ದಿಕ್ಕಿಗೆ ತಿರುಗಿಸಿದರೂ ಮರಳಿ ಉತ್ತರ ದಿಕ್ಕಿನೆಡೆಗೆ ಹೊರಳುವ ಕಯ್ವಾರದ ಗುಣವನ್ನು ಬಳಸಿ ಸ್ಥಾನವೊಂದನ್ನು ಕಂಡುಕೊಳ್ಳಲಾಗುತ್ತಿತ್ತು. ಚಳಕರಿಮೆ ಬೆಳೆದಂತೆ ಅಳತೆಯ ಹೊಸ ಹೊಸ ಸಲಕರಣೆಗಳು ಹೊಮ್ಮಿದವು ಅವುಗಳಲ್ಲಿ ಇತ್ತೀಚಿಗೆ ಹೆಚ್ಚಾಗಿ ಬಳಕೆಯಾಗುತ್ತಿರುವ ಏರ್ಪಾಟೆಂದರೆ ನೆಲದ ಮೇಲೆ ಇಲ್ಲವೇ ಮೇಲ್ಮೈಯಾಚೆಗೆ ತುಸು ಎತ್ತರದಲ್ಲಿರುವ ಯಾವುದೇ ಸ್ಥಾನವನ್ನು ತೋರಬಲ್ಲ ಜಿ.ಪಿ.ಎಸ್. (Global Positioning System-GPS) ಏರ್ಪಾಟು.

ಜಿ.ಪಿ.ಎಸ್. – ಅಮೇರಿಕಾದ ಕಾವಲು ಪಡೆಯ ಅಂಕೆಯಲ್ಲಿರುವ, ನೆಲದಲ್ಲಿ ಎಲ್ಲೇ ಇದ್ದರೂ ಸ್ಥಾನ (position), ಹೊತ್ತು (time) ಮತ್ತು ವೇಗವನ್ನು (velocity) ಕಂಡುಕೊಳ್ಳಬಹುದಾದ ಏರ‍್ಪಾಟು. ಇದನ್ನು ಮೊದ-ಮೊದಲು ಬರೀ ಅಮೇರಿಕಾದ ಕಾವಲು ಪಡೆಯ ಬಳಕೆಗಾಗಿ ಮೀಸಲಿರಿಸಲಾಗಿತ್ತು ಆದರೆ ಇತ್ತೀಚಿನ ವರುಷಗಳಲ್ಲಿ ಇದನ್ನು ಸಾಮಾನ್ಯ ಬಳಕೆಗಾಗಿಯೂ ತೆರೆಯಲಾಗಿದೆ. ಗಾಡಿಯಲ್ಲಿ ಓಡಾಡುವಾಗ ಮುಂದೆ ಸಾಗಬೇಕಾದ ದಾರಿಯನ್ನು ತಿಳಿದುಕೊಳ್ಳುವಂತಹ ಸಾಮಾನ್ಯ ಕೆಲಸದಿಂದ ಹಿಡಿದು ಬಾನರಿಮೆಯ (astronomy) ಕೆಲಸಕ್ಕಾಗಿಯೂ ಇಂದು ಜಿ.ಪಿ.ಎಸ್. ಬಳಕೆಯಾಗುತ್ತಿದೆ.

GPS_use_car(ಕಾರೊಂದರಲ್ಲಿ ಜಿ.ಪಿ.ಎಸ್. ಸಂದೇಶದಿಂದ ನಡೆಯುವ ಸಲಕರಣೆಯನ್ನು ಬಳಸುತ್ತಿರುವ ಚಿತ್ರ)

 ಜಿ.ಪಿ.ಎಸ್. ಮುಖ್ಯವಾಗಿ ಮೂರು ಹಂತಗಳನ್ನು ಒಳಗೊಂಡಿರುತ್ತದೆ. 1) ಬಾನಿನಲ್ಲಿರುವ ಸುತ್ತುಗಗಳ ಹಂತ 2) ನೆಲದಲ್ಲಿರುವ ಸುತ್ತುಗಗಳ ಹಿಡಿತದ ಹಂತ 3) ಬಳಕೆದಾರರ ಹಂತ. ಇದರಲ್ಲಿ ಮೊದಲೆರಡು ಹಂತಗಳನ್ನು ಅಮೇರಿಕಾದ ಕಾವಲು ಪಡೆ (defense force) ತನ್ನ ಅಂಕೆಯಲ್ಲಿಯೇ ಇಟ್ಟುಕೊಂಡರೆ ಮೂರನೇ ಹಂತವು ಸಾಮಾನ್ಯ ಬಳಕೆದಾರರನ್ನು ಮತ್ತು ಅವರು ಬಳಸುವ ಸಲಕರಣೆಗಳನ್ನು ಒಳಗೊಂಡಿದೆ.

GPS Stagesಮೊದಲ ಹಂತದ ಭಾಗವಾಗಿ ಸ್ಥಾನವೊಂದನ್ನು ತಿಳಿದುಕೊಳ್ಳಲು 24 ಸುತ್ತುಗಗಳನ್ನು (satellite) ಬಳಸಲಾಗುತ್ತಿದ್ದು, ಅವುಗಳು ಬಾನಿನಲ್ಲಿ ನೆಲದ ಸುತ್ತ ದಿನಕ್ಕೆ ಎರಡು ಸುತ್ತು ಸುತ್ತುತ್ತವೆ (ಪ್ರತಿ 12 ಗಂಟೆಗೆ 1 ಸುತ್ತು). ನೆಲದಲ್ಲಿ ಎಲ್ಲೇ ನಿಂತರೂ ಕಡಿಮೆ ಎಂದರೂ 3 ಸುತ್ತುಗಗಳು  ತೋರುವಂತೆ ಸುತ್ತುಗಗಳ ದುಂಡುಕೂಟವನ್ನು (satellite constellation) ಈ ಏರ‍್ಪಾಟು ಒಳಗೊಂಡಿದೆ. (ಕೆಳಗಿನ ಚಿತ್ರ ನೋಡಿ)

GPS_satalitesConstellationGPS

(ನೆಲದಲ್ಲಿರುವ ಜಿ.ಪಿ.ಎಸ್. ಸಲಕರಣೆಯು ಬಾನಿನಲ್ಲಿ ಸುತ್ತುತ್ತಿರುವ ಸುತ್ತುಗಗಳಿಂದ ಸಂದೇಶಗಳನ್ನು ಪಡೆಯುತ್ತಿರುವ ಚಿತ್ರ)

ನೆಲದ ಸುತ್ತ ತಿರುಗುವ ಸುತ್ತುಗಗಳು ಕಳಿಸುವ ರೆಡಿಯೋ ಸಂದೇಶಗಳನ್ನು ಒರೆಗೆಹಚ್ಚಿ ಇರುವಿಕೆಯ ಜಾಗವನ್ನು ತಿಳಿದುಕೊಳ್ಳಲಾಗುತ್ತದೆ. ಸುತ್ತುಗಗಳ ಸಂದೇಶಗಳಿಂದ ಇರುವೆಡೆಯನ್ನು ಎಣಿಕೆಹಾಕುವ ಈ ಕೆಲಸಕ್ಕಾಗಿ ಮೂರ‍್ಬದಿ (trilateration) ಎಂಬ ಪದ್ದತಿಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಮೂರ‍್ಬದಿ ಪದ್ದತಿ (trilateration):

ಮೂರ‍್ಬದಿ ಪದ್ದತಿಯಲ್ಲಿ, ಗೊತ್ತಿರುವ ಮೂರು ದೂರಗಳಿಂದ ಗೊತ್ತಿರದ ಸ್ಥಾನವನ್ನು ತಿಳಿದುಕೊಳ್ಳಲಾಗುತ್ತದೆ. ಕೆಳಗೆ ಚಿತ್ರ 1 ರಲ್ಲಿ ತೋರಿಸಿರುವಂತೆ, ಗೊತ್ತಿರದ ಸ್ಥಾನ ಮಂಗಳೂರಿನಿಂದ ಇಂತಿಷ್ಟು ದೂರದಲ್ಲಿದೆ ಅಂತಾ ಇಟ್ಟುಕೊಳ್ಳೋಣ ಆಗ ಆ ಸ್ಥಾನ ಮಂಗಳೂರಿನ ನಡುವಿನಿಂದ ಅದರ ಸುತ್ತ ಎಲ್ಲಿ ಬೇಕಾದರೂ ಇರಬಹುದು. ಈಗ ಚಿತ್ರ 2 ನೋಡಿ, ಗೊತ್ತಿರದ ಅದೇ ಸ್ಥಾನ ಬೀದರನಿಂದ ಇಂತಿಷ್ಟು ಗೊತ್ತಿರುವ ದೂರದಲ್ಲಿದೆ ಎಂದು ತಿಳಿದುಕೊಂಡರೆ, ಮಂಗಳೂರು ಮತ್ತು ಬೀದರ ದೂರದಿಂದ ಉಂಟಾಗುವ ಸುತ್ತುಗಳು ಸೇರುವಲ್ಲಿ ಆ ಸ್ಥಾನ ಇದೆಯೆಂದು ತಿಳಿಯಬಹುದು. ಆದರೆ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿರುವಂತೆ ಆ ಸ್ಥಾನವು ಸುತ್ತುಗಳು ಸೇರುವ ಎರಡು ಸ್ಥಾನಗಳಲ್ಲಿ ಯಾವುದಾದರೂ ಆಗಿರಬಹುದು. ಈಗ ಬೆಂಗಳೂರಿನಿಂದಲೂ ಸ್ಥಾನದ ದೂರವನ್ನು ಅರಿತುಕೊಂಡರೆ ಮಂಗಳೂರು, ಬೀದರ ಮತ್ತು ಬೆಂಗಳೂರು ಸುತ್ತುಗಳು ಸೇರುವಲ್ಲಿಯೇ ಆ ಗೊತ್ತಿರದ ಸ್ಥಾನ ಇದೆಯೆಂದು ಕರಾರುವಕ್ಕಾಗಿ ಅರಿತುಕೊಳ್ಳಬಹುದು.

Trilateration

ಗಮನಕ್ಕೆ: ಸ್ಥಾನವೊಂದನ್ನು ತಿಳಿದುಕೊಳ್ಳಲು ಕಡಿಮೆ ಎಂದರೂ ಮೂರು ದೂರಗಳು ಬೇಕಾಗುತ್ತವೆ. ಅದೇ ಮೂರಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ದೂರಗಳು ಗೊತ್ತಾದರೆ ಸ್ಥಾನವನ್ನು ಇನ್ನೂ ಚನ್ನಾಗಿ ತಿಳಿದುಕೊಳ್ಳಬಹುದು.

ಇದನ್ನೇ ಜಿ.ಪಿ.ಎಸ್. ಬಳಸುವುದು. ಬಾನಿನಲ್ಲಿ ತಿರುಗುವ ಸುತ್ತುಗಗಳಲ್ಲಿ ಕಡಿಮೆ ಎಂದರೂ ಮೂರು ಸುತ್ತುಗಗಳಿಂದ ದೂರಗಳನ್ನು ಅರಿತುಕೊಂಡರೆ ನೆಲದಲ್ಲಿನ ಗೊತ್ತಿರದ ಜಾಗವನ್ನು ತಿಳಿಯಬಹುದು. ಸುತ್ತುಗವು ಸಂದೇಶವೊಂದನ್ನು ಕಳಿಸುವಾಗ ಆಗ ಹೊತ್ತು (time) ಎಷ್ಟಾಗಿದೆ ಅನ್ನುವುದನ್ನೂ ಕಳಿಸುತ್ತದೆ. ಈ ಸಂದೇಶವನ್ನು ನೆಲದಲ್ಲಿ ಬಳಕೆದಾರರ ಕೈಯಲ್ಲಿರುವ ಜಿ.ಪಿ.ಎಸ್. ಸಲಕರಣೆ ಪಡೆದಾಗ ಎಷ್ಟು ಹೊತ್ತಾಗಿದೆ ಎಂದು ತಿಳಿದುಕೊಂಡು ದೂರವನ್ನು ಕೆಳಗಿನಂತೆ ಎಣಿಕೆಹಾಕಲಾಗುತ್ತದೆ,

ದೂರ = ಸುತ್ತುಗದಿಂದ ಸಲಕರಣೆ ತಲುಪಲು ಬೇಕಾದ ಹೊತ್ತು x ಬೆಳಕಿನ ವೇಗ  [Distance = Time x Velocity of light]

ರೆಡಿಯೋ ಸಂದೇಶಗಳು ಬೆಳಕಿನ ವೇಗ ಅಂದರೆ ಪ್ರತಿ ಸೆಕೆಂಡಿಗೆ ಸುಮಾರು 3 ಲಕ್ಶ ಕಿ.ಮೀ. ಸಾಗುವುದರಿಂದ ದೂರ ಎಣಿಕೆಹಾಕಲು ಬೆಳಕಿನ ವೇಗವನ್ನೇ ಬಳಸಲಾಗುತ್ತದೆ.

ಅಮೇರಿಕಾದ ಕಾವಲು ಪಡೆಯ ಅಂಕೆಯಲ್ಲಿರುವ ಜಿ.ಪಿ.ಎಸ್. ಏರ್ಪಾಟಿಗೆ ಸಾಟಿಯಾಗಿ ಹಲವು ದೇಶಗಳು ತಮ್ಮದೇ ಆದ ಏರ್ಪಾಟುಗಳನ್ನೂ ಇತ್ತೀಚಿಗೆ ಅಣಿಗೊಳಿಸುತ್ತಿವೆ. ರಶ್ಯಾ ಗ್ಲೋನಸ್ (GLONASS) ಮತ್ತು ಯುರೋಪ ಗೆಲಿಲಿಯೋ ಹೆಸರಿನ ಏರ್ಪಾಟುಗಳನ್ನು ಮಾಡಿಕೊಳ್ಳುತ್ತಿದ್ದರೆ, ಭಾರತವು IRNSS (Indian Regional Navigational Satellite System) ಎಂಬ ಏರ್ಪಾಟು ಕಟ್ಟುತ್ತಿದೆ. ಒಂದು ವ್ಯತ್ಯಾಸವೆಂದರೆ, ಭಾರತದ IRNSS ಏರ್ಪಾಟು ಜಗತ್ತಿನೆಲ್ಲೆಡೆಯ ಸ್ಥಾನವನ್ನು ತಿಳಿಸದು. ಅದು ಭಾರತದ ಸುಮಾರು 1500 km ಸುತ್ತಳತೆಯಲ್ಲಿ ಕೆಲಸ ಮಾಡಲಿದ್ದು, ಈ ಸುತ್ತಳತೆಯಲ್ಲಿರುವ ಸ್ಥಾನವನ್ನು ತಿಳಿಸಬಲ್ಲದು. ಈ ಏರ್ಪಾಟಿನಲ್ಲಿ ಒಟ್ಟು 7 ಸುತ್ತುಗಗಳಿದ್ದು, ಈಗಾಗಲೇ 4 ಸುತ್ತುಗಗಳನ್ನು ಬಾನಿಗೇರಿಸಲಾಗಿದೆ. ಒಟ್ಟಾರೆ ವ್ಯವಸ್ಥೆಯು 2016 ರಲ್ಲಿ ಅಣಿಗೊಳ್ಳಲಿದೆ.

(ಸೆಲೆ: http://en.wikipedia.orghttp://www.howstuffworks.com/, www.engineersgarage.com)

ಅಣು

ಅಣು ಎಂದರೇನು?

ವಸ್ತುವೊಂದನ್ನು ಒಡೆಯುತ್ತಾ ಹೋದಂತೆ ಅದು ತುಣುಕುಗಳಿಂದ, ಚಿಕ್ಕ ತುಣುಕುಗಳಿಂದ, ಕೊನೆಗೆ ಇನ್ನಷ್ಟು ಒಡೆಯಲು ಕಷ್ಟವಾಗುವ ಕಿರುತುಣುಕುಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿರುವುದು ಕಂಡುಬರುತ್ತದೆ. ಇಂತಹ ಕಿರುತುಣುಕೊಂದು ತನ್ನಲ್ಲಿ ಇನ್ನಷ್ಟು ಕಿರಿದಾದ ರಚನೆಗಳನ್ನು ಅಡಕವಾಗಿಸಿಕೊಂಡಿದ್ದು, ಈ ರಚನೆಗಳು ಒಗ್ಗೂಡಿ ನಿರ್ದಿಷ್ಟವಾದ ಕೆಲವು ಗುಣಗಳನ್ನು ಹೊಮ್ಮಿಸುತ್ತವೆ.

ತನ್ನಲ್ಲಿರುವ ಕಿರು ರಚನೆಗಳೊಂದಿಗೆ ಒಟ್ಟಾಗಿ ನಿರ್ದಿಷ್ಟವಾದ ಕೆಲವು ಗುಣಗಳನ್ನು ಹೊಮ್ಮಿಸುವಂತಹ, ಎಲ್ಲಕ್ಕಿಂತ ಕಿರಿದಾದ ಈ ಅಡಕವನ್ನು (constituent) ಅಣು (atom) ಎಂದು ಕರೆಯುತ್ತಾರೆ.

 

matter_atoms(ವಸ್ತುವೊಂದರಲ್ಲಿ ಅಣುಗಳ ಇರುವಿಕೆಯನ್ನು ತೋರಿಸುವ ಚಿತ್ರ)

 

ವಸ್ತುವೊಂದು ಇಂತಹ ಹಲವು ಕೋಟಿಗಳಷ್ಟು ಅಣುಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ. ಉದಾಹರಣೆಗೆ 1 cm3 ಅಳತೆಯ ತಾಮ್ರದ ತುಣುಕಿನಲ್ಲಿ ಸರಿ ಸುಮಾರು 8.49 × 1022 ಅಣುಗಳಿರುತ್ತವೆ. ವಸ್ತುವೊಂದರ ರಾಸಾಯನಿಕ ಗುಣ (ಬೇರೆ ವಸ್ತುಗಳೊಡನೆ ಹೇಗೆ ಒಡನಾಡುತ್ತದೆ ಎಂಬ ಗುಣ), ಮಿಂಚಿನ (ವಿದ್ಯುತ್ / electric) ಗುಣ, ಗಟ್ಟಿತನದ ಗುಣ ಮುಂತಾದ ಇತರೆ ಹಲವು ಗುಣಗಳು ಅದರಲ್ಲಿರುವ ಅಣುಗಳ ಗುಣಗಳನ್ನು ಅವಲಂಬಿಸಿರುತ್ತವೆ.

ಜೀವಿಗಳು ಕೂಡ ಮೂಲದಲ್ಲಿ ಅಣುಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿವೆ. ಉದಾಹರಣೆಗೆ ಜೀವಿಗಳಲ್ಲಿರುವ ಪ್ರೋಟೀನ್, ಅಮಿನೊ ಅಸಿಡ್ ಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿದ್ದರೆ, ಅಮಿನೊ ಅಸಿಡ್ ಗಳು ನೈಟ್ರೋಜನ್, ಉಸಿರ್ಗಾಳಿ (ಆಕ್ಸಿಜನ್), ನೀರುಟ್ಟುಕ (ಹೈಡ್ರೋಜನ್) ಮತ್ತು ಕರಿಗೆಗಳ (ಕಾರ್ಬನ್) ಅಣುಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿವೆ. ಮನುಷ್ಯರ ಮೈಯ ಹೆಚ್ಚಿನ ಭಾಗ ನೀರಿನಿಂದ ಕೂಡಿದ್ದು, ನೀರು ಮೂಲದಲ್ಲಿ ಹೈಡ್ರೋಜನ್ ಮತ್ತು ಆಕ್ಸಿಜನ್ ಅಣುಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿದೆ.

organisms_atoms(ಜೀವಿಗಳಲ್ಲಿ ಅಣುಗಳ ಇರುವಿಕೆಯನ್ನು ತೋರಿಸುವ ಚಿತ್ರ)

ಅಣುಗಳ ರಚನೆ (structure of atom):

ಅಣುಗಳಿಗೆ ಗೊತ್ತುಪಡಿಸಿದ ಇಂತದೇ ಆಕಾರವಿದೆ ಎಂದು ಹೇಳಲು ಕಷ್ಟವಾದರೂ, ಹೆಚ್ಚಾಗಿ ಅವುಗಳನ್ನು ದುಂಡನೆ ಆಕಾರದಿಂದ ಗುರುತಿಸಲಾಗುತ್ತದೆ. ಅಣುವಿನ ದುಂಡಿ (radius) ಸುಮಾರು 30 pm ನಿಂದ 300 pm ವರೆಗೆ ಇರುತ್ತದೆ. (pm = picometer / ಪಿಕೊಮೀಟರ್ = 1×10−12 m).

ಅಣುವು ಕೆಳಗಿನ ಮೂರು ಮುಖ್ಯ ಭಾಗಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ,

1. ನಡುವಿನ ಭಾಗ

2. ನಡುವಿನಲ್ಲಿರುವ ರಚನೆಗಳು

3. ನಡುವಿನ ಭಾಗದ ಸುತ್ತ ಸುತ್ತುವ ರಚನೆಗಳು

 

atom_structure

1. ನಡುವಿನ ಭಾಗ:
ಅಣುವಿನ ಈ ಭಾಗವನ್ನು ನಡುವಣ (nucleus) ಎನ್ನುತ್ತಾರೆ. ಅಣುವಿನ ಒಟ್ಟು ರಾಶಿಯ (mass) ಹೆಚ್ಚಿನ ಪಾಲು ಈ ಭಾಗದಲ್ಲಿ ಅಡಕವಾಗಿರುತ್ತದೆ. ಇದರ ದುಂಡಗಲ (diameter) 1.75 fm ನಿಂದ 15 fm ನಷ್ಟಿರುತ್ತದೆ. (fm = femtometer / ಪೆಮ್ಟೊಮೀಟರ್ = 1 × 10−15 m). ಅಣುವಿನ ಒಟ್ಟಾರೆ ಅಳತೆಗೆ ಹೋಲಿಸಿದಾಗ ನಡುವಣವು ಅಳತೆಯಲ್ಲಿ ತುಂಬಾ ಕಿರಿದಾಗಿರುತ್ತದೆ.

2. ನಡುವಣದಲ್ಲಿರುವ ರಚನೆಗಳು:

ನಡುವಣದಲ್ಲಿ ಎರಡು ಬಗೆಯ ಕಿರುತುಣುಕುಗಳಿರುತ್ತವೆ. ಈ ಕಿರುತುಣುಕುಗಳಿಗೆ ತಮ್ಮದೇ ಆದ ವಿಶೇಷ ಗುಣಗಳಿರುತ್ತವೆ. ಇಂತಹ ಗುಣಗಳಲ್ಲಿ ಒಂದೆಂದರೆ ಸೆಳೆಗಲ್ಲಿನ ಬಯಲಿಗೆ (magnetic field) ಒಳಪಡಿಸಿದಾಗ ಅವುಗಳು ಹೇಗೆ ನಡೆದುಕೊಳ್ಳುತ್ತವೆ ಎಂಬಂತಹ ಗುಣ. ಸೆಳೆಗಲ್ಲಿನ ಪರಿಣಾಮಕ್ಕೆ ಇವುಗಳನ್ನು ಒಡ್ಡಿದಾಗ, ಇವುಗಳಲ್ಲಿ ಒಂದು ಬಗೆಯ ಕಿರುತುಣುಕುಗಳು ಸೆಳೆಗಲ್ಲಿನ ಬಯಲಿಗೆ (magnetic field) ಎದುರಾಗಿ ಸಾಗುತ್ತವೆ ಮತ್ತು ಇನ್ನೊಂದು ಬಗೆಯ ಕಿರುತುಣುಕುಗಳು ಸೆಳೆಗಲ್ಲಿನ ಬಯಲಿಗೆ ಯಾವುದೇ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ತೋರಿಸುವುದಿಲ್ಲ.

ತಿಳುವಳಿಕೆಯನ್ನು ಸುಲಭಗೊಳಿಸಲು ಸೆಳೆಗಲ್ಲಿನ ಬಯಲಿಗೆ ಎದುರಾಗಿ ಸಾಗುವ ತುಣುಕುಗಳು ’+’ ಹುರುಪು (charge) ಹೊಂದಿವೆ ಎಂದು ಗುರುತಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಇವುಗಳನ್ನು ಪ್ರೋಟಾನ್‍ಗಳೆಂದು (proton) ಕರೆಯಲಾಗುತ್ತದೆ. ’ಕೂಡು’ (+) ಗುರುತಿನಿಂದ ಸೂಚಿಸಲ್ಪಡುವ ಈ ತುಣುಕುಗಳನ್ನು ಕನ್ನಡದಲ್ಲಿ ಕೂಡುವಣಿಗಳು ಎಂದು ಕರೆಯಬಹುದು. ಸೆಳೆಗಲ್ಲಿಗೆ ಯಾವುದೇ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ತೋರಿಸದ ಕಿರುತುಣುಕುಗಳನ್ನು ನ್ಯೂಟ್ರಾನ್‍ಗಳೆಂದು (neutron) ಕರೆಯುತ್ತಾರೆ. ಇವುಗಳನ್ನು ಕನ್ನಡದಲ್ಲಿ ನೆಲೆವಣಿಗಳು ಎನ್ನಬಹುದು.

 

proton_nuetron

ಕೂಡುವಣಿಗಳು (protons) ಮತ್ತು ನೆಲೆವಣಿಗಳು (neutrons) ಇನ್ನೂ ಚಿಕ್ಕದಾದ ರಚನೆಗಳನ್ನು ಒಳಗೊಂಡಿರುತ್ತವೆ. ಇವುಗಳನ್ನು ಕಿರಿವಣಿಗಳು (quarks) ಎನ್ನುತ್ತಾರೆ. ಪ್ರತಿಯೊಂದು ಕೂಡುವಣಿ ಇಲ್ಲವೇ ನೆಲೆವಣಿಯಲ್ಲಿ ಮೂರು ಕಿರಿವಣಿಗಳಿದ್ದು, ಅಂಟುವಣಿ (gluon) ಎಂಬ ರಚನೆಗಳು ಇವುಗಳನ್ನು ಒಂದಕ್ಕೊಂದು ಹಿಡಿದಿಟ್ಟಿರುತ್ತವೆ.

quarks(ಅಣುವಿನಲ್ಲಿ ಕಿರಿವಣಿಗಳ ಸ್ಥಾನವನ್ನು ತೋರಿಸುವ ಚಿತ್ರ)

quarks_gluons(ಕೂಡುವಣಿ ಮತ್ತು ನೆಲೆವಣಿಗಳ ಒಳರಚನೆ)

  3. ನಡುವಣದ ಸುತ್ತ ಸುತ್ತುವ ರಚನೆಗಳು:

ನಡುವಣದ ಸುತ್ತ ಹಲವು ಸುತ್ತುಹಾದಿಗಳಲ್ಲಿ ಇನ್ನೊಂದು ಬಗೆಯ ಕಿರುತುಣುಕುಗಳು ಸುತ್ತುತ್ತಿರುತ್ತವೆ. ಸೆಳೆಗಲ್ಲಿನ ಪರಿಣಾಮಕ್ಕೆ ಈ ಕಿರುತುಣುಕುಗಳನ್ನು ಒಳಪಡಿಸಿದಾಗ, ಇವುಗಳು ಸೆಳೆಗಲ್ಲಿನ ಬಯಲಿನ ಕಡೆಗೆ ಸಾಗುತ್ತವೆ. ತಿಳುವಳಿಕೆಯನ್ನು ಸುಲಭಗೊಳಿಸಲು ಪ್ರೋಟಾನ್‍ಗಳನ್ನು ’ಕೂಡು’(+) ಗುರುತಿನಿಂದ ಗುರುತಿಸುವಂತೆ, ಈ ಕಿರುತುಣುಕಗಳನ್ನು ಕಳೆ (-) ಗುರುತಿನಿಂದ ಸೂಚಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಇವುಗಳು ಕಳೆ ಹುರುಪು (negatively charged) ಹೊಂದಿವೆ ಎಂದು ಗುರುತಿಸಲಾಗುತ್ತದೆ. ಕಳೆ ಹುರುಪು ಹೊಂದಿರುವ ಈ ಕಿರುತುಣುಕುಗಳನ್ನು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳೆಂದು ಕರೆಯುತ್ತಾರೆ. ಕನ್ನಡದಲ್ಲಿ ಇವುಗಳನ್ನು ಕಳೆವಣಿಗಳು ಎನ್ನಬಹುದು.

 

electron spread

ಕಳೆವಣಿಗಳು (electrons) ನಡುವಣದ ಸುತ್ತ ಬರೀ ದುಂಡನೆಯ ಹಾದಿಗಳಲ್ಲಿ ಸುತ್ತುತ್ತವೆ ಎಂದು ಮೊದಲೆಲ್ಲಾ ಅಂದುಕೊಳ್ಳಲಾಗಿತ್ತು ಆದರೆ ಈ ಕುರಿತಾಗಿ ನಡೆದ ಹೆಚ್ಚಿನ ಅರಕೆಗಳು, ಕಳೆವಣಿಗಳ ಈ ಸುತ್ತುಹಾದಿಗಳು ದುಂಡನೆಯ ಆಕಾರವನ್ನಷ್ಟೇ ಹೊಂದಿರದೇ ಹಲವು ಬೇರೆ ಆಕಾರಗಳನ್ನೂ ಹೊಂದಿವೆ ಎಂದು ತಿಳಿದುಬಂತು. (ಕಳೆವಣಿಗಳ ಈ ಸುತ್ತುಹಾದಿಗಳ ಬಗ್ಗೆ ವಿವರವಾಗಿ ಬೇರೆ ಬರಹದಲ್ಲಿ ತಿಳಿಸಲಾಗುವುದು)

ತಿಳುವಳಿಕೆಯನ್ನು ಸುಲಭಗೊಳಿಸಲು ಕಳೆವಣಿಗಳ ದುಂಡನೆಯ ಹಾದಿಗಳನ್ನಷ್ಟೇ ಎಣಿಕೆಗೆ ತೆಗೆದುಕೊಂಡರೆ ಅಣುವಿನ ಒಟ್ಟಾರೆ ಚಿತ್ರಣವನ್ನು ಈ ಕೆಳಗಿನಂತೆ ತೋರಿಸಬಹುದು.

atom_structure_2

ಮೂಲ ಕಿರುತುಣುಕುಗಳು:

ಅಣುಗಳ ಒಳರಚನೆಗಳಾದ ಕಿರಿವಣಿಗಳು (quarks), ಅಂಟುವಣಿಗಳು (gluons) ಮತ್ತು ಕಳೆವಣಿಗಳ (electrons) ಒಳಗೆ ಇನ್ನಾವುದೇ ರಚನೆಗಳು ಇಲ್ಲವಾದುದರಿಂದ (ಅವುಗಳನ್ನು ಇನ್ನಷ್ಟು ಕಿರುತುಣುಕುಗಳಾನ್ನಾಗಿಸಲು ಆಗದಿರುವುದರಿಂದ) ಇವುಗಳನ್ನು ಮೂಲ ಕಿರುತುಣುಕುಗಳು (elementary particles) ಎಂದು ಕರೆಯುತ್ತಾರೆ.

ನಮ್ಮ ಸುತ್ತುಮುತ್ತ ಕಂಡುಬರುವ ವಸ್ತುಗಳು, ಜೀವಿಗಳು ಈ ’ಮೂಲ ಕಿರುತುಣುಕು’ಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿರುತ್ತವೆ. ಮೂಲ ಕಿರುತುಣುಕುಗಳಿಂದಾದ ವಸ್ತು ಮತ್ತು ಜೀವಿಗಳ ಒಟ್ಟುನೋಟವನ್ನು ಈ ಕೆಳಗಿನಂತೆ ತೋರಿಸಬಹುದು.

elementary particles

 

ಕೂಡುವಣಿ, ನೆಲೆವಣಿ ಮತ್ತು ಕಳೆವಣಿಗಳ ಸಂಖ್ಯೆ ಹೇಗೆ ಅಣುವೊಂದರ ಗುಣವನ್ನು ತೀರ್ಮಾನಿಸುತ್ತದೆ? ಮೂಲವಸ್ತು ಎಂದರೇನು? ಐಸೋಟೋಪ್‍ಗಳು ಅಂದರೇನು? ಮುಂತಾದ ವಿಷಯಗಳನ್ನು ಮುಂದಿನ ಬರಹದಲ್ಲಿ ತಿಳಿಸಲಾಗುವುದು.

 

(ಚಿತ್ರಸೆಲೆಗಳು: www.studyblue.com, wikipedia.org)