ಮೊದಲ ಹಂತದ ಲೆಕ್ಕಾಚಾರಗಳ ತಿರುಳುಗಳು

ನಮಗೆ ಗೊತ್ತಿರುವಂತೆ ಕೂಡುವುದು, ಕಳೆಯುವುದು, ಗುಣಿಸುವುದು, ಭಾಗಿಸುವುದು ಮೊದಲ ಹಂತದ ಲೆಕ್ಕಾಚಾರಗಳಾಗಿವೆ (Basic Operations). ಮೊದಲ ಹಂತದ ಲೆಕ್ಕಾಚಾರ ಮಾಡುವ ಮುನ್ನ ಕೆಲವು ತಿರುಳುಗಳನ್ನು (Properties) ತಿಳಿದುಕೊಂಡರೆ ಲೆಕ್ಕ ಬಿಡಿಸುವುದು ಸುಲಭವಾಗುತ್ತದೆ. ಈ ಕೆಳಗಿನ ತಿರುಳುಗಳನ್ನು ಎಣಿಯರಿಮೆ/ಅಂಕಗಣಿತ (Arithmetic), ಬರಿಗೆಯೆಣಿಕೆಯರಿಮೆ (Algebra), ಗೆರೆಯರಿಮೆ (Geometry) ಮತ್ತು ಹಲವಾರು ಕವಲುಗಳಲ್ಲಿ ಬಳಸಬಹುದು.

1. ನೆಲೆ ಮಾರ್ಪಾಡಬಲ್ಲತನ (Commutative Property) .

ನೆಲೆ (Position/commute) ಮಾರ್ಪಾಡಬಲ್ಲತನ ಎಂದರೆ ಯಾವುದೇ ಎರಡು ಬೆಲೆಗಳನ್ನು ಕೂಡುವಾಗ ಮತ್ತು ಗುಣಿಸುವಾಗ ಅದರ ನೆಲೆ ಮಾರ್ಪಾಟು ಮಾಡಿದರೆ ದೊರೆಯುವ ಮೊತ್ತವು ಒಂದೇ ಆಗಿರುತ್ತವೆ.

Image1 MP

ಇಲ್ಲಿ a ಮತ್ತು b ಮಾರ್ಪುಕಗಳು (Variables) ಹಾಗು ಅವುಗಳು ಯಾವುದೇ ಬೆಲೆಗಳನ್ನು ಹೊಂದಿರಬಹುದು, ಅಂದರೆ ಅವುಗಳು ಇಡಿ ಅಂಕೆಗಳಾಗಿರಬಹುದು (Whole number) ಅಥವಾ ಪಾಲುಗಳಾಗಿರಬಹುದು (Fraction).

ಉದಾಹರಣೆ 1: 7 ಮತ್ತು 11 ಎಂಬ ಎರಡು ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಈ ಬೆಲೆಗಳನ್ನು ಒಂದಕ್ಕೊಂದು ಕೂಡಿಸಿದಾಗ 7 + 11 = 18 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು.
  • ಈ ಬೆಲೆಗಳನ್ನು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಕೂಡೋಣ 11 + 7 = 18 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು, ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಕೂಡಿದ ಮೊತ್ತ ಒಂದೇ ಆಗಿದೆ.

7 + 11 = 11 + 7 = 18

ಉದಾಹರಣೆ 2:  ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ಹಸಿರು ಚೆಂಡುಗಳನ್ನು ಮತ್ತು ಕೆಂಪು ಚೆಂಡುಗಳನ್ನು ಹಾಕಲಾಗಿದೆ, ಮೊದಲು ಹಸಿರು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿ ನಂತರದಲ್ಲಿ ಕೆಂಪು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿದಾಗ ಮತ್ತು ಮೊದಲು ಹಾಕಿದ ಚೆಂಡುಗಳನ್ನೆಲ್ಲಾ ತೆಗೆದು ಎರಡನೇ ಸಲ ಕೆಂಪು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿ ನಂತರದಲ್ಲಿ ಹಸಿರು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿದಾಗ ದೊರೆತ ಮೊತ್ತ ಒಂದೇ ಎಂದು ನೆಲೆ ಮಾರ್ಪಾಡಬಲ್ಲತನವನ್ನು ಬಳಸಿ ತೋರಿಸಿ.

Image3 MP

  • ಮೊದಲು ಕೆಂಪು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿ ನಂತರದಲ್ಲಿ ಹಸಿರು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿದಾಗ:

ಕೆಂಪು ಚೆಂಡುಗಳು(3) + ಹಸಿರು ಚೆಂಡುಗಳು(16) = ಚೀಲದಲ್ಲಿರುವ ಒಟ್ಟು ಚೆಂಡುಗಳು(19).

  • ಮೊದಲು ಹಾಕಿದ ಚೆಂಡುಗಳನ್ನೆಲ್ಲಾ ತೆಗೆದು ಎರಡನೇ ಸಲ ಕೆಂಪು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿದಾಗ;

ಹಸಿರು ಚೆಂಡುಗಳು(16) +  ಕೆಂಪು ಚೆಂಡುಗಳು(3) = ಚೀಲದಲ್ಲಿರುವ ಒಟ್ಟು ಚೆಂಡುಗಳು(19).

  • ಮೇಲೆ ತೋರಿಸಿದಂತೆ ಮೊದಲನೇ ಸಲ ಮತ್ತು ಎರಡನೇ ಸಲ ಚೆಂಡುಗಳನ್ನು ಹಾಕಿದಾಗ ದೊರೆತ ಮೊತ್ತ ಒಂದೇ ಹಾಗಾಗಿ ಇದು ನೆಲೆ ಮಾರ್ಪಾಡಬಬಲ್ಲತನವನ್ನು ಹೊಂದಿದೆ.

3 + 16 = 16 + 3 = 19

ಉದಾಹರಣೆ 3: 15 ಮತ್ತು 5 ಎಂಬ ಎರಡು ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಈ ಬೆಲೆಗಳನ್ನು ಒಂದಕ್ಕೊಂದು ಗುಣಿಸಿದಾಗ 15 x 5 = 75 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು.
  • ಈ ಬೆಲೆಗಳನ್ನು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಗುಣಿಸೋಣ 5 x 15 = 75 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು, ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಗುಣಿಸಿದ ಮೊತ್ತ ಒಂದೇ ಆಗಿವೆ.

15 x 5 = 5 x 15 = 75

 

ನೆಲೆ ಮಾರ್ಪಾಡಬಲ್ಲತನ ಕಳೆಯುವುದಕ್ಕೆ ಮತ್ತು ಭಾಗಿಸುವುದಕ್ಕೆ ಹೊಂದುವುದಿಲ್ಲ, ಆದರೆ ಕೂಡುವುದಕ್ಕೆ ಮತ್ತು ಗುಣಿಸುವುದಕ್ಕೆ ಸರಿಹೊಂದುತ್ತದೆ

 

Image2 MP

ಉದಾಹರಣೆ 4: 20 ಮತ್ತು 6 ಎಂಬ ಎರಡು ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಈ ಬೆಲೆಗಳನ್ನು ಒಂದಕ್ಕೊಂದು ಕಳೆದಾಗ 20 – 6 = 14 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು.
  • ಈ ಬೆಲೆಗಳನ್ನು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಕಳೆಯೋಣ 6 – 20 = -14 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು, ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಕಳೆದ ಮೊತ್ತ ಬೇರೆ ಬೇರೆ ಆಗಿವೆ.

20 – 6 6 – 20

ಉದಾಹರಣೆ 5: 20 ಮತ್ತು 4 ಎಂಬ ಎರಡು ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಈ ಬೆಲೆಗಳನ್ನು ಒಂದಕ್ಕೊಂದು ಭಾಗಿಸಿದಾಗ 20/4 = 5 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು.
  • ಈ ಬೆಲೆಗಳನ್ನು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಭಾಗಿಸಿದಾಗ 4/20 = 1/5 = 0.2 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು, ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಭಾಗಿಸಿದ ಮೊತ್ತ ಬೇರೆ ಬೇರೆ ಆಗಿವೆ,

20 /4 4/20

  1. ಗುಂಪು ಮಾರ್ಪಾಡಬಲ್ಲತನ (Associative property).

ಗುಂಪು ಮಾರ್ಪಾಡಬಲ್ಲತನ ಎಂದರೆ ಯಾವುದೇ ಒಂದಿಷ್ಟು ಬೆಲೆಗಳನ್ನು ಕೂಡುವಾಗ ಮತ್ತು ಗುಣಿಸುವಾಗ ಅದರ

ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿದರೆ ದೊರೆಯುವ ಮೊತ್ತವು ಒಂದೇ ಆಗಿರುತ್ತವೆ.

Image4 MP

ಇಲ್ಲಿ a, b ಮತ್ತು c ಮಾರ್ಪುಕಗಳು (Variables) ಹಾಗು ಅವುಗಳು ಯಾವುದೇ ಬೆಲೆಗಳನ್ನು ಹೊಂದಿರಬಹುದು.

ಅಂದರೆ ಅವುಗಳು ಇಡಿ ಅಂಕೆಗಳಾಗಿರಬಹುದು (Whole numbers) ಅಥವಾ ಪಾಲುಗಳಾಗಿರಬಹುದು (Fractions).

ಉದಾಹರಣೆ 1: 8, 7 ಮತ್ತು 4 ಎಂಬ ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಮೊದಲ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸೋಣ ನಂತರದಲ್ಲಿ ಗುಂಪಿಗೆ ಮೂರನೇ ಬೆಲೆಯನ್ನು ಕೂಡೋಣ.

(8 + 7) + 4 = 15 + 4 = 19

  • ಮೊದಲ ಬೆಲೆಗೆ ಕೊನೆಯ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸಿ ಕೊಡೋಣ.

8 + (7 + 4) = 8 + 11 = 19

  • ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿ ಕೂಡಿದ ಮೊತ್ತ ಒಂದೇ ಆಗಿದೆ.

(8 + 7) + 4 = 8 + (7 + 4) = 19

ಉದಾಹರಣೆ 2: 2.2, 5.5 ಮತ್ತು 6.6 ಎಂಬ ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಮೊದಲ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸೋಣ ನಂತರದಲ್ಲಿ ಗುಂಪಿಗೆ ಮೂರನೇ ಬೆಲೆಯನ್ನು ಗುಣಿಸೋಣ.

(2.2 x 5.5)  x 6.6 = 12.1 x 6.6 = 79.86

  • ಮೊದಲ ಬೆಲೆಗೆ ಕೊನೆಯ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸಿ ಗುಣಿಸೋಣ

2.2 x (5.5 x 6.6) = 2.2 x 36.3  = 79.86

  • ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿ ಗುಣಿಸಿದ ಮೊತ್ತ ಒಂದೇ ಆಗಿದೆ.

(2.2 x 5.5)  x 6.6 = 2.2 x (5.5 x 6.6) = 79.86

 ಗುಂಪು ಮಾರ್ಪಾಡಬಲ್ಲತನ ಕಳೆಯುವುದಕ್ಕೆ ಮತ್ತು ಭಾಗಿಸುವುದಕ್ಕೆ ಹೊಂದುವುದಿಲ್ಲ, ಆದರೆ ಕೂಡುವುದಕ್ಕೆ ಮತ್ತು ಗುಣಿಸುವುದಕ್ಕೆ ಸರಿಹೊಂದುತ್ತದೆ

 

Image5 MP

ಉದಾಹರಣೆ 3:4 2 1 ಎಂಬ ಲೆಕ್ಕವನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಲೆಕ್ಕದ ಮೊದಲ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸೋಣ ನಂತರದಲ್ಲಿ ಗುಂಪಿಗೆ ಮೂರನೇ ಬೆಲೆಯನ್ನು ಕಳೆಯೋಣ.

(4 – 2 ) – 1 = 2 – 1 = 1

  • ಲೆಕ್ಕದ ಮೊದಲ ಬೆಲೆಗೆ ಕೊನೆಯ ಎರಡು ಬೆಲೆಗಳನ್ನು ಒಡ ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿ ಕೆಳೆಯೋಣ.

4 – (2 – 1) = 4 – 1 = 3

  • ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿದ ನಂತರದ ಮೊತ್ತ ಬೇರೆ ಬೇರೆ ಆಗಿವೆ.

(4 – 2 ) – 1 4 – (2 – 1),

ಉದಾಹರಣೆ 4: 9, 6 ಮತ್ತು 12 ಎಂಬ ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಮೊದಲ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸೋಣ ನಂತರದಲ್ಲಿ ಗುಂಪಿಗೆ ಮೂರನೇ ಬೆಲೆಯನ್ನು ಭಾಗಿಸೋಣ.

(9/6)/12 = (3/2)/12 = 3/24

  • ಮೊದಲ ಬೆಲೆಗೆ ಕೊನೆಯ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸಿ ಭಾಗಿಸೋಣ.

9/(6/12) = 9/(1/2) = 18

  • ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿ ಗುಣಿಸಿದ ಮೊತ್ತ ಬೇರೆ ಬೇರೆ ಆಗಿದೆ.

(9/6)/12  9/(6/12)

3. ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆ (Distributive property)

ಒಂದು ಗುಂಪಿನಲ್ಲಿರುವ ಬೆಲೆಗಳಿಗೆ ಇನ್ನೊಂದು ಬೆಲೆಯಿಂದ ಗುಣಿಸಿ ಹಂಚಬಹುದು.

Image6 MP

ಇಲ್ಲಿ a, b, c ಮತ್ತು d ಮಾರ್ಪುಕಗಳು (Variables) ಹಾಗು ಅವುಗಳು ಯಾವುದೇ ಬೆಲೆಗಳನ್ನು ಹೊಂದಿರಬಹುದು.

ಉದಾಹರಣೆ 1:  ‘2 x (4 + 8 + 16)’  ಇದನ್ನು ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆಯಲ್ಲಿ ಬಿಡಿಸಿರಿ.

ಇದನ್ನು ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆಯಲ್ಲಿ ಬಿಡಿಸಿ ಬರೆದಾಗ

 2 x (4 + 8 + 16) = 2 x 4 + 2 x 8 + 2 x 16 =8 + 16 + 32 =56

ಉದಾಹರಣೆ2 : (10 6 + 2 3) x 5 ಇದನ್ನು ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆಯಲ್ಲಿ ಬಿಡಿಸಿರಿ.

ಇದನ್ನು ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆಯಲ್ಲಿ ಬಿಡಿಸಿ ಬರೆದಾಗ

(10 6 + 2 3) x 5 = 10 x 5 6 x 5 + 2 x 5 3 x 5 = 50 30 + 10 15 = 15

ನಿಮ್ಮ ಅರಿವಿಗೆ: ಗುಂಪಿನ ಒಳಗೆ ಯಾವ ಗುರುತುಗಳಿವೆಯೋ ( – , +, x, / ) ಅದೇ ಗುರುತನ್ನು ಹಂಚಿ ಗುಣಿಸುವಾಗ ಉಳಿಸಿಕೊಳ್ಳಬೇಕು.

ಮೇಲೆ ಹೇಳಿದ ಮೂರು ಕಟ್ಟಳೆಗಳನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಂತೆ ತೋರಿಸೋಣ

  • ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆಯನ್ನು ಹೀಗೆ ತೋರಿಸಬಹುದು (Distributive Property)

 Image7 MP

  • ಗುಂಪು ಮಾರ್ಪಾಡಬಲ್ಲತನವನ್ನು ಹೀಗೆ ತೋರಿಸಬಹುದು (Associative Property)

Image8 MP

  • ನೆಲೆ ಮಾರ್ಪಾಡಬಲ್ಲತನವನ್ನು ಹೀಗೆ ತೋರಿಸಬಹುದು (Commutative Property)

Image9 MP

(ಸೆಲೆಗಳು: www.mathsisfun.com, wikipedia)

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಎರಡು ಆಯದ ಆಕೃತಿಗಳು – ಇ ಬುಕ್

ನಾವು ದೈನಂದಿನ ಬದುಕಿನಲ್ಲಿ ಹತ್ತು ಹಲವಾರು ಆಕೃತಿಯ ವಸ್ತುಗಳನ್ನು ಬಳಸುತ್ತೇವೆ ಇಲ್ಲವೇ ಕಾಣುತ್ತಾ ಇರುತ್ತೇವೆ, ಅವುಗಳು ಎರಡು ಆಯದ (Two Dimensional) ವಸ್ತುಗಳಾಗಿರಬಹುದು ಅಥವಾ ಮೂರು ಆಯದ (Three Dimensional)  ವಸ್ತುಗಳಾಗಿರಬಹುದು. ಈ ವಸ್ತುಗಳ ಆಕಾರಗಳು ಗೆರೆಯರಿಮೆಗೆ ತಳಕುಹಾಕಿಕೊಂಡಿದೆ, ಕಲಿಕೆಯ ಹಿನ್ನೆಲೆಯಿಂದಾಗಲಿ ಅಥವಾ ಕುತೂಹಲದಿಂದಾಗಲಿ ಈ ಆಕಾರಗಳ ಬಗ್ಗೆ ತಿಳಿಯುವುದು ಒಂದು ರೀತಿಯಲ್ಲಿ ನಲಿವು ನೀಡುತ್ತದೆ. ಕಳೆದ ಒಂದು ವರ್ಷದಲ್ಲಿ ಅರಿಮೆ ಮಿಂದಾಣದಲ್ಲಿ  ಮೂಡಿಬಂದ ಎರಡು ಆಯದ ಆಕೃತಿಗಳ ಆಯ್ದ ಬರಹಗಳನ್ನು ಈ ಮಿನ್ನೋದುಗೆಯಲ್ಲಿ (E-book) ಕೊಡಲಾಗಿದೆ ಹಾಗು ಹೆಚ್ಚು ತಿಳಿಯುವ ಪದಗಳನ್ನು ಬಳಸಿಕೊಂಡು ತಿಳಿಸುವ ಪ್ರಯತ್ನ ಮಾಡಲಾಗಿದೆ.

2dshape

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಉದ್ದದುಂಡು

ನಾವು ದಿನಾಲೂ ಒಂದಲ್ಲ ಒಂದು ರೀತಿಯಲ್ಲಿ ಉದ್ದದುಂಡು (Ellipse) ಆಕಾರದ ವಸ್ತುಗಳನ್ನು ನೋಡುತ್ತಿರುತ್ತೇವೆ, ಅವುಗಳು ಉದ್ದದುಂಡು  ಆಕಾರದ  ಗಡಿಯಾರಗಳು, ಕನ್ನಡಿಗಳು, ಚೆಂಡುಗಳು, ಕಲ್ಲುಗಳು, ತಟ್ಟೆಗಳು, ಕುಂಬಳಕಾಯಿ, ಕ್ಯಾಪ್ಸೂಲ್ ಮಾತ್ರೆಗಳು ಇನ್ನಿತರ ಹತ್ತು ಹಲವಾರು ವಸ್ತುಗಳಾಗಿರಬಹುದು.

Image1 EL

ಉದ್ದದುಂಡು ಆಕಾರ ಎಂದರೇನು?.

ಉದ್ದದುಂಡು ಆಕಾರವೆಂದರೆ ನಮ್ಮ ತಲೆಯಲ್ಲಿ ಸಾಮಾನ್ಯವಾಗಿ ಹೊಳೆಯುವುದೇನೆಂದರೆ.

  • ಸ್ವಲ್ಪ ಚಪ್ಪಟೆಯಾದ ದುಂಡಾಕಾರದ ವಸ್ತು.
  • ಒಂದು ದುಂಡಾಕಾರದ ವಸ್ತುವನ್ನು ಹಿಗ್ಗಿಸಿದಂತೆ ಇಲ್ಲವೇ ಎಳೆದಂತೆ ಕಂಡು ಬರುವ ಆಕಾರ.
  • ಸರಿಸುಮಾರಾಗಿ ಮೊಟ್ಟೆಯನ್ನು ಹೋಲುವ ಆಕಾರ.

ಎಣಿಕೆಯರಿಮೆ (ಗಣಿತ) ಯಲ್ಲಿ ಈ ಕೆಳಕಂಡಂತೆ ಹೇಳಬಹುದು.

  • ಹೇಳಿಕೆ 1: ಉದ್ದದುಂಡು ಒಂದು ಮುಚ್ಚಿದ ಆಕೃತಿಯಾಗಿದೆ (Closed Shape), ಇದರ ಒಳಗಿನ ಯಾವುದೇ ಎರಡು ನೆಲೆಚುಕ್ಕೆಯಿಂದ (Focus Points) ಅದರ ಮೇಲ್ಮಯ್ಯಿಯ ತಿರುಗುಚುಕ್ಕೆಗೆ (Loucs Points) ಎಳೆದ ಗೆರೆಗಳ ಮೊತ್ತವು ನೆಲೆಬೆಲೆಯಾಗಿರುತ್ತದೆ (Constant value).

ಈ ಕೆಳಗಿನ ಚಿತ್ರದ ಮೂಲಕ ತಿಳಿದುಕೊಳ್ಳೋಣ.

Image2 EL

  • ಮೇಲಿನ ಚಿತ್ರವು ಒಂದು ಉದ್ದದುಂಡು (ellipse) ಆಗಿದೆ.
  • ಉದ್ದದುಂಡು ಆಕಾರದ ಒಳಗೆ F1 ಮತ್ತು F2 ಎಂಬ  ಎರಡು ನೆಲೆಚುಕ್ಕೆಗಳಿವೆ (Focal points)
  • ಉದ್ದದುಂಡುವಿನ ಮೇಲೆ Q, P ಮತ್ತು C ಎಂಬ ಮೂರು ತಿರುಗುಚುಕ್ಕೆಗಳನ್ನು (Locus Points) ಇಡಲಾಗಿದೆ.
  • ತಿರುಗುಚುಕ್ಕೆ Q ಯಿಂದ F1 ಮತ್ತು F2 ನೆಲೆಚುಕ್ಕೆಗಳಿಗೆ ಎಳೆದ ಗೆರೆಗಳು F1Q ಮತ್ತು F2Q ಆಗಿವೆ.
  • ತಿರುಗುಚುಕ್ಕೆ P ಯಿಂದ F1 ಮತ್ತು F2 ನೆಲೆಚುಕ್ಕೆಗಳಿಗೆ ಎಳೆದ ಗೆರೆಗಳು F1P ಮತ್ತು F2P ಆಗಿವೆ.
  • ತಿರುಗುಚುಕ್ಕೆ C ಯಿಂದ F1 ಮತ್ತು F2 ನೆಲೆಚುಕ್ಕೆಗಳಿಗೆ ಎಳೆದ ಗೆರೆಗಳು F1C ಮತ್ತು F2C ಆಗಿವೆ.
  • ಮೇಲಿನ ಹೇಳಿಕೆಯಂತೆ F1Q + F2Q = F1P + F2P = F1C + F2C = 2a ಆಗಿರುತ್ತದೆ, ಇಲ್ಲಿ a ಎಂಬುವುದು ಒಂದ್ದು ನೆಲೆಬೆಲೆಯಾಗಿರುತ್ತದೆ (Constant value).

 

ಹೇಳಿಕೆ 2: ಲಾಳಿಕೆ ಆಕೃತಿಯನ್ನು (Cone shape) ಓರೆಯಾಗಿ ಸೀಳಿದಾಗ ಉಂಟಾಗುವುದೇ ಉದ್ದದುಂಡು. ಹೇಗೆ ಅಂತೀರಾ !?, ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು ನೋಡೋಣ.

image3 ELಮೇಲಿನ ಲಾಳಿಕೆಯಾಕೃತಿಯನ್ನು (Cone shape) ಓರೆಯಾಗಿ ಕತ್ತರಿಸಲಾಗಿದೆ, ಅಲ್ಲಿ ಉದ್ದದುಂಡು (Ellipse) ಉಂಟಾಗಿದ್ದನ್ನು ಕಾಣಬಹುದು !.

ಉದ್ದದುಂಡುವಿನ ಭಾಗಗಳು (Parts of Ellipse):

Image4 ELಹಿರಿನಡುಗೆರೆ (Major axis): ಉದ್ದದುಂಡುವಿನ ನಡುವೆ ಹಾದುಹೊದ ಹಿರಿದಾದ ನಡುಗೆರೆ.

ಕಿರುನಡುಗೆರೆ (Minor axis): ಉದ್ದದುಂಡುವಿನ ನಡುವೆ ಹಿರಿನಡುಗೆರೆಗೆ ನೇರಡ್ಡವಾಗಿ (Perpendicular) ಹಾದುಹೊದ ಕಿರಿದಾದ ನಡುಗೆರೆ.

ನಡು (Centre):  ಹಿರಿನಡುಗೆರೆ ಮತ್ತು ಕಿರುನಡುಗೆರೆಗಳು ಸರಿಪಾಲಾಗಿ ಕತ್ತರಿಸುವೆಡೆಯಲ್ಲಿ ನಡು ಉಂಟಾಗುತ್ತದೆ..

ತುದಿ (Vertex): ಉದ್ದದುಂಡುವಿನ ನಡುವಿಂದ ಹಾದುಹೊದ ಹಿರಿನಡುಗೆರೆಯು ಉದ್ದದುಂಡುವಿನ ಕೊನೆಯಲ್ಲಿ ತುದಿಯನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ.

ಒಡತುದಿ (Co-Vertex): ಉದ್ದದುಂಡುವಿನ ನಡುವಿಂದ ಹಾದುಹೊದ ಕಿರುನಡುಗೆರೆಯು ಉದ್ದದುಂಡುವಿನ ಕೊನೆಯಲ್ಲಿ ಒಡತುದಿಯನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ.

ನೆಲೆಚುಕ್ಕೆ (Focus points): ಉದ್ದದುಂಡುವಿನ ಒಳಗೆ ಯಾವುದೇ ನೆಲೆಯಲ್ಲಿರುವ ಚುಕ್ಕೆ, ಉದ್ದದುಂಡುವಿನಲ್ಲಿ ಈ ನೆಲೆಚುಕ್ಕೆಗಳು ಹಿರಿನಡುಗೆರೆಯ (Major axis) ಮೇಲೆ ಇರುತ್ತವೆ ಮತ್ತು ಉದ್ದದುಂಡುವಿನ ನಡುವಿನಿಂದ ಈ ಚುಕ್ಕೆಗಳು ಸರಿದೂರದಲ್ಲಿ ಇರುತ್ತದೆ.

ತಿರುಗು ಚುಕ್ಕೆ (Locus Points): ಉದ್ದದುಂಡುವಿನ ಸುತ್ತ ಸುತ್ತುತ್ತಿರುವ ಯಾವುದೇ ಚುಕ್ಕೆ,

ಸುತ್ತಳತೆ (Perimeter)

ನಾವು ಹಲವಾರು ಆಕೃತಿಗಳಿಗೆ ಸುಲಭವಾಗಿ ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯಬಹುದು ಆದರೆ ಉದ್ದದುಂಡುವಿನ ಸುತ್ತಳತೆಯನ್ನು ಅಷ್ಟು ಸುಲಭವಾಗಿ ಕಂಡುಹಿಡಿಯಲು ಬರುವುದಿಲ್ಲ. ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯುವ ಸರಿಹೊಂದಿಕೆಗಳು ಈ ಕೆಳಕಂಡಂತೆ ಇವೆ.

Image5 EL

ಸರಿಹೊಂದಿಕೆ 1:

Image6 EL

  • ಇಲ್ಲಿ h = (a – b)2 /(a + b)2
  • ಇಲ್ಲಿಅರೆ ಹಿರಿನಡುಗೆರೆಯಾಗಿದೆ (Semi Major axis line)
  • ಇಲ್ಲಿಅರೆ ಕಿರುನಡುಗೆರೆಯಾಗಿದೆ (Semi Minor axis line)
  • π = 3.14159.

ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಕೆಳಗಿನಂತೆ ಬಿಡಿಸಿ ಬರೆಯಬಹುದು.

Image7 ELಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಎಲ್ಲೆಯಿಲ್ಲದ ಮೊತ್ತದ ಸರಿಹೊಂದಿಕೆ (Infinite Sum formula) ಎಂದು ಕರೆಯುವರು,ಇದು ಹೆಚ್ಚು ದಿಟವಾದ ಸುತ್ತಳತೆಯ ಬೆಲೆಯನ್ನು ನೀಡುತ್ತದೆ.

ಸರಿಹೊಂದಿಕೆ 2:

ಉದ್ದದುಂಡುವಿನ ಸುತ್ತಳತೆಯನ್ನು ಈ ಕೆಳಗಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಕಂಡುಹಿಡಿಯಬಹುದು, ಇದನ್ನು ಎಣಿಕೆಯರಿಗ (Mathematician) ಶ್ರೀನಿವಾಸ ರಾಮಾನುಜನ್ ಅವರು ಕಂಡುಹಿಡಿದಿದ್ದರು.

Image8 EL

  • ಇಲ್ಲಿಅರೆ ಹಿರಿನಡುಗೆರೆಯಾಗಿದೆ (Semi Major axis line)
  • ಇಲ್ಲಿಅರೆ ಕಿರುನಡುಗೆರೆಯಾಗಿದೆ (Semi Minor axis line)
  • π = 3.14159.

ಸರಿಹೊಂದಿಕೆ 3:

ಈ ಸರಿಹೊಂದಿಕೆಯು ಉದ್ದದುಂಡುವಿನ ಹೆಚ್ಚು ದಿಟವಾದ ಸುತ್ತಳತೆಯ ಬೆಲೆಯನ್ನು ನೀಡುತ್ತದೆ.

Image9 EL

  • ಇಲ್ಲಿಅರೆ ಹಿರಿನಡುಗೆರೆಯಾಗಿದೆ (Semi Major axis line)
  • ಇಲ್ಲಿಅರೆ ಕಿರುನಡುಗೆರೆಯಾಗಿದೆ (Semi Minor axis line)
  • π = 3.14159.

ಸರಿಹೊಂದಿಕೆ 4:

  • ಅರೆ-ಹಿರಿನಡುಗೆರೆ (Semi Major axis) ಉದ್ದವು ಅರೆ-ಕಿರುನಡುಗೆರೆಯ (Semi Minor axis) ಮೂರುಪಟ್ಟಿಗಿಂತ ಕಡಿಮೆಯಿದ್ದರೆ ಕೆಳಗಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹುದು. i.e a < 3b, ಈ ಸರಿಹೊಂದಿಕೆಯು ಸುಲಭವಾಗಿ ಉದ್ದ ದುಂಡುವಿನ ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯಲು ಅನುವುಮಾಡಿಕೊಡುತ್ತದೆ, ಆದರೆ ಇದು ಸುತ್ತಳತೆಯ ದಿಟಬೆಲೆಗಿಂತ 5% ಹೆಚ್ಚು-ಕಡಿಮೆ ಬೆಲೆಯನ್ನು ಹೊಂದಿರುತ್ತದೆ.

Image10 EL

  • ಇಲ್ಲಿಅರೆ ಹಿರಿನಡುಗೆರೆಯಾಗಿದೆ (Semi Major axis line)
  • ಇಲ್ಲಿಅರೆ ಕಿರುನಡುಗೆರೆಯಾಗಿದೆ (Semi Minor axis line)
  • a < 3b
  • π = 3.14159.
  • e a < 3b
  • ಉದಾಹರಣೆಗೆ: b = 5, a = 10 => 10 < 3 x 5 => 10 < 15 ಆದಾಗ ಸುಲಭವಾಗಿ ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯಲು ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹುದು.

 

ಉದಾಹರಣೆ : ಒಂದು ಉದ್ದದುಂಡುವಿನ ಅರೆ-ಹಿರಿನಡುಗೆರೆಯು (Semi Major Axis) 19 ft ಮತ್ತು ಅರೆ-ಕಿರುನಡುಗೆರೆಯು (Semi Minor Axis) 9 ft  ಆದಾಗ ಅದರ ಸುತ್ತಳತೆಯನ್ನು (Perimeter) ಕಂಡುಹಿಡಿಯಿರಿ.

Image11 EL

ಉದ್ದದುಂಡುವಿನ ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯಲು ಮೇಲಿನ ಯಾವುದಾರೂ ಒಂದು ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹುದು, ಇಲ್ಲಿ ನಾವು ಮೇಲೆ ಹೇಳಿದ ಸರಿಹೊಂದಿಕೆಯ ಬಗೆ 2 ನ್ನು ಬಳಸಿಕೊಳ್ಳೋಣ.

Image12 EL

  • ಇಲ್ಲಿ a = 19ft  ಅರೆ ಹಿರಿನಡುಗೆರೆಯಾಗಿದೆ (Semi Major axis line)
  • ಇಲ್ಲಿ b = 9 ft  ಅರೆ ಕಿರುನಡುಗೆರೆಯಾಗಿದೆ (Semi Minor axis line)
  • π = 3.14159.
  • ಸುತ್ತಳತೆ p = 14159 [ 3(19 + 9) – √(3 x 19 + 9)(19 + 3 x 9)]

              p = 3.14159 [84 – √(66)(46)]

p = 3.14159 [84 -√3036]

p = 3.14159 [84 – 55.1] = 3.14159 x 28.9 = 90.791951 ft

ಕೊಟ್ಟಿರುವ ಉದ್ದದುಂಡುವಿನ ಸುತ್ತಳತೆ 90.791951 ft ಆಗಿದೆ

 

ಉದ್ದದುಂಡುವಿನ ಹರವು(Area of an Ellipse):

ಉದ್ದದುಂಡುವಿನ ಹರವನ್ನು A = πab ಎಂದು ಕಂಡುಕೊಳ್ಳಲಾಗಿದೆ.

ಕೆಳಗಿನ ಉದಾಹರಣೆಯಲ್ಲಿ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳುವ ಈ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳೋಣ.

  • ಉದಾಹರಣೆ : ಕೆಳಗಡೆ ಉದ್ದದುಂಡು ಆಕಾರದ ಸ್ನಾನ ಮಾಡಲು ಬಳಸುವ ಒಂದು ಸೋಪನ್ನು ಕೊಡಲಾಗಿದೆ, ಅದರ ಅರೆ ಹಿರಿನಡುಗೆರೆ (Semi Major axis line) a = 10cm ಮತ್ತು ಅರೆ ಕಿರುನಡುಗೆರೆ (Semi Minor axis line) b = 7cm ಆಗಿದೆ, ಹಾಗಾದರೆ ಅದರ ಉದ್ದದುಂಡು ಆಕಾರದ ಸೋಪಿನ ಮೇಲ್ಮಯ್ಯಿಯ ಹರವೆಷ್ಟು?

Image13 EL

ಉದ್ದದುಂಡುವಿನ ಹರವು A = πab.

                                    A = 3.14159 x 10 x 7 = 219.911 cm2

ಸೋಪಿನ ಮೇಲ್ಮಯ್ಯಿಯ ಉದ್ದದುಂಡು ಆಕಾರದ ಹರವು 219.911 cm2  ಆಗಿದೆ.

ಉದ್ದದುಂಡುವಿನ ಸರಿಹೊಂದಿಕೆ (Equation of ellipse):

ಯಾವುದೇ ಒಂದು ಮುಚ್ಚಿದ ಆಕಾರವು ತನ್ನದೇ ಆದ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಹೊಂದಿರುತ್ತದೆ, ಕೆಳಗಿನ ಸರಿಹೊಂದಿಕೆಯು ಉದ್ದದುಂಡು ಆಕಾರವನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ. ಈ ಆಕಾರವನ್ನು ಉಂಟುಮಾಡಲು ನಾವು ಚುಕ್ಕೆಗುರುತನ್ನು(Coordinate system) ಬಳಸಿಕೊಳ್ಳಬೇಕಾಗುತ್ತದೆ.

Image14 ELಕೆಳಗಿನ ಉದಾಹರಣೆಯೊಂದಿಗೆ  ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಿಡಿಸೋಣ.

Image15 EL

  • ಮೇಲಿನ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿರುವಂತೆ ಉದ್ದದುಂಡುವಿನ ಅರೆ-ಹಿರಿನಡುಗೆರೆ (Semi Major axis line) a = 2 ಮತ್ತು ಅರೆ-ಕಿರುನಡುಗೆರೆ (Semi Minor axis line) b = 1 ಆಗಿದೆ.
  • ಇದನ್ನು ಬಿಡಿಸಿ ಬರೆದಾಗ y = (1/a) x  √ (a2 b2  – x2 b2) ಆಗುತ್ತದೆ.
  • ಸರಿಹೊಂದಿಕೆಯಲ್ಲಿ x ಮತ್ತು y ಮಾರ್ಪುಕಗಳಾಗಿವೆ (Variables).
  • ಚುಕ್ಕೆಗುರುತಿನ (Coordinates graph) ಪಟ್ಟಿಯಲ್ಲಿ a=2, b=1 ಆದಾಗ x = [ -2, -1, 0, 1, 2 ] ಬೆಲೆಗಳನ್ನು y = (1/a) x  √ (a2 b2  – x2 b2) ಯಲ್ಲಿ  ಹಾಕಿ y ನ್ನು ಕಂಡುಕೊಂಡು ಮೇಲಿನ ಉದ್ದದುಂಡುಕವನ್ನು ಪಡೆಯಬಹುದು.

ದುಂಡುತನ (Eccentricity):

ಒಂದು ಬಾಗಿದ ಆಕೃತಿಯು (Curved shapes) ಎಷ್ಟು ದುಂಡಾಗಿದೆ ಎಂಬುವುದನ್ನು ದುಂಡುತನ (Eccentricity) ತಿಳಿಸುತ್ತದೆ, ಇದನ್ನು ನಡುಬೇರ್ಮೆಯಳತೆ ಎಂದೂ ಕರೆಯಬಹುದು.

Image17 ELಉದ್ದದುಂಡುವಿನ ದುಂಡುತನವನ್ನು (Eccentricity of the Ellipse) ಈ ಕೆಳಕಂಡಂತೆ ಬರೆಯಬಹುದು,

e = c/a

  • e ಎಂಬುವುದು ದುಂಡುತನದ ಗುರುತಾಗಿದೆ.
  • c ಎಂಬುವುದು ನೆಲೆಚುಕ್ಕೆಯಿಂದ (Focus) ಉದ್ದದುಂಡುವಿನ ನಡುವಿಗೆ (Centre of the Ellipse) ಇರುವ ದೂರ
  • a ಎಂಬುವುದು ನೆಲೆಚುಕ್ಕೆಯಿಂದ (Focus) ಉದ್ದದುಂಡುವಿನ ತುದಿಗೆ ಇರುವ, ಇಲ್ಲಿ ತುದಿಗೆ (Vertex) ಇರುವ ದೂರ.
  • ನೆನಪಿಟ್ಟುಕೊಳ್ಳಿ: ದುಂಡುಕದಲ್ಲಿ (Circle) ದುಂಡುತನವು ಯಾವಾಗಲೂ ಸೊನ್ನೆಯಾಗಿರುತ್ತದೆ (e = 0), ಆದರೆ ಉದ್ದದುಂಡುವಿನ ದುಂಡುತನವು ಸೊನ್ನೆಗಿಂತ ಜಾಸ್ತಿ ಇದ್ದು, ಒಂದಕ್ಕಿಂತ ಕಮ್ಮಿ ಇರುತ್ತದೆ. 1 > e > 0.

ಉದ್ದದುಂಡುವಿನ ಹಳಮೆ:

  • 380–320 BCE ಹೊತ್ತಿನ ಮೆನಚ್ಮ್ಯಾಸ್ (Menaechmus) ಎಂಬ  ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗ ಉದ್ದ  ದುಂಡುವಿನ ಬಗ್ಗೆ ಅರಕೆಮಾಡಿದ್ದನು.

Image18 EL

  • ಸುಮಾರು 300 BCE ಹೊತ್ತಿನ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗರಾದ ಯೂಕ್ಲಿಡ್ ಮತ್ತು ಅಪೊಲೊನಿಯಸ್ ಉದ್ದದುಂಡುವಿನ ಬಗ್ಗೆ ಹಲವಾರು ಅರಕೆಗಳನ್ನುಮಾಡಿದ್ದರು.
  • 290 -.350 BCE ಹೊತ್ತಿನ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗ ಪಾಪಸ್ (Pappus) ಉದ್ದದುಂಡುವಿನ ನೆಲೆಚುಕ್ಕೆಯ (Foci of the Ellipse) ಬಗ್ಗೆ ಅರಕೆ ಮಾಡಿದ್ದನು.
  • 1602 CE ಯಲ್ಲಿ ಜೋಹಾನ್ಸ್ ಕೆಪ್ಲರ್ (Johannes Kepler) ನೇಸರನ ಸುತ್ತ ಸುತ್ತುವ ಮಂಗಳ ಗ್ರಹದ ಸುತ್ತುದಾರಿಯು (Orbit) ಉದ್ದದುಂಡು ಆಕಾರದಲ್ಲಿದೆ ಎಂದು ಹೇಳಿದ್ದನು.

ಚಟುವಟಿಕೆ:

  1. ಮೊಟ್ಟೆಯಾಕಾರ (Oval shape) ಮತ್ತು ಉದ್ದದುಂಡು Ellipse shape) ಆಕಾರಕ್ಕೂ ಇರುವ ವ್ಯತ್ಯಾಸವನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
  2. ದುಂಡುಕದಲ್ಲಿ (Circle) ದುಂಡುತನವು (Eccentricity) ಏಕೆ ಸೊನ್ನೆಯಾಗಿದೆ ಎಂದು ಕಂಡುಕೊಳ್ಳಿ.

(ಸೆಲೆ: askiitians.com, mathsisfun.com, mathopenref.com/ellipseeccentricity, mathsisfun.com/geometry, Wikipedia)

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಹಲಬದಿಗಳು – ಭಾಗ 2

ನಾವು ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ಹಲಬದಿಗಳು ಎಂದರೇನು ಮತ್ತು ಹಲಬದಿಯ ಹಲವು ಬಗೆಗಳನ್ನು ತಿಳಿದುಕೊಂಡೆವು, ಈಗ ಹಲಬದಿಗಳ ಮೂಲೆ (Angle), ಸುತ್ತಳತೆ (Perimeter) ಮತ್ತು ಹರವನ್ನು (Area) ಕಂಡುಕೊಳ್ಳುವ ಬಗೆಗಳನ್ನು ತಿಳಿಯೋಣ ಬನ್ನಿ.

ಹಲಬದಿಯ ಸುತ್ತಳತೆ (Perimeter of a polygon):

ಯಾವುದೇ ಹಲಬದಿಯ ಸುತ್ತಳತೆಯನ್ನು ಅದರ ಎಲ್ಲಾ ಬದಿಗಳ ಉದ್ದವನ್ನು ಕೂಡಿಸಿ ಸುಲಭವಾಗಿ ಕಂಡುಹಿಡಿಯಬಹುದಾಗಿದೆ.

  • ಉದಾಹರಣೆಯಾಗಿ ಒಂದು ABCDE ಐದ್ಬದಿಯನ್ನು (Pentagon) ತೆಗೆದುಕೊಳ್ಳೋಣ.

Image1 P2ಐದ್ಬದಿಯ ಸುತ್ತಳತೆ P ಆಗಿರಲಿ, ಬದಿ1 = AB, ಬದಿ2 = BC, ಬದಿ3 = CD, ಬದಿ4 = DE, ಬದಿ5 = EA ಆದಾಗ

ಐದ್ಬದಿಯ ಸುತ್ತಳತೆ P = ಬದಿ1+ ಬದಿ2 + ಬದಿ3 + ಬದಿ4 + ಬದಿ5 = AB + BC + CD + DE + EA ಆಗಿರುತ್ತದೆ.

  • ಉದಾಹರಣೆಯಾಗಿ ಆರುಬದಿಯುಳ್ಳ ABCDEF ಎಂಬ ಒಂದು ತಗ್ಗು ಹಲಬದಿಯನ್ನು (Concave Polygon) ತೆಗೆದುಕೊಳ್ಳೋಣ.

Image2 P2ಆರುಬದಿಯುಳ್ಳ ABCDEF ಈ ತಗ್ಗು ಹಲಬದಿಯಲ್ಲಿ AB = 8cm, BC = 5cm, CD = 7cm, ED = 3cm, EF = 12cm, FA = 10cm ಆಗಿವೆ, ಸುತ್ತಳತೆ P ಆಗಿರಲಿ.

ಆರುಬದಿಯುಳ್ಳ ABCDEF  ಹಲಬದಿಯ ಸುತ್ತಳತೆ P = AB + BC + CD + DE + EF + FA = 8 + 5 + 7 + 3 + 12 + 10 = 45 cm ಆಗಿದೆ.

 

  • ಯಾವುದೇ ಹಲಬದಿಯ ಬದಿಗಳು n ಆದಾಗ ಅದರ ಸುತ್ತಳತೆ P = ಬದಿ1 + ಬದಿ2 + ಬದಿ3 + …+ …+ ಬದಿn-1 + ಬದಿn ಆಗಿರುತ್ತದೆ.

ಅದನ್ನು ಇನ್ನು ಸುಳುವಾಗಿ Image3 P2   ಎಂದು ಬರೆಯಬಹುದು, ಇಲ್ಲಿ i = 1,2,3……n, n ಎಂಬುವುದು ಹಲಬದಿಯು ಎಷ್ಟು ಬದಿಗಳನ್ನು ಹೊಂದಿದೆ ಎಂಬುವುದನ್ನು ತಿಳಿಸುತ್ತದೆ.

  • ಒಂದು ಸುಳುವಾದ ಹಲಬದಿಯು (Simple Polygon) ಸಾಟಿ ಹಲಬದಿಯಾದಾಗ (Regular Polygon) ಅದರ ಸುತ್ತಳತೆಯನ್ನು P= n x s = ಒಟ್ಟು ಬದಿಗಳು x ಒಂದು ಬದಿಯ ಅಳತೆ ಎಂದು ಬರೆಯಬಹುದು.

ಇಲ್ಲಿ n -> ಒಟ್ಟು ಬದಿಗಳು.

s -> ಒಂದು ಬದಿಯ ಅಳತೆ.

ಹಲಬದಿಯ ಒಳ ಮೂಲೆಗಳನ್ನು (Interior Angles)  ಕಂಡುಕೊಳ್ಳುವ ಬಗೆ:

  • ಯಾವುದೇ ಹಲಬದಿಯ ಒಳಮೂಲೆಗಳ ಮೊತ್ತವು (n − 2) π C ಆಗಿರುತ್ತದೆ,

ಇಲ್ಲಿ c ಗುರುತು ರೇಡಿಯನ್ಸ್ (Radians) ಅನ್ನು ತಿಳಿಸುತ್ತದೆ, ಒಂದು ರೇಡಿಯನ್ ಅನ್ನು 1c ಎಂದು ಬರೆಯಬಹುದು.

1 ನ ಬೆಲೆ 180°/π ಆಗಿರುತ್ತದೆ,

π C = 180° ಆಗಿದೆ,  ಇಲ್ಲಿ π = 3.14159 ಆಗಿದೆ.

ಹಲಬದಿಯ ಒಳಮೂಲೆಗಳ ಮೊತ್ತವನ್ನು (n − 2) × 180° ಎಂದು ಸುಳುವಾಗಿ ಬರೆದುಕೊಳ್ಳಬಹುದು.

ಇಲ್ಲಿ  n ಎಷ್ಟು ಬದಿಗಳನ್ನು ಹೊಂದಿವೆ ಎಂಬುವುದಾಗಿದೆ.

ಹಲಬದಿಯ ಒಳಮೂಲೆಗಳ ಮೊತ್ತ ವನ್ನು ತಿಳಿಸುವ ಸರಿಹೊಂದಿಕೆಯು (Equation) ಉಬ್ಬು ಹಲಬದಿ (Convex Polygon) ಮತ್ತು ತಗ್ಗು ಹಲಬದಿಗೂ (Concave Polygon) ಸರಿಹೊಂದುತ್ತುದೆ.

 

  • ಒಂದು ಹಲಬದಿಯು ಸಾಟಿ ಹಲಬದಿಯಾದಾಗ (Regular Polygon) ಅದರ ಯಾವುದೇ ಒಂದು ಮೂಲೆಯು 180° – 360°/n ಆಗಿರುತ್ತದೆ. ಇಲ್ಲಿ n ಎಷ್ಟು ಬದಿಗಳನ್ನು ಹೊಂದಿವೆ ಎಂಬುವುದಾಗಿದೆ.

 

ಉದಾಹರಣೆ1:  ಕೆಳಗೆ ಒಂದು ABCD ನಾಲ್ಬದಿಯನ್ನು (Quadrilateral) ಕೊಡಲಾಗಿದೆ, ಇದರ ಒಳಮೂಲೆಗಳ ಮೊತ್ತವೇನು?

Image4 P2ನಾವು ಮೇಲೆ ತಿಳಿದಂತೆ ಯಾವುದೇ ಹಲಬದಿಯ ಒಳಮೂಲೆಗಳ ಮೊತ್ತವು (n − 2) × 180° ಆಗಿದೆ,

ಒಂದು ನಾಲ್ಬದಿಯೆಂದರೆ ಅದು ನಾಲ್ಕು ಬದಿಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ, ಹಾಗಾಗಿ ಇಲ್ಲಿ n = 4 ಆಗುತ್ತದೆ.

ABCD ನಾಲ್ಬದಿಯ ಒಳಮೂಲೆಗಳ ಮೊತ್ತ BAD + ADC + DCB + CBA =  (n − 2) × 180° = (4 – 2) x 180° = 2 x 180 = 360° ಆಗಿದೆ.

ಉದಾಹರಣೆ2: ಕೆಳಗೆ ಒಂದು ಸಾಟಿ ಹನ್ನೆರಡುಬದಿಯನ್ನು(Regular Dodecagon) ಕೊಡಲಾಗಿದೆ, ಇದರ ಒಳ ಮೂಲೆಗಳ ಮೊತ್ತವೇನು ಮತ್ತು ಅದರ ಒಂದು ಮೂಲೆಯ ಬೆಲೆಯೇನು ?

 Image5 P2

ನಾವು ಮೇಲೆ ತಿಳಿದಂತೆ ಯಾವುದೇ ಹಲಬದಿಯ ಒಳಮೂಲೆಗಳ ಮೊತ್ತವು (n − 2) × 180° ಆಗಿದೆ,

ಮೇಲಿನ ಚಿತ್ರವು ಹನ್ನೆರಡು ಬದಿಯನ್ನು ಹೊಂದಿದ ಆಕಾರವಾಗಿದೆ, ಹಾಗಾಗಿ ಇಲ್ಲಿ n = 12 ಆಗುತ್ತದೆ.

ಸಾಟಿ ಹನ್ನೆರಡುಬದಿಯ ಒಳಮೂಲೆಗಳ ಮೊತ್ತ = (n − 2) × 180° = (12 – 2) x 180° = 1800° ಆಗಿದೆ.

ಈ ಹನ್ನೆರಡುಬದಿಯು(Dodecagon) ಒಂದು ಸಾಟಿ ಹಲಬದಿಯಾಗಿದೆ (Regular Polygon), ಅಂದರೆ ಅದರ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದೇ ಅಳತೆಯಲ್ಲಿರುತ್ತವೆ (Equilateral) ಹಾಗು ಅದರ ಎಲ್ಲಾ ಮೂಲೆಗಳು ಒಂದೇ ಅಳತೆಯಲ್ಲಿರುತ್ತವೆ (Equiangular).

ನಾವು ಮೇಲೆ ತಿಳಿದಂತೆ ಸಾಟಿ ಹಲಬದಿಯ (Regular Polygon) ಒಂದು ಮೂಲೆಯು 180° – 360°/n ಆಗಿರುತ್ತದೆ.

ಸಾಟಿ ಹನ್ನೆರಡುಬದಿಯ ಯಾವುದೇ ಒಂದು ಮೂಲೆ = 180° – 360°/n = 180°- 360°/12 = 180° – 30° = 150°ಆಗಿರುತ್ತದೆ.

 

ಉದಾಹರಣೆ 3: ಒಂದು ಸಾಟಿ ಹಲಬದಿಯ ಯಾವುದೇ ಮೂಲೆಯು 162° ಆಗಿದೆ, ಹಾಗಾದರೆ ಈ ಸಾಟಿ ಹಲಬದಿಯು ಎಷ್ಟು ಬದಿಗಳನ್ನು ಹೊಂದಿದೆ.

ಈ ಉದಾಹರಣೆಯಲ್ಲಿ ಸಾಟಿ ಹಲಬದಿಯ ಯಾವುದೇ ಮೂಲೆಯು 162° ಆಗಿದೆ.

ನಾವು ಮೇಲೆ ತಿಳಿದಂತೆ ಸಾಟಿ ಹಲಬದಿಯ (Regular Polygon) ಒಂದು ಮೂಲೆಯು 180° – 360°/n ಆಗಿರುತ್ತದೆ.

ಸಾಟಿ ಹಲಬದಿಯ ಒಂದು ಮೂಲೆ = 180° – 360°/n = 162°, ಇಲ್ಲಿ n ಎಂಬುವುದು ಅದರ ಒಟ್ಟು ಬದಿಗಳಾಗಿವೆ, ಇದನ್ನು ಕೆಳಗಿನಂತೆ ಬಿಡಿಸೋಣ

180° –  162° = 360°/n

18° = 360°/n

n = 360°/18 = 20

∴  ಸಾಟಿ ಹಲಬದಿಯ ಒಂದು ಮೂಲೆ 162° ಆದಾಗ ಅದು 20 ಬದಿಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ, ಈ ಸಾಟಿ ಹಲಬದಿಯನ್ನು ಇಪ್ಪತ್ತುಬದಿ (Icosagon)  ಆಕಾರ ಎಂದು ಕರೆಯಬಹುದು.

 Image6 P2

ಹಲಬದಿಯ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳುವ ಬಗೆ (Area of a Polygon):

ಮೂರ್ಬದಿ ಆಕಾರವು ಮೂರು ಬದಿಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ, ಆಯತ, ಚೌಕ ಇವುಗಳೆಲ್ಲವೂ ನಾಲ್ಕುಬದಿಗಳನ್ನು ಹೊಂದಿವೆ, ಹಾಗಾಗಿ ಇವುಗಳ ಹರವನ್ನು ಕಂಡುಹಿಡಿಯುವುದು ಸುಲಭ, ಆದರೆ ಇವುಗಳಿಗಿಂತ ಹೆಚ್ಚು ಬದಿ ಮತ್ತು ಬೇರೆ ಬೇರೆ ಅಳತೆಯ ಬದಿಗಳನ್ನು ಹೊಂದಿದ ಒಂದು ಸುಳುವಾದ ಹಲಬದಿಯ ಹರವನ್ನು ಕಂಡುಹಿಡಿಯುವುದು ಸುಲಭವಲ್ಲ. ಹಾಗಾಗಿ  ಚುಕ್ಕೆಗುರುತಿನ ಏರ್ಪಾಡನ್ನು (coordinate system)  ಬಳಸಿ ಎಲ್ಲಾ ಸುಳುವಾದ ಹಲಬದಿಗಳಿಗೆ ಒಗ್ಗುವಂತೆ ಹೀಗೆ ಬರೆಯಬಹುದು.

Image7 P2Image8 P2

  • n: ಬದಿಗಳು
  • x,y: ಹಲಬದಿಯ ತುದಿಗಳ ಚುಕ್ಕೆಗುರುತುಗಳು (Coordinates of polygon vertices)
  • k: 1, 2, 3, 4, …, n-1, n
  • ಇಲ್ಲಿ ಹರವು ಕಳೆಯುವ ಗುರುತನ್ನು (Negative Symbol) ಹೊಂದಿದ್ದರೆ ಅದನ್ನು ಕೂಡು ಗುರುತಿಗೆ(Positive Symbol) ಮಾರ್ಪಾಟು ಮಾಡಿಕೊಳ್ಳಬೇಕು, ಅದಕ್ಕೆ ದಿಟಬೆಲೆ ಗುರುತನ್ನು(absolute value/modulus/real number) ಬಳಸಬೇಕು,
  • ಉದಾಹರೆಣೆಗೆ -6 -> |6| -> 6, ಹಾಗಾಗಿ ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಗೆ ಗುರುತನ್ನು ಬಳಸಲಾಗಿದೆ

 ಕೇಳ್ವಿ 1:  ಒಂದು ಹಲಬದಿಯ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳಲು ಇಷ್ಟು ದೊಡ್ಡದಾದ ಸರಿಹೊಂದಿಕೆಯನ್ನು (equation) ಬಳಸಬೇಕೇ?

ಉತ್ತರ:  ಹೆಚ್ಚು ಹೆಚ್ಚು ಬದಿ ಮತ್ತು ಬೇರೆ ಬೇರೆ ಅಳತೆಯ ಬದಿಗಳನ್ನು ಹೊಂದಿದ ಒಂದು ಸುಳುವಾದ ಹಲಬದಿಯ ಹರವನ್ನು ಕಂಡುಹಿಡಿಯುವುದಕ್ಕೆ ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಬಹುದು, ಮೂರ್ಬದಿ ಮತ್ತು ನಾಲ್ಬದಿ ಆಕಾರಗಳು ಕಡಿಮೆ ಬದಿಯನ್ನು ಹೊಂದಿದ್ದರಿಂದ ಅವುಗಳನ್ನು ಸುಲಭವಾಗಿ ಬೇರೆ ಬಗೆಯಾಗಿ ಅವುಗಳ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳಬಹುದು. ಮೂರ್ಬದಿಗಳ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳಲು ಈ ಬರಹವನ್ನು ಓದಿ ಮತ್ತು ನಾಲ್ಬದಿಗಳ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳಲು ಈ ಬರಹವನ್ನು ಓದಿ.

ಕೇಳ್ವಿ 2: ಒಂದು ಸುಳುವಾದ ಹಲಬದಿಯು (Simple Polygon) ಸಾಟಿ ಹಲಬದಿಯಾದಾಗ (Regular Polygon) ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಬೇಕೇ ?

ಉತ್ತರ: ಒಂದು ಸುಳುವಾದ ಹಲಬದಿಯು ಸಾಟಿ ಹಲಬದಿಯಾದಾಗ ಅದರ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದೇ ಅಳತೆಯನ್ನು ಹೊಂದಿರುತ್ತವೆ (Equilateral) ಮತ್ತು ಎಲ್ಲಾ ಮೂಲೆಗಳು ಒಂದೇ ಅಳತೆಯನ್ನು(Equiangular) ಹೊಂದಿರುತ್ತವೆ ಕೂಡ.

ಆ ಸಾಟಿ ಹಲಬದಿಯ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳಲು ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯ ಬದಲು ಈ ಕೆಳಗಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹದು.

  • ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿರುವ ಎಲ್ಲಾ ಆಕಾರಗಳು ಸಾಟಿ ಹಲಬದಿಗಳಾಗಿವೆ (Regular Polygons).

Image9 P2

  • ಯಾವುದೇ ಒಂದು ಸಾಟಿ ಹಲಬದಿಯ ಹರವು A = 1/2 x (pa) ಆಗಿರುತ್ತದೆ.

ಇಲ್ಲಿ p à ಸುತ್ತಳತೆ (Perimeter)

       a à ನೇರಡ್ಡನಡುಗೆರೆ (Apothem)

ಹರವನ್ನು A = 1/2 x (pa) = 1/2 x (nsa) ಎಂದೂ ಬರೆಯಬಹುದು, ಏಕೆಂದರೆ ಸುತ್ತಳತೆ P= n x s =  ಒಟ್ಟು ಬದಿಗಳು x ಒಂದು ಬದಿಯ ಅಳತೆ ಆಗಿರುತ್ತದೆ.

ನೇರಡ್ಡನಡುಗೆರೆ (Apothem) ಎಂದರೆ ಒಂದು ಸಾಟಿ ಹಲಬದಿಯ ನಡುವಿಂದ ಅದರ ಒಂದು ಬದಿಗೆ ನೇರಡ್ಡವಾಗಿ ಎಳೆದ ಗೆರೆ.

  • ಉದಾಹರಣೆಯಾಗಿ  ಒಂದು ಸಾಟಿ ಎಂಟ್ಬದಿಯನ್ನು (Octagon) ತೆಗೆದುಕೊಂಡು ಸಾಟಿ ಹಲಬದಿಯ ಹರವಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು (Equation of area of regular polygon) ಕೆಳಗಿನಂತೆ ತೋರಿಸಬಹುದು.

Image10 P2

ಉದಾಹರಣೆ 1: ಸಾಟಿ ಹಲಬದಿಯ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳುವ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿ ಚೌಕದ ಹರವು ಬದಿ x ಬದಿ ಎಂದು ತೋರಿಸಿ.

Image11 P2ಚೌಕದಲ್ಲಿ ಎಲ್ಲಾ ನಾಲ್ಕು ಬದಿಗಳು (n=4) ಒಂದೇ ಅಳತೆಯನ್ನು ಹೊಂದಿರುತ್ತವೆ.

∴  ED = DG = GF = FE = s

ಚೌಕದ ನೇರಡ್ಡನಡುಗೆರೆಯ ಉದ್ದವು (length of apothem) ಚೌಕದ ಒಂದು ಬದಿಯ ಅರೆಪಾಲಿನ ಉದ್ದಕ್ಕೆ ಸರಿಯಾಗಿದೆ.

∴  ನೇರಡ್ಡನಡುಗೆರೆ a = s/2

ಸಾಟಿ ಹಲಬದಿಯ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳುವ ಸರಿಹೊಂದಿಕೆ

A = 1/2 x (pa) = 1/2 x (nsa) = 1/2 x (ಒಟ್ಟು ಬದಿಗಳು x ಬದಿಯ ಉದ್ದ x ನೇರಡ್ಡನಡುಗೆರೆಯ ಉದ್ದ)

∴  A = 1/2 x 4 x s x s/2 =2 x s x s/2 = s x s = ಬದಿ x ಬದಿ  ಆಗಿದೆ.

ಉದಾಹರಣೆ 2: ಒಂದು ಸಾಟಿ ಐದ್ಬದಿಯ (Regular Pentagon) ಬದಿಗಳು 7 cm  ಆಗಿವೆ ಮತ್ತು ಅದರ ನೇರಡ್ಡನಡುಗೆರೆ 4.81734 cm ಆದಾಗ ಅದರ ಹರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Image12 P2ಸಾಟಿ ಐದ್ಬದಿಯಲ್ಲಿ ಎಲ್ಲಾ ನಾಲ್ಕು ಬದಿಗಳು (n=5) ಒಂದೇ ಅಳತೆಯನ್ನು ಹೊಂದಿರುತ್ತವೆ.

ಸಾಟಿ ಹಲಬದಿಯ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳುವ ಸರಿಹೊಂದಿಕೆ.

A = 1/2 x (pa) = 1/2 x (nsa) = 1/2 x (ಒಟ್ಟು ಬದಿಗಳು x ಬದಿಯ ಉದ್ದ x ನೇರಡ್ಡನಡುಗೆರೆಯ ಉದ್ದ)

A = 1/2 x (5 x 7 x 4.81734) = 1/2 x (168.6069) = 84.30345 cm.

ಸಾಟಿ ಐದ್ಬದಿಯ ಹರವು A = 84.30345 cm.

ಉದಾಹರಣೆ 3: ಒಂದು ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿ P1P2P3P4P5 ಯನ್ನು ಚುಕ್ಕೆಗುರುತಿನ ಏರ್ಪಾಟಿನಲ್ಲಿ (coordinate system) ಗುರುತಿಸಲಾಗಿದೆ, ಕೊಟ್ಟಿರುವ ಎಲ್ಲಾ ಗುರುತಿನ ಅಂಶಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಈ ಹಲಬದಿಯ ಹರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Image13 P2

  • ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಯ ತುದಿಗಳನ್ನು(Vertices) ಚುಕ್ಕೆಗುರುತಿನ ಏರ್ಪಾಟಿನಲ್ಲಿ ಗುರುತಿಸಲಾಗಿದೆ
  • ಈ ಚುಕ್ಕೆಗುರುತುಗಳು(Coordinates) ಹೀಗಿವೆ P1(3,4), P2(5,11), P3(12,8), P4(9,5) ಮತ್ತು P5(5,6).
  • ಮೇಲೆ ಕೊಟ್ಟಿರುವ ಹಲಬದಿಯು ಸುಳುವಾದ ಹಲಬದಿಯಾಗಿದೆ (Simple Polygon) ಮತ್ತು ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಯಾಗಿದೆ (Irregular Polygon)
  • ಮೇಲೆ ತಿಳಿಸಿದಂತೆ ಸುಳುವಾದ ಹಲಬದಿಯ (Simple polygon) ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳುವ ಸರಿಹೊಂದಿಕೆ (Equation).

Image14 P2 P = { P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4),P5(x5,y5)} = {P1(3,4),P2(5,11),P3(12,8),P4(9,5) P5(5,6)}  ಎಂದು ಹೊಂದಿಸಿಕೊಳ್ಳಬಹುದು.

Image15 P2ಹರವಿನ ಬೆಲೆ ಕಳೆಯುವ ಗುರುತನ್ನು (Negative Symbol) ಹೊಂದಿರುವುದರಿಂದ,  (Real/Absolute number symbol) ಗುರುತನ್ನು ಬಳಸಲಾಗಿದೆ.

 ಚಟುವಟಿಕೆ: ನಮ್ಮ ದಿನ ನಿತ್ಯದ ಬದುಕಿನಲ್ಲಿ ಕಾಣುವ ಎಲ್ಲಾ ಹಲಬದಿ ಆಕಾರಗಳನ್ನು ಗುರುತಿಸಿ, ಮತ್ತು ಅವುಗಳು ಯಾವ ಯಾವ ಬಗೆಯ ಹಲಬದಿಗಳಾಗಿವೆ ಎಂದು ಪಟ್ಟಿಮಾಡಿ (ಹಿಂದಿನ ಬರಹ  ಹಲಬದಿಗಳು ಭಾಗ 1 ನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹುದು)

 (ಸೆಲೆಗಳು: dummies.com/education, easycalculation.com, math.blogoverflow.com, wikipedia.org)

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸುತ್ತುಹಾದಿಗಳು

ಮುಂಚಿನ ಬರಹವೊಂದರಲ್ಲಿ, ವಸ್ತುಗಳು ಮತ್ತು ಜೀವಿಗಳ ಮೂಲ ಘಟಕವಾದ ಅಣುವಿನ ರಚನೆಯ ಬಗ್ಗೆ ತಿಳಿದುಕೊಂಡಿದ್ದೆವು. ಅದನ್ನು ಮುಂದುವರೆಸುತ್ತಾ ಈ ಬರಹದಲ್ಲಿ ಅಣುವಿನ ಒಳರಚನೆಗಳಲ್ಲಿ ಒಂದಾದ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಹೇಗೆ ಸುತ್ತುತ್ತವೆ ಎಂದು ಅರಿತುಕೊಳ್ಳೋಣ.

ಈ ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ತಿಳಿದುಕೊಂಡಂತೆ, ಅಣುವಿನ ನಡುವಣದಲ್ಲಿ ಪ್ರೋಟಾನ್‍ಗಳು ಮತ್ತು ನ್ಯೂಟ್ರಾನ್‍ಗಳು ಇರುತ್ತವೆ. ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ನಡುವಣದ ಸುತ್ತ ಸುತ್ತುತ್ತಿರುತ್ತವೆ. ಅಣುವಿನ ಕುರಿತ ತಿಳುವಳಿಕೆ ಶುರುವಾದಾಗಿನ ಮೊದಲ ಕೆಲವು ದಶಕಗಳವರೆಗೆ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ನಡುವಣದ ಸುತ್ತ ಬರೀ ದುಂಡನೆಯ ಹಾದಿಗಳಲ್ಲಿ ಸುತ್ತುತ್ತವೆ ಅಂತಾ ಅಂದುಕೊಳ್ಳಲಾಗಿತ್ತು. ಆದರೆ ಹೊಸ ಹೊಸ ಅರಕೆಗಳು ಈ ನಿಟ್ಟಿನಲ್ಲಿ ನಡೆದುದರಿಂದ ಕಂಡುಬಂದಿದ್ದೇನೆಂದರೆ,

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಸುತ್ತುವ ನೆಲೆಯನ್ನು 100% ರಷ್ಟು ನಿಕ್ಕಿಯಾಗಿ ಹೇಳಲು ಆಗುವುದಿಲ್ಲ, ಗಣಿತ ಸೂತ್ರಗಳ ತಳಹದಿಯಲ್ಲಿ ಸುಮಾರು 90% ರಷ್ಟು ನಿರ್ದಿಷ್ಟತೆಯಿಂದ ಇಂತಲ್ಲಿ ಇರಬಹುದು ಅಂತಾ ಹೇಳಬಹುದಷ್ಟೆ.

ಜರ್ಮನಿಯ ವಾರ್ನರ್ ಹಯ್ಸನ್‍ಬರ್ಗ್ (Werner Heisenberg) ಎಂಬ ವಿಜ್ಞಾನಿಯು 1927 ರಲ್ಲಿ ಮುಂದಿಟ್ಟಿದ್ದ, ಹಯ್ಸನ್‍ಬರ್ಗ್ ನಿರ್ದಿಷ್ಟವಲ್ಲದ ನಿಯಮ (Heisenberg uncertainty principle) ತಳಹದಿಯ ಮೇಲೆ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ನೆಲೆಯನ್ನು ಸೂಚಿಸಬಹುದು.

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ನಡುವಣದ ಸುತ್ತ ಸುತ್ತಲು ಬಳಸುವ ದಾರಿಗಳನ್ನು ಆರ್ಬಿಟಲ್ಸ್ (Orbitals) ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಕನ್ನಡದಲ್ಲಿ ಇವುಗಳನ್ನು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸುತ್ತುಹಾದಿಗಳು ಎನ್ನಬಹುದು. ಸುತ್ತುಹಾದಿಗಳಲ್ಲಿ ಮುಖ್ಯವಾಗಿ ನಾಲ್ಕು ಬಗೆಗಳಿವೆ. ಆ ಬಗೆಗಳನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ನೋಡಬಹುದು,

orbitals‘s’ ಬಗೆಯ ಸುತ್ತುಹಾದಿಗಳು ಗುಂಡನೆಯ ಆಕಾರದಲ್ಲಿದ್ದರೆ, ‘p’ ಮತ್ತು ‘d’ ಸುತ್ತುಹಾದಿಗಳು ಬಲೂನಿನ ರೂಪವನ್ನು ಹೋಲುತ್ತವೆ. ಅದೇ ‘f’ ಸುತ್ತುಹಾದಿಗಳು ಹೆಚ್ಚು ಸುತ್ತಿ ಬಳಸಿದ ದಾರಿಯಾಗಿರುತ್ತವೆ.
ಇನ್ನೊಂದು ಗಮನಿಸಬೇಕಾದ ವಿಷಯವೆಂದರೆ, ಈ ನಾಲ್ಕು ಬಗೆಯ ಸುತ್ತುಹಾದಿಗಳು, ಹಾದಿಯೊಂದರಲ್ಲಿ ಹೆಚ್ಚೆಂದರೆ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಮಾತ್ರ ಹೊಂದಿರಬಹುದು.

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಗಳಿಸಿಕೊಂಡಿರುವ ಶಕ್ತಿಯ ಆಧಾರದ ಮೇಲೆ ಅವುಗಳ ಸುತ್ತುಹಾದಿಗಳು ತೀರ್ಮಾನವಾಗುತ್ತವೆ. ಎಲ್ಲಕ್ಕಿಂತ ಕಡಿಮೆ ಶಕ್ತಿಹೊಂದಿರುವ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ’1s’ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಸುತ್ತಿದರೆ, ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಶಕ್ತಿ ಹೊಂದಿರುವ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ’2s’ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಸುತ್ತುತ್ತವೆ. ಹೀಗೆ ಮುಂದುವರೆಯುತ್ತಾ ಶಕ್ತಿಗೆ ಅನುಗುಣವಾಗಿ 2p, 3s, 3p… ಮುಂತಾದ ಸುತ್ತುಹಾದಿಗಳಲ್ಲಿ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಸುತ್ತುತ್ತವೆ.

ಇಲ್ಲಿ s,p,d,f ಪಕ್ಕದಲ್ಲಿರುವ ಅಂಕಿಗಳಾದ 1, 2, 3, 4… ಶಕ್ತಿಯ ಮಟ್ಟಗಳನ್ನು ಸೂಚಿಸುತ್ತವೆ (ಕಡಿಮೆ ಪ್ರಮಾಣದಿಂದ ಹೆಚ್ಚಿನ ಪ್ರಮಾಣದ ಶಕ್ತಿಯೆಡೆಗೆ)

ಅಣುವೊಂದರಲ್ಲಿ ಎಷ್ಟು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿವೆ ಅನ್ನುವುದರ ಮೇಲೆ ಅವುಗಳಲ್ಲಿ ಎಷ್ಟು ಸುತ್ತುಹಾದಿಗಳಿವೆ ಎನ್ನುವುದನ್ನು ಲೆಕ್ಕಹಾಕಬಹುದು. ಉದಾಹರಣೆಗೆ, ಅಣುವೊಂದರಲ್ಲಿ 10 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿದ್ದರೆ ಮೊದಲಿಗೆ ’1s’ ಬಗೆಯ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಮತ್ತು ’2s’ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಇನ್ನೆರಡು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿರುತ್ತವೆ. ಇನ್ನುಳಿದ 6 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಲ್ಲಿ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು 2px ಸುತ್ತುಹಾದಿಯಲ್ಲಿ, 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು 2py ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಮತ್ತು 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು 2pz ಸುತ್ತುಹಾದಿಯಲ್ಲಿರುತ್ತವೆ.

10 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿದ ಈ ಉದಾಹರಣೆಯನ್ನು ಕೆಳಗಿನಂತೆ ಸೂಚಿಸಲಾಗುತ್ತದೆ,

1s2 2s2 2p6

(ಇಲ್ಲಿ 1 ನೇ ಶಕ್ತಿ ಮಟ್ಟದಲ್ಲಿ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಮತ್ತು 2 ನೇ ಶಕ್ತಿ ಮಟ್ಟದಲ್ಲಿ 2+6= 8 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿರುವುದನ್ನು ಗಮನಿಸಬಹುದು)

ನೆನಪಿರಲಿ: ಒಂದು ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಹೆಚ್ಚೆಂದರೆ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಷ್ಟೇ ಇರಬಹುದು. ಕಡಿಮೆ ಶಕ್ತಿಯ ಸುತ್ತುಹಾದಿಗಳಿಂದ ಶುರುವಾಗಿ ಹೆಚ್ಚಿನ ಶಕ್ತಿಯ ಸುತ್ತುಹಾದಿಗಳಲ್ಲಿ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಸುತ್ತುತ್ತವೆ.

ಚಿಪ್ಪುಗಳು (Shells):

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸುತ್ತುವಿಕೆಯನ್ನು ಅವುಗಳ ಸುತ್ತುಹಾದಿಗಳಲ್ಲದೇ, ಚಿಪ್ಪುಗಳು (shells) ಎಂದು ಕರೆಯಲಾಗುವ ಬಗೆಯಲ್ಲೂ ಸೂಚಿಸಲಾಗುತ್ತದೆ. ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆಗೆ ಅನುಗುಣವಾಗಿ ಅವುಗಳು ಇಂತಿಷ್ಟು ಚಿಪ್ಪುಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ ಎಂದು ಸೂಚಿಸಲಾಗುತ್ತದೆ. ಈ ಬಗೆಯು ಮುಖ್ಯವಾಗಿ ಅಣುವೊಂದರ ವಿದ್ಯುತ್ ಗುಣವನ್ನು ತಿಳಿಯಲು ನೆರವಾಗುತ್ತದೆ.
ಚಿಪ್ಪುಗಳನ್ನು ’n’ ನಿಂದ ಸೂಚಿಸಿದರೆ, 2*(n)2 ಲೆಕ್ಕದಲ್ಲಿ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆಯನ್ನು ಹಂಚಿಕೆ ಮಾಡಲಾಗುತ್ತದೆ.

ಉದಾಹರಣೆಗೆ,
ಚಿಪ್ಪು 1 –> 2*(1)2 = 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 2 –> 2*(2)2 = 8 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 3 –> 2*(3)2 = 18 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.

ಇದನ್ನು ಇನ್ನೊಂದು ಬಗೆಯಲ್ಲಿ ಹೇಳಬೇಕೆಂದರೆ, ಅಣುವೊಂದರಲ್ಲಿ ಎಷ್ಟು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿವೆ ಎನ್ನುವುದರ ಮೇಲೆ ಅವುಗಳಲ್ಲಿ ಎಷ್ಟು ಚಿಪ್ಪುಗಳಿವೆ (shells) ಇವೆ ಎನ್ನುವುದನ್ನು ಲೆಕ್ಕ ಹಾಕಬಹುದು.
ಉದಾ: 10 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿದ್ದರೆ ಮೇಲೆ ತೋರಿಸಿದಂತೆ, 2 (ಚಿಪ್ಪು1) + 8 (ಚಿಪ್ಪು2) ಒಟ್ಟು 2 ಚಿಪ್ಪುಗಳಿರುತ್ತವೆ.

ಚಿಪ್ಪುಗಳು ಮತ್ತು ಅಣುವಿನ ಗುಣ:
ಮೇಲೆ ತಿಳಿಸಿದಂತೆ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದುವ ಚಿಪ್ಪಿನ ಸಾಮರ್ಥ್ಯವನ್ನು 2*(n)2 ರಿಂದ ಲೆಕ್ಕಹಾಕಬಹುದು. ಅಣುವೊಂದರಲ್ಲಿ ಚಿಪ್ಪೊಂದರ ಸಾಮರ್ಥ್ಯಕ್ಕಿಂತ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆ ಕಡಿಮೆ ಇದ್ದರೆ ಅಂತಹ ಅಣುವಿನಲ್ಲಿ ಬೇರೊಂದು ಅಣುವಿನೊಂದಿಗೆ ಒಡನಾಡುವ ಸಾಮರ್ಥ್ಯ ಹೆಚ್ಚಿರುತ್ತದೆ.

ಉದಾಹರಣೆಗೆ: ಅಣುವೊಂದರಲ್ಲಿ 12 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿವೆ ಎಂದುಕೊಳ್ಳೋಣ. ಅದರಲ್ಲಿ ಚಿಪ್ಪುಗಳು ಮತ್ತು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆ ಹೀಗಿರುತ್ತದೆ.
ಚಿಪ್ಪು 1 –> 2*(1)2 = 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 2 –> 2*(2)2 = 8 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 3 –> 2*(3)2 = 18 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರಬಹುದು ಆದರೆ ಉಳಿದವು 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಷ್ಟೇ (12-2-8=2) ಆಗಿರುವುದರಿಂದ ಚಿಪ್ಪು3 ರ ಸಾಮರ್ಥ್ಯಕ್ಕಿಂತ (18) ಕಡಿಮೆ ಸಂಖ್ಯೆಯಲ್ಲಿ (2) ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿರುವುದನ್ನು ಗಮನಿಸಬಹುದು. ಇಂತಹ ಅಣು ಬೇರೊಂದು ಅಣುವಿನೊಂದಿಗೆ ಸುಲಭವಾಗಿ ಒಡನಾಡಬಲ್ಲದ್ದಾಗಿರುತ್ತದೆ.

(ಮುಂದಿನ ಬರಹದಲ್ಲಿ ಅಣುಗಳ ಇನ್ನಷ್ಟು ವಿಷಯಗಳನ್ನು ತಿಳಿಯೋಣ)

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಬಿಸಿಲ್ನೆಲೆಗಳ ನಡುವಣ ಕೂಡು ಹರವು

ಎರಡೂ ಅರೆಗೋಳದ ಮಾರುಗಾಳಿಗಳು ಬಿಸಿಲನೆಲೆಗಳ ಮೇಲೆ ಸಾಗುತ್ತಾ  ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ ಬಂದು ಸೇರುವ ತಾವುಗಳಲ್ಲೆಲ್ಲಾ ಒಂದೇ ಬಗೆಯ ಗಾಳಿಪಾಡಿನ ಪಟ್ಟಿಯು ಏರ್ಪಡುತ್ತದೆ. ಕಡಿಮೆ ಒತ್ತಡದ ನೆಲೆಯಾದ ಈ ಪಟ್ಟಿಯನ್ನು ಬಿಸಿಲ್ನೆಲೆಗಳ ನಡುವಣ ಕೂಡು ಹರವು (Intertropical Convergence Zone) ಎಂದು ಕರೆಯಬಹುದಾಗಿದೆ. ಈ ಹರವು ಸರಿಗೆರೆಯಿಂದ ಮೇಲ್ಗಡೆಗೆ ಮತ್ತು ಕೆಳಗಡೆಗೆ ಕಾವಿನ ಸರಿಗೆರೆಯ ಕದಲಿಕೆಗೆ ತಕ್ಕಂತೆ ಜರುಗುತ್ತದೆ. ಹಾಗಾದರೆ ಕಾವಿನ ಸರಿಗೆರೆ ಅಂದರೇನು? ಕಾವಿನ ಸರಿಗೆರೆ ಕದಲುವುದಾದರೂ ಏತಕ್ಕೆ? ಬಿಸಿಲ್ನೆಲೆಗಳ ನಡುವಣ ಕೂಡು ಹರವು ನೆಲನಡುಗೆರೆಯ ಮೇಲೆ ಕೆಳಗೆ ಜರುಗುವುದರಿಂದ ಇಡಿನೆಲದ ಗಾಳಿಪರಿಚೆಯ ಮೇಲಾಗುವ ಆಗುಹಗಳೇನು? ಈ ಬರಹದಲ್ಲಿ ತಿಳಿಯೋಣ.

ನೆಲದ ಹೊರಮಯ್ ನಡುವಿಗೆ ಸರಿಯಾಗಿ ಒಂದು ಅಡ್ಡಗೆರೆಯನ್ನು ಎಳೆದರೆ ಅದು ಸರಿಗೆರೆ. ನೆಲದ ಬಡಗು ತುದಿಯಿಂದ ತೆಂಕು ತುದಿಯವರೆಗು ಎಷ್ಟೇ ಅಡ್ಡಗೆರೆಗಳನ್ನು ಎಳೆದರೂ ಅವುಗಳಲ್ಲೆಲ್ಲಾ ಸರಿಗೆರೆಯೇ ಹೆಚ್ಚು ಉದ್ದವಾಗಿರುತ್ತದೆ. ಸರಿಗೆರೆಯು ನೆಲವನ್ನು ಬಡಗು ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳಗಳಾಗಿ ಸರಿಪಾಲು ಮಾಡುತ್ತದೆ. ಸರಿಗೆರೆಯ 0 ಡಿಗ್ರಿಯಿಂದ ಮೊದಲ್ಗೊಂಡು ಬಡಗು ತುದಿಯವರೆಗು 90 ಡಿಗ್ರಿ ಮತ್ತು ತೆಂಕುತುದಿಯವರೆಗು 90 ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಳಲ್ಲಿ ಅಳತೆ ಮಾಡಲಾಗುತ್ತದೆ.

ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ 10 ಡಿಗ್ರಿ ಬಡಗು ಮತ್ತು ತೆಂಕಿಗೆ ಹಬ್ಬಿರುವ ನೆಲದ ಸುತ್ತಲಿನ ಪಟ್ಟಿಯು ಸರಿಗೆರೆನೆಲೆಯಾಗಿದ್ದೂ ಇಲ್ಲಿ ಹೆಚ್ಚುಕಡಿಮೆ ಎಲ್ಲ ದಿನಗಳೂ ನೆಲವು ಕಡುಕಾಯುವುದರಿಂದ ಹೆಚ್ಚು ಬಿಸಿಲು, ಹೆಚ್ಚು ಮಳೆ ಮತ್ತು ದಟ್ಟ ಕಗ್ಗತ್ತಲ ಕಾಡುಗಳು ಉಂಟಾಗಿವೆ.  ತುದಿಗಳೆರೆಡನ್ನು ಜೋಡಿಸಿ ನೆಲದ ಒಳಗಿನಿಂದ ನಿಲುವಾಗಿ ಒಂದು ಗೆರೆಯನ್ನು ಎಳೆದರೆ ಅದು ನಡುಗೆರೆ. ಈ ನಡುಗೆರೆಯು ನೆಲವು ತನ್ಸುತ್ತ ತಿರುಗುವ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ನೇರಡ್ಡವಾಗಿ ಇರುತ್ತದೆ. ಆದರೆ ನೇಸರನ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ಓರೆಯಾಗಿರುತ್ತದೆ. ನೇಸರನ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ಎಳೆದ ನೇರಡ್ಡಗೆರೆಗೆ ನೆಲದ ನಡುಗೆರೆಯು 23.30’ ಮೂಲೆಯಷ್ಟು ಬೇರ್ಪಟ್ಟಿರುತ್ತದೆ. ಇದನ್ನೇ ನಡುಗೆರೆ ಓರೆ(Axis tilt) ಎನ್ನಲಾಗುತ್ತದೆ.

ಒಂದುವೇಳೆ ನೆಲದ ನಡುಗೆರೆಯು ನೇಸರನ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ನೇರಡ್ಡವಾಗಿ ಇದ್ದಿದ್ದರೆ ಈಗಿರುವ ಸೂಳುಗಳು (seasons) ಇರುತ್ತಿರಲಿಲ್ಲ. ನೆಲದ ನಡುಗೆರೆಯ ಓರೆಯಿಂದಾಗಿಯೇ ಇಡಿನೆಲದಮೇಲೆ ಈಗಿರುವ ಸೂಳುಗಳಾದ ಬೇಸಿಗೆಕಾಲ, ಮಳೆಗಾಲ ಮತ್ತು ಚಳಿಗಾಲಗಳು ಉಂಟಾಗಿವೆ. ನೆಲವು ತನ್ನಸುತ್ತ ಸುತ್ತುತ್ತಲೇ ನೇಸರನನ್ನೂ ಸುತ್ತುತ್ತಿರುತ್ತದೆ. ತನ್ನಸುತ್ತ ತಿರುಗಲು ಇರುವ ಸುತ್ತುಹಾದಿಯ(orbit) ಹಾದಿಮಟ್ಟಸವು(orbital plane), ನೇಸರನ ಸುತ್ತ ತಿರುಗಲು ಇರುವ ಸುತ್ತುಹಾದಿಯ ಹಾದಿಮಟ್ಟಸವು ಒಂದೇ ಮಟ್ಟಸದಲ್ಲಿರದೆ 23.30’ ಅಗಲದ ಮೂಲೆಯಷ್ಟು ಬೇರ್ಪಟ್ಟಿರುತ್ತವೆ. ಅಂದರೆ ನೇಸರನ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ನೆಲದ ಹಾದಿಮಟ್ಟಸವು 23.30’ ಮೂಲೆಯಶ್ಟು ವಾಲಿರುತ್ತದೆ.

unnamed

ಮೇಲೆ ಹೇಳಿದಂತೆ ನೇಸರನ ಕದಿರುಗಳು ಸರಿಗೆರೆನೆಲೆಯ ಪಟ್ಟಿಯಮೇಲೆ ಯಾವಾಗಲೂ ನೇರವಾಗಿ ಮತ್ತು ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ ಮೇಲಕ್ಕೆ ಹೋದಂತೆಲ್ಲಾ ಓರೆಯಾಗಿ ಬೀಳುತ್ತವೆ ಎಂದು ತಿಳಿದಿದ್ದೆವು. ಆದರೆ ಇದು ತುಂಬು ತಿಳುವಳಿಕೆಯಲ್ಲ. ಏಕೆಂದರೆ ನೆಲವು ನೇಸರನ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ಸಮತಟ್ಟಾಗಿ ಕೂಡಿಕೊಳ್ಳದೆ ವಾಲಿದ್ದರಿಂದಾಗಿ ನೇಸರನ ಕದಿರುಗಳು ಯಾವಾಗಲೂ ಸರಿಗೆರೆಯ ಮೇಲೆಯೇ ನೇರವಾಗಿ ಬೀಳುವುದಿಲ್ಲ. ನೆಲವು ಓರೆಯಾದ ನಡುಗೆರೆಗೆ ನಂಟಾಗಿ ತಿರುಗುತ್ತಾ ನೇಸರನನ್ನೂ ಸುತ್ತುತ್ತಿರುತ್ತದೆ.

ಮಾರ್ಚ್ 20 ಇಲ್ಲ 21ಕ್ಕೆ ಸರಿಯಾಗಿ ಸರಿಗೆರೆ ಇರುವೆಡೆಯೆಲ್ಲಾ ನೇರವಾಗಿ ಬಿದ್ದ ಕದಿರುಗಳು ದಿನದಿಂದ ದಿನಕ್ಕೆ ನೇರವಾಗಿ ಬೀಳುವ ಪಟ್ಟಿಯು ಮೇಲೆಕ್ಕೆ ಜರುಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಜೂನ್ 21  ಇಲ್ಲ 22ಕ್ಕೆ ಈ ಪಟ್ಟಿಯು ಬಡಗು ಅರೆಗೋಳದ 23.5’ ಡಿಗ್ರಿ ಮೇಲ್ಬಿಸಿಲ್ನೆಲೆ ಅಡ್ಡಗೆರೆಯ ಮೇಲೆ ಬೀಳುತ್ತದೆ. ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಅಂದು ಹಗಲು, ವರುಶದ ಎಲ್ಲಾ ಹಗಲುಗಳಿಗಿಂತ ಹೆಚ್ಚು ಹೊತ್ತಿನದಾಗಿರುತ್ತದೆ. ಅಂದರೆ ಅಂದು ಹಗಲು 12 ತಾಸುಗಳಿಗೂ ಹೆಚ್ಚಿನದ್ದಾಗಿರುತ್ತದೆ. ಅಂದು 23.5’ ಡಿಗ್ರಿ ದಾಟಿ ಬಡಗು ತುದಿಯೆಡೆಗೆ ಹೋದಂತೆಲ್ಲ ಹಗಲು ಹಿಗ್ಗುತ್ತಾ ಇರುಳು ಕುಗ್ಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಬಡಗು ತುದಿಯಲ್ಲಿ ನೆಲೆಸುವವರಿಗೆ ಇರುಳೇ ಇಲ್ಲದ 24ತಾಸೂ ಹಗಲೇ ಇರುತ್ತದೆ. ಆದರೆ ಇದೇ ಹೊತ್ತಲ್ಲಿ ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಹಗಲು ಕುಗ್ಗುತ್ತಾ ಇರುಳು ಹಿಗ್ಗುತ್ತಾ ಕೊನೆಗೆ ತೆಂಕು ತುದಿಯಲ್ಲಿ 24ತಾಸೂ ಇರುಳೇ ಇರುತ್ತದೆ. ಇದನ್ನು ಜೂನ್ ಇಲ್ಲ ಬಿಸಿಲ್ಗಾಲದ ಎಲ್ಲೆಹಗಲು ಎಂದು ಕರೆಯಬಹುದಾಗಿದೆ.

ಜೂನ್ ಎಲ್ಲೆ ಹಗಲಿನ ತರುವಾಯ ನೇಸರನ ನೇರ ಕದಿರುಗಳು ದಿನ ದಿನಕ್ಕೂ ಹಿಮ್ಮೆಟ್ಟುತ್ತಾ ಸೆಪ್ಟೆಂಬರ್ 21ಕ್ಕೆ 0 ಡಿಗ್ರಿ ಸರಿಗೆರೆಯ ಮೇಲೆ ಮತ್ತೇ ಬೀಳುತ್ತವೆ. 0ಡಿಗ್ರಿ ಸರಿಗೆರೆಯ ಮೇಲೆ ನೇರ ಕದಿರುಗಳು ಬಿದ್ದಾಗ ಇಡೀ ನೆಲದ ಮೇಲೆಲ್ಲಾ ಹಗಲೂ ಇರುಳು ಸರಿಸಮವಾಗಿರುತ್ತವೆ. ಈ ನಾಳನ್ನು ಸರಿನಾಳೆಂದು ಕರೆಯುತ್ತೇವೆ. ಒಂದು ಏಡಿಗೆ ನೇರ ಕದಿರುಗಳು ಎರಡು ಸಾರಿ ಅಂದರೆ ಮಾರ್ಚ್ 21 ಹಾಗು ಸೆಪ್ಟೆಂಬರ್ 21ಕ್ಕೆ ಬೀಳುವುದರಿಂದ ಎರಡು ಸರಿದಿನಗಳು ಉಂಟಾಗುತ್ತವೆ.

ಸೆಪ್ಟೆಂಬರ್ 21ರ ಸರಿದಿನ ಮುಗಿದಮೇಲೆ ನೇರ ಕದಿರುಗಳು ತೆಂಕು ದಿಕ್ಕಿಗೆ ಸಾಗುತ್ತಾ ಡಿಸೆಂಬರ್ 21ಕ್ಕೆ ತೆಂಕು ಅರೆಗೋಳದ  23.5’ ಡಿಗ್ರಿ ಕೆಳಬಿಸಿಲ್ನೆಲೆ ಅಡ್ಡಗೆರೆಯ ಮೇಲೆ ಬೀಳುತ್ತವೆ. ಅಂದು ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ 12ತಾಸಿಗೂ ಹೆಚ್ಚು ಹೊತ್ತಿನ ಹಗಲಿರುತ್ತದೆ ಮತ್ತು 23.5’ ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಿಂತ ಮೇಲಕ್ಕೆ ಹೋದಹಾಗೆಲ್ಲ ಹಗಲು ಹಿಗ್ಗುತ್ತಾ ಇರುಳು ಕುಗ್ಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ತೆಂಕು ತುದಿಯಮೇಲೆ 24ತಾಸೂ ಹಗಲೇ ಇರುತ್ತದೆ. ಇದನ್ನು ಡಿಸೆಂಬರ್ ಇಲ್ಲ ಚಳಿಗಾಲದ ಎಲ್ಲೆಹಗಲೆಂದು ಕರೆಯಬಹುದಾಗಿದೆ.

ದಿಟಕ್ಕೂ ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಆಗ ಬಿಸಿಲುಗಾಲವಿರುತ್ತದೆ. ಆದರೆ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಹೆಚ್ಚು ಗಟ್ಟಿನೆಲಗಳಿದ್ದೂ (60ಪಾಲು ನೆಲ, 40ಪಾಲು ನೀರು) ಗಾಳಿಪರಿಚೆಯ ಏರುಪೇರುಗಳು ಹೆಚ್ಚಿನದಾಗಿರುತ್ತವೆ. ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಹೆಚ್ಚು ನೀರಿದ್ದೂ (20ಪಾಲು ನೆಲ, 80ಪಾಲು ನೀರು) ಅಡೆತಡೆಗಳಿಲ್ಲದೆ ಗಾಳಿಪರಿಚೆಯು ಹೆಚ್ಚುಕಡಿಮೆ ಒಂದೇತೆರನಾಗಿ ಇರುತ್ತದೆ. ಮತ್ತು ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಹೆಚ್ಚು ಗಟ್ಟಿನೆಲಗಳು ಇರುವುದರಿಂದ ಮಂದಿ ನೆಲಸಿಕೆಯು ಹೆಚ್ಚಿರುತ್ತದೆ. ಆದ್ದರಿಂದ ನೆಲದರಿಮೆಯ ಹೆಚ್ಚಿನ ಹುರುಳುಗಳನ್ನು ಬಡಗು ಅರೆಗೋಳವನ್ನು ನಂಟಾಗಿ ಇಟ್ಟುಕೊಂಡು ಗುರುತಿಸಲಾಗುತ್ತದೆ. ಡಿಸೆಂಬರ್ 21ಕ್ಕೆ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಚಳಿಗಾಲವಿರುವುದರಿಂದಾಗಿ ಚಳಿಗಾಲದ ಎಲ್ಲೆಹಗಲೆಂದು ಕರೆಯಲಾಗಿದೆ.

unnamed (1)

ಅಡಕಮಾಡಿ ಹೇಳುವುದಾದರೆ, ನೆಲವು ಚೆಂಡಿನಂತೆ ಇರುವುದರಿಂದ ಅದರ ಹೊರಮೈ ಮಟ್ಟಸವಾಗಿರುವುದಿಲ್ಲ. ಆದ್ದರಿಂದಾಗಿ ನೇಸರನ ಕದಿರುಗಳು ಕೆಲವೆಡೆ ನೇರವಾಗಿ ಮತ್ತು ಹಲವೆಡೆ ಓರೆಯಾಗಿ ಬೀಳುತ್ತವೆ. ತುದಿಯಲ್ಲಿ ಹೆಚ್ಚು ಓರೆಯಾಗಿ, ತುದಿಯಿಂದ ಸರಿಗೆರೆಯೆಡೆಗೆ ಹೋದಂತೆಲ್ಲ ಕಡಿಮೆ ಓರೆಯಾಗುತ್ತಾ ಸರಿಗೆರೆಯಮೇಲೆ ನೇರವಾದ ಕದಿರುಗಳು ಬೀಳುತ್ತವೆ. ನೇರ ಕದಿರುಗಳು ಬಿದ್ದ ಎಡೆಗಳಲ್ಲೆಲ್ಲ ನೆಲವು ಹೆಚ್ಚು ಕಾಯುತ್ತದೆ. ನೆಲದ ವಾಲಿಕೆಯಿಂದಾಗಿ ನೇರ ಕದಿರುಗಳ ಬೀಳುವಿಕೆಯ   ಪಟ್ಟಿಯು ಎಲ್ಲ ದಿನಗಳು ಸರಿಗೆರೆ ಮೇಲಿರದೆ 23.5 ಡಿಗ್ರಿ ಬಡಗಿನ ಮೇಲ್ಬಿಸಿಲ್ನೆಲೆ ಅಡ್ಡಗೆರೆ ಮತ್ತು ತೆಂಕಿನ ಕೆಳಬಿಸಿಲ್ನೆಲೆ ಅಡ್ಡಗೆರೆವರೆಗೂ ಕದಲುತ್ತದೆ.  23.5ಡಿಗ್ರಿ ಬಡಗಿನಿಂದ 23.5 ಡಿಗ್ರಿ ತೆಂಕಿನವರೆಗೆ ನೆಲವನ್ನು ಕಡುಕಾಯುತ್ತ ಕದಲುವ ನೇರ ಕದಿರುಗಳ ಪಟ್ಟಿಯನ್ನು ಕಾವಿನ ಸರಿಗೆರೆ ಎನ್ನಬಹುದಾಗಿದೆ.

unnamed (2)

ಬೀಸುಗಾಳಿಗಳು ಕುರಿತ ಬರಹದಲ್ಲಿ ಹಾಡ್ಲೆ ಕುಣಿಕೆಯ ಬಗ್ಗೆ ತಿಳಿದುಕೊಂಡಂತೆ, ಸರಿಗೆರೆನೆಲೆಗಳ ಮೇಲೆ ಕಡು ಕಾದ ಗಾಳಿಯು ಮೇಲೇರಿ ಮಳೆ ಸುರಿಸಿ ಹಗುರಗೊಂಡು, 10-15ಕಿಮಿ ಎತ್ತರದಲ್ಲಿ ಬಡಗು ತುದಿಯೆಡೆಗೆ ಸಾಗುತ್ತಾ ತಂಪುಗೊಳ್ಳುತ್ತಾ ಒತ್ತೊಟ್ಟುಗೊಂಡು, 30 ಡಿಗ್ರಿ ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳ ಮೇಲಿಳಿದು ಮಾರುಗಾಳಿಗಳಾಗಿ ಮತ್ತೇ ಕಡಿಮೆ ಒತ್ತಡದ ಸರಿಗೆರೆನೆಲೆಗಳೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಈ ಬೀಸುಗಾಳಿಗಳು ಎರಡೂ ಅರೆಗೋಳದ ಬಿಸಿಲ್ನೆಲೆಗಳ ಮೇಲೆ ಬೀಸುತ್ತಾ ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ ಎದುರುಬದುರಾಗಿ ಬಂದು ಕೂಡುತ್ತವೆ. ಆದರೆ ಕಡುಕಾಯುವ ತಾವುಗಳು ನೇರಕದಿರುಗಳು ಬೀಳುವ ಎಡೆಗಳಾಗಿರುವುದರಿಂದ ಮಾರುಗಾಳಿಗಳು ಕಟ್ಟುನಿಟ್ಟಾಗಿ ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲೇ ಕೂಡುವುದಿಲ್ಲ, ಹೊರತಾಗಿ ಕಾವಿನ ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ ಒಟ್ಟುಸೇರುತ್ತವೆ. ಸರಿಗೆರೆಯು ಮಾರ್ಪಡದ ನೆನಸಿನ ಗೆರೆಯಾಗಿದೆ, ಆದರೆ ಕಾವಿನ ಸರಿಗೆರೆಯು ನೇರಕದಿರುಗಳಿಂದ ಕಾದ ನೆಲೆಗಳ ಪಟ್ಟಿಯಾಗಿದೆ. ಕಾವಿನ ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ ಬೀಸುಗಾಳಿಗಳು ಒಟ್ಟುಸೇರುವ ನೆಲೆಗಳೇ ಬಿಸಿಲ್ನೆಲೆಗಳ ನಡುವಣ ಕೂಡು ಹರವಾಗಿದೆ. ಚಿಕ್ಕದಾಗಿ ಗುರುತಿಸಲು ಬಿನಕೂ ಹರವು ಎಂದೂ ಹೇಳಬಹುದು. ಕಾವಿನ ಸರಿಗೆರೆಯು ಮೇಲೆ ಕೆಳಗೆ ಕದಲಿದಂತೆಲ್ಲ ಬಿನಕೂ ಹರವು ಕೂಡ ಅದಕ್ಕೆ ಹೊಂದಿಕೊಂಡು ಕದಲುತ್ತದೆ.

unnamed (3)

ಮುಂದಕ್ಕೆ ಹೋಗುವುದಕ್ಕೂ ಮುಂಚೆ ಒಂದು ಸಣ್ಣ ಆರಯ್ಕೆಯನ್ನು ಮಾಡೋಣ. ಒಂದು ಗುಂಡಾಲದಲ್ಲಿ ನೀರು ಕಾಯಿಸಲು ಇಡಿ. ಮುಚ್ಚಳವನ್ನು ಗುಂಡಾಲಕ್ಕೆ ಮುಚ್ಚದೆ, ನೀರಾವಿಗೆ ಅಡ್ಡವಾಗಿ ಮೇಲೆ ಹಿಡಿದಿಟ್ಟುಕೊಳ್ಳಿ. ಮುಚ್ಚಳದ ಅಡಿಯಲ್ಲಿ ನೀರ ಹನಿಗಳು ಜೋತುಬಿದ್ದಿರುವುದು ಕಾಣಬಹುದು. ಅದೇ ಗುಂಡಾಲವನ್ನು ನೀರಿಲ್ಲದೆ ಬರಿದೆ ಕಾಯಲು ಇಡಿ. ಮುಚ್ಚಳದ ಅಡಿಯಲ್ಲಿ ನೀರ ಹನಿಗಳು ಕೂಡಿರುವುದಿಲ್ಲ, ಬದಲಿಗೆ ಮುಚ್ಚಳವು ಬಿಸಿಗಾಳಿ ತಗುಲಿ ಕಾದಿರುತ್ತದೆ. ಈ ಎತ್ತುಗೆಯನ್ನು ಬರಿನೆಲ ಮತ್ತು ನೀರನ್ನು ಗುಂಡಾಲದಂತೆ ತುಂಬಿಕೊಂಡಿರುವ ಕಡಲಿಗೆ ಹೊಂದಿಸಿ ನೋಡಿದಾಗ, ಕಾದ ಬಿಸಿಗಾಳಿಯು ಕಡಲಿಂದ ನೆಲದಮೇಲೆ ಮತ್ತು ನೆಲದಿಂದ ಕಡಲಿಗೆ ಬೀಸಿದಾಗ ಪಡಲಿಕೆಯನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ. ನೆಲದಿಂದ ನೆಲಕ್ಕೆ ಬೀಸಿದ ತೇವವಿಲ್ಲದ ಗಾಳಿಯು ಪಡಲಿಕೆಯನ್ನು ಉಂಟುಮಾಡುವುದಿಲ್ಲ.

ಬಿನಕೂ ಹರವಿನಿಂದಾಗಿ ಇಡಿನೆಲದ ಗಾಳಿಪರಿಚೆಯಲ್ಲಿ ಉಂಟಾಗುವ ಏರುಪೇರುಗಳ ಬಗ್ಗೆ ತಿಳಿಯೋಣ. ಅಡ್ಡಡ್ಡವಾಗಿ ಬಿಸುಪು, ಪಸೆ ಮತ್ತು ಒತ್ತಡದಲ್ಲಿ ಹೆಚ್ಚು ಮಾರ್ಪುಗಳಿಲ್ಲದ ನೂರು ಇಲ್ಲ ಸಾವಿರಾರು ಚದರ ಮೈಲಿಗಳವರೆಗೂ ಹಬ್ಬಿದ ಗಾಳಿಯ ದೊಡ್ಡ ಒಟ್ಟಲನ್ನು ಗಾಳಿಯೊಟ್ಟಲು(air mass) ಎನ್ನಬಹುದಾಗಿದೆ. ನೆಲದ ಮೇಲಿಂದ ಬೀಸುವ ಗಾಳಿಯೊಟ್ಟಲು ಒಣದಾಗಿದ್ದರೆ ಕಡಲ ಮೇಲಿಂದ ಬೀಸುವುವು ಒದ್ದೆಯಾಗಿರುತ್ತವೆ. ಮೇಲಿನ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿದಂತೆ ಆಫ್ರಿಕಾ ನೆಲತುಂಡಿನ ಮೇಲೆ ಬೀಸುವ ಮಾರುಗಾಳಿಗಳು ಎರಡು ಬಗೆಯ ಗಾಳಿಯೊಟ್ಟಲುಗಳಾಗಿ ಬೀಸುತ್ತವೆ. ಮೊದಲನೇದಾಗಿ, ಬಡಗು-ಮೂಡಣದ ಮಾರುಗಾಳಿಗಳು ಬಿಸಿಲ್ನೆಲೆಯ ನೆಲತುಂಡಿನ ಗಾಳಿಯೊಟ್ಟಲಾಗಿ (cT – Tropical Continental air mass) ಬೀಸುವುದು. ಎರಡೆನೇದಾಗಿ, ಬೀಸುವ ತೆಂಕು-ಪಡುವಣದ ಮಾರುಗಾಳಿಗಳು ಬಿಸಿಲ್ನೆಲೆಯ ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲು (mT – Tropical Maritime air mass).

ಬಿಸಿಲ್ನೆಲ ನೆಲತುಂಡಿನ ಗಾಳಿಯೊಟ್ಟಲು – Tropical Continental air mass:
ಈ ಗಾಳಿಯೊಟ್ಟಲು ಸಹಾರಾ ಮರಳುಗಾಡಿನಿಂದ ಮೊದಲ್ಗೊಂಡು ಬಿಸಿಲ್ನೆಲೆಯ ಅಡ್ಡಗೆರೆಗಳ ಮೇಲೆ ಕಡುಕಾದು, ಹೋಲಿಕೆಯಲ್ಲಿ ಕಡಿಮೆ ಗಾಳಿಯೀರ(humid)ವನ್ನು ಹೊಂದಿ ಮಾರ್ಪಡದ ಗಾಳಿಪಾಡನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ.

ಬಿಸಿಲ್ನೆಲ ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲು – Tropical Maritime air mass:
ಈ ಗಾಳಿಯೊಟ್ಟಲು ಅಟ್ಲಾಂಟಿಕ್ ಹೆಗ್ಗಡಲ/ಗಲ್ಫ್ ಆಪ್ ಗಿನೀಯಿಂದ ಮೊದಲ್ಗೊಂಡು ಬಿಸಿಲ್ನೆಲೆಯ ಅಡ್ಡಗೆರೆಗಳ ಮೇಲೆ ಕಡುಕಾದು, ಹೋಲಿಕೆಯಲ್ಲಿ ಹೆಚ್ಚು ಗಾಳಿಯೀರವನ್ನು ಹೊಂದಿದ್ದರಿಂದಾಗಿ ಮಾರ್ಪಿನ ಗಾಳಿಪಾಡನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ.

ಇವೆರೆಡು ಗಾಳಿಯೊಟ್ಟಲುಗಳು ಕಡಿಮೆ ಒತ್ತಡದ ಬಿನಕೂ ಹರವಿನಲ್ಲಿ ಕೂಡಿದಾಗ ಪಸೆ/ತೇವವುಳ್ಳ ಗಾಳಿಯು ಮೇಲಕ್ಕೆ ತಳ್ಳಲ್ಪಡುತ್ತದೆ. ಮೇಲೇರಿದಂತೆ ತಂಪುಗೊಂಡ ಗಾಳಿಯಲ್ಲಿನ ನೀರಾವಿಯು ನೀರಾಗಿ ಇಡಿನೆಲದ ಸುತ್ತಲೂ ಮೋಡಕವಿದ ಮಳೆಯು ಸುರಿಯುತ್ತದೆ.

ಕಾವಿನ ಸರಿಗೆರೆಯು ಕದಲಿದಂತೆ ಬಿನಕೂ ಹರವೂ ಕದಲುತ್ತದೆ ಎಂದು ತಿಳಿದಿದ್ದೇವೆ. ಹೀಗೆ ಮಾರ್ಚ್ 21ರ ತರುವಾಯ ಬಡಗಿಗೆ ಕದಲುವಾಗ ಈ ಹರವು, ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲನ್ನೂ(mT) ಬಡಗಿನೆಡೆಗೆ ಎದುರಾಗುವ ನೆಲಕ್ಕೆ ಹೊತ್ತೊಯ್ಯುವುದರಿಂದ ಅಲ್ಲೆಲ್ಲಾ ಒದ್ದೆ ಗಾಳಿಪಾಡು ತರುತ್ತದೆ. ಅದೇ ಹೊತ್ತಲ್ಲಿ ಬಿನಕೂ ಹರವಿಗೆ ಬಡಗು ದಿಕ್ಕಿನಲ್ಲಿರುವ ನೆಲಕ್ಕೆ ನೆಲತುಂಡಿನ ಗಾಳಿಯೊಟ್ಟಲಿಂದಾಗಿ ಒಣ ಬಿಸಿ ಗಾಳಿಪಾಡು ಉಂಟಾಗುತ್ತದೆ. ಅದೇ ಹೊತ್ತಲ್ಲಿ ಸರಿಯಾಗಿ ಹರವಿನ ಕೆಳಗೆ ಗುಡುಗುಮಳೆಯಾಗುತ್ತಿರುತ್ತದೆ.

ಒಟ್ಟಿನಲ್ಲಿ ಬಿನಕೂ ಹರವು ಮೇಲೆ/ಕೆಳಗೆ ಕದಲುವುದರಿಂದ ಸರಿಗೆರೆನೆಲೆಯಲ್ಲಿ ಬರುವ ನಾಡುಗಳಲ್ಲೆಲ್ಲಾ ಒದ್ದೆ ಮತ್ತು ಒಣ ಸೂಳುಗಳು ತಳೆಯುತ್ತವೆ. ಆಫ್ರಿಕಾ ನೆಲತುಂಡಿನೊಳಗೆ ಜರುಗುವ ಕೆಲವು ಎತ್ತುಗೆಗಳನ್ನು ನೋಡುವುದಾದರೆ,

unnamed (4)

ಗಾವ್: ಬಿನಕೂ ಹರವು ಬಡಗಿನ 10ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಯನ್ನು ದಾಟಿದಾಗ, ಹರವಿನ ಬಡಗಿಗೆ ಇರುವ ನಾಡು ಮಾಲಿ. ಮಾಲಿ ನಾಡಿನ ಗಾವ್ ಪಟ್ಟಣಕ್ಕೆ ಏಡಿಗೆ 200mm ಮಳೆಸುರಿಯುವುದರಿಂದ ಅಲ್ಲೆಲ್ಲಾ ಬಿಸಿ ಮರಗಾಡಿನ ಗಾಳಿಪರಿಚೆಯಿರುತ್ತದೆ. ಇಲ್ಲಿ ವರುಶದುದ್ದಕ್ಕೂ ಒಣದಾದ, ಬಿಸಿ ಗಾಳಿಯೊಟ್ಟಲು ನೆಲತುಂಡಿನ ಮೇಲಿಂದ ಬೀಸುವುದರಿಂದ ಕಡಿಮೆ ದಿನಗಳಲ್ಲಷ್ಟೇ ಮಳೆ ಸುರಿಯುತ್ತದೆ ಮತ್ತು ವರುಶದ ಒಟ್ಟು ಪಡಲಿಕೆ ಬಹಳ ಕಡಿಮೆಯಿರುತ್ತದೆ. ಏಕೆಂದರೆ ಗಾವ್ ಪಟ್ಟಣವು ವರುಶದ ಹೆಚ್ಚು ದಿನ ಹರವಿನ ಬಡಗಿಗೆ ಇರುತ್ತದೆ.

ಅಬಿಜಾನ್: ಅಬಿಜಾನ್ ಪಟ್ಟಣವು ಅಯ್ವೊರಿ ಕೋಸ್ಟ್ ನಾಡಿನ ಗಲ್ಪ್ ಆಪ್ ಗಿನಿಯಾ ಕರಾವಳಿಯಲ್ಲಿ ಬರುತ್ತದೆ. ಇಲ್ಲಿ ವರುಶದ ಒಟ್ಟು ಮಳೆಸುರಿತ  1700mm ಆಗಿದ್ದೂ ಬಿನಕೂ ಹರವು, ಮೇ ಕೊನೆಯಲ್ಲಿ ಬಡಗಿಗೆ ಮತ್ತು ಅಕ್ಟೋಬರ್ ಕೊನೆಗೆ ತೆಂಕಿಗೆ ಕದಲುವುದರಿಂದ ಬಿಸಿ, ಗಾಳಿಯೀರ ಹೊಂದಿದ ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲು ವರುಶದುದ್ದಕ್ಕೂ ಮಳೆಸುರಿಸುತ್ತದೆ. ಜೂನ್ ಮತ್ತು ಅಕ್ಟೋಬರ್ ಅಲ್ಲಿ ಎರಡು ಹೆಚ್ಚಿನ ಮಳೆ ಸುರಿತಗಳು ಮತ್ತು ವರುಶದುದ್ದಕ್ಕೂ ಬಿಸಿಲು, ಮಳೆಯಿರುವುದರಿಂದ ಇಲ್ಲಿ ಬಿಸಿಲ್ನೆಲೆಯ ದಟ್ಟಕಾಡುಗಳು(tropical rainforest) ಕಂಡುಬರುತ್ತವೆ.

ಬೊಬೊ-ಡಿಯೋಲಾಸ್ಸೋ: ಈ ಪಟ್ಟಣವು ಗಾವ್ ಮತ್ತು ಅಬಿಜಾನ್ ಪಟ್ಟಣಗಳ ನಡುವೆ ಬರುವುದರಿಂದ ಇಲ್ಲಿ ಒದ್ದೆ ಮತ್ತು ಒಣ ಸೂಳುಗಳೆರೆಡೂ ಉಂಟಾಗುತ್ತವೆ. ಬಿನಕೂ ಹರವು ಜೂನಿನಲ್ಲಿ ಬಡಗು ಮತ್ತು ಅಗಸ್ಟಿನಲ್ಲಿ ತೆಂಕಿನೆಡೆಗೆ ಕದಲುವಾಗ, ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲುಗಳಿಂದಾಗಿ ಇಲ್ಲಿ ಮಳೆಯಾಗುತ್ತದೆ. ಇಲ್ಲಿ ವರುಶದ ಒಟ್ಟು ಮಳೆಸುರಿತ 1000mm ಆಗಿದೆ.

ಇಂಡಿಯಾದ ಮೇಲೆ ಬಿನಕೂ ಹರವಿನ ಆಗುಹಗಳು:
ಮೇಲೆ ನೋಡಿದ ಗುಂಡಾಲದ ಎತ್ತುಗೆಯ ಬಗೆಯಲ್ಲಿ ಬಿನಕೂ ಹರವು ಇಂಡಿಯಾದ ಮೇಲೆ ಕದಲುವಾಗ ಬೇಸಿಗೆ ಸೂಳು ಮೊದಲಾಗುತ್ತದೆ. ಬೇಸಿಗೆಯಲ್ಲಿ ನೆಲ ಕಡುಕಾದು ಇಂಡಿಯಾದ ಒಳನಾಡಿನಲ್ಲಿ ಕಡಿಮೆ ಒತ್ತಡ ಏರ್ಪಡುತ್ತದೆ. ನೆಲಕ್ಕಿಂತ ಹೋಲಿಕೆಯಲ್ಲಿ ತಂಪಾದ ಹಿಂದೂ ಹೆಗ್ಗಡಲ ಮೇಲಿಂದ ತೆಂಕು ಪಡುವಣದ ಮಾರುಗಾಳಿಗಳು ಬಿನಕೂ ಹರವಲ್ಲಿ ಒಟ್ಟುಸೇರಲು, ಅಂದರೆ ಕಡಿಮೆ ಒತ್ತಡದ ಇಂಡಿಯಾದ ಒಳನಾಡುಗೆಳೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಹೀಗೆ ಬೀಸುವಾಗ ಮೇಲೆ ತಿಳಿಸಿದ ಎತ್ತುಗೆಯಂತೆ ಕಡಲಿನಿಂದ ಪಸೆಯನ್ನು ಹೊತ್ತು ನೆಲದ ಮೇಲೆ ಪಡಲಿಕೆಯನ್ನು ಉಂಟುಮಾಡುತ್ತವೆ. ಇದೇ ಬಗೆಯಲ್ಲಿ ಚಳಿಗಾಲದ ಸೂಳು ಉಂಟಾಗುವುದನ್ನು ಕೆಳಗಿನ ತಿಟ್ಟದಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ.

unnamed (5)

unnamed (6)

23.5 ಡಿಗ್ರಿ ಮೇಲ್ಬಿಸಿಲ್ನೆಲೆ ಅಡ್ಡಗೆರೆಯು ಇಂಡಿಯಾದ ಗುಜರಾತ್, ರಾಜಸ್ತಾನ, ಮದ್ಯ ಪ್ರದೇಶ, ಚತ್ತೀಸ್ಗಡ, ಜಾರ್ಕಂಡ್, ಪಡುವಣ ಬಂಗಾಳ, ತ್ರಿಪುರ ಮತ್ತು ಮಿಜೋರಾಂ ರಾಜ್ಯಗಳ ಮೇಲೆ ಹಾದುಹೋಗುತ್ತದೆ. ಮಾರ್ಚ್ 21ರಿಂದ ಜೂನ್ 21ವರೆಗಿನ ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವಿನ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಾಗುವ ಕದಲಿಕೆಯು ಇಂಡಿಯಾದ ಮೇಲೆಯೂ ಜರುಗುತ್ತದೆ. ಇಂಡಿಯಾದ ಗಾಳಿಪಾಡಿನ ಮೇಲೂ ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವಿನಿಂದಾಗಿ ಏರುಪೇರುಗಳಾಗುತ್ತವೆ. ಎತ್ತುಗೆಗೆ ಜೂನ್ ಮೊದಲ ವಾರದಲ್ಲಿ ಮೊದಲಾಗುವ ಇಂಡಿಯಾದ ಮಳೆಗಾಲ. ಇದನ್ನು ತೆಂಕು-ಪಡುವಣದ ಮಾನ್ಸೂನ್ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಬೇಸಿಗೆಯಲ್ಲಿ ಅಂದರೆ ಮಾರ್ಚ್-ಏಪ್ರಿಲ್-ಮೇ-ಜೂನ್ ತಿಂಗಳುಗಳಲ್ಲಿ ನೇಸರನ ನೇರ ಕದಿರುಗಳು ಸರಿಗೆರೆಯ ಬಡಗಿಗೆ ಬೀಳತೊಡಗುವುದರಿಂದ ಕಾವಿನ ಸರಿಗೆರೆಯು ಬಡಗಿಗೆ ಕದಲತೊಡಗುತ್ತದೆ. ಕಾವಿನ ಸರಿಗೆರೆಗೆ ಹೊಂದಿಕೊಂಡೆ ಬಿನಕೂ  ಹರವು ಏರ್ಪಡುತ್ತದೆ ಎಂದು ಈಗಾಗಲೇ ತಿಳಿದಿದ್ದೇವೆ. ಇಂಡಿಯಾ ಕೂಡ ಬಡಗು ಬಿಸಿಲ್ನೆಲೆಯಲ್ಲಿರುವುದರಿಂದ ನೆಲವು ಇಲ್ಲಿ ಹೆಚ್ಚು ಕಾಯುತ್ತದೆ. ಇದರಿಂದಾಗಿ ಕಡಿಮೆ ಒತ್ತಡ ಏರ್ಪಟ್ಟು, ತೆಂಕು ಅರೆಗೋಳದ ತೆಂಕು-ಪಡುವಣ ಮಾರುಗಾಳಿಗಳು ಹಿಂದೂ ಪೆರ್ಗಡಲ ಮೇಲಿಂದ ಬಡಗು-ಮೂಡಣ ದಿಕ್ಕಿನಲ್ಲಿ ಕೇರಳದ ಕರಾವಳಿ ಮತ್ತು ಅಂಡಮಾನ್ ನಿಕೋಬಾರ್ ನಡುಗಡ್ಡೆಗಳ ಮೇಲಿನ ನೆಲವನ್ನು ಸರಿಯಾಗಿ ಜೂನ್ ಮೊದಲ ಇಲ್ಲ ಮೇ ಕೊನೆವಾರದಲ್ಲಿ ತಾಕಿದಾಗ ಮಾನ್ಸೂನ್/ಮಳೆಗಾಲವು ಇಂಡಿಯಾದಲ್ಲೆಲ್ಲಾ ಮೊದಲಾದಂತೆ. ಸರಿಗೆರೆಯೆಡೆಯ ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲು(mE) ಆಗಿದ್ದರಿಂದ ಇಂಡಿಯಾದ ಅಡಿ-ನೆಲತುಂಡಿನುದ್ದಕ್ಕೂ ಮಳೆಯಾಗುತ್ತದೆ.

unnamed (7)

ಚಳಿಗಾಲದ ಮಾನ್ಸೂನ್: ಅಕ್ಟೋಬರ್ ಇಂದ ಏಪ್ರಿಲ್ ವರೆಗೆ ಚಳಿಗಾಲದ ಮಾನ್ಸೂನ್ ಇರುತ್ತದೆ. ಬೇಸಿಗೆಯ ತೆಂಕು-ಪಡುವಣದ ಮಾನ್ಸೂನಿನಶ್ಟು ಚಳಿಗಾಲದ ಮಾನ್ಸೂನ್ ಹೆಸರಾಗಿಲ್ಲ. ಕಾವಿನ ಸರಿಗೆರೆ ಇಲ್ಲ ಬಿಸಿಲ್ನೆಲೆ ಕೂಡು ಹರವಿನೆಡೆಗೆ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಬೀಸುವ ಬಡಗು-ಮೂಡಣದ ಮಾರುಗಾಳಿಗಳು ತೆಂಕು-ಮೂಡಣದ ಏಸಿಯಾದಲ್ಲೆಲ್ಲಾ ಬಡಗು-ಮೂಡಣದ ಮಾನ್ಸೂನ್ ಗಾಳಿಗಳೆಂದು ಕರೆಯಲ್ಪಡುತ್ತವೆ. ಮೊಂಗೋಲಿಯಾ ಮತ್ತು ಬಡಗು-ಪಡುವಣದ ಚೀನಾದಿಂದ ಬೀಸುವ ಈ ಚಳಿಗಾಲದ ಒಣ ಮಾನ್ಸೂನ್ ಗಾಳಿಗಳು ಬೇಸಿಗೆಯ ಮಾನ್ಸೂನ್ ಗಾಳಿಯಶ್ಟು ಬಿರುಸಾಗಿರುವುದಿಲ್ಲ.  ಹಿಮಾಲಯದ ಬೆಟ್ಟಸಾಲುಗಳು ಅಡ್ಡಗಟ್ಟುವುದರಿಂದ ಕರಾವಳಿ ತಲುಪುವಶ್ಟರಲ್ಲಿ ಅಳವುಗುಂದುತ್ತವೆ ಮತ್ತು ತೆಂಕು ಇಂಡಿಯಾ ಮುಟ್ಟುವಶ್ಟರಲ್ಲಿ ಬಹಳಶ್ಟು ತಂಪನ್ನು ಕಳೆದುಕೊಂಡಿದ್ದಕ್ಕಾಗಿ ಚಳಿಗಾಲದಲ್ಲೂ ಕೊಂಚ ಬಿಸಿ ಗಾಳಿಪಾಡು ತೆಂಕು ಇಂಡಿಯಾದಲ್ಲಿ ಇರುತ್ತದೆ.

ಆದರೆ ತೆಂಕು-ಮೂಡಣದ ಏಸಿಯಾದ ಪಡುವಣ ಪಾಲಿನಂತಲ್ಲದೆ, ಮೂಡಣಪಾಲಿನಲ್ಲಿ ಬರುವ ಇಂಡೋನೇಶಿಯಾ, ಮಲೇಶಿಯಾಗಳಲ್ಲಿ ಚಳಿಗಾಲದಲ್ಲೂ ಮಳೆಯಾಗುತ್ತದೆ. ಏಕೆಂದರೆ ಮೊದಲನೇದಾಗಿ ಇಲ್ಲಿ ಹಿಮಾಲಯ ಬೆಟ್ಟಗಳು ಅಡ್ಡಬರುವುದಿಲ್ಲ. ಎರಡನೇದಾಗಿ ತೆಂಕು ಚೀನಾ ಕಡಲಿನಿಂದ ನೀರಾವಿಯನ್ನು ಹೊತ್ತ ಬಡಗು-ಮೂಡಣದ ಮಾನ್ಸೂನ್ ಗಾಳಿಯು ಮಳೆಸುರಿಸುತ್ತದೆ.
ಮುಂದಿನ ಅಂಕಣದಲ್ಲಿ ಹೆಗ್ಗಡಲ ಒಳಹರಿವುಗಳು ಮತ್ತು ಅವುಗಳ ಮೇಲೆ ಬಿನಕೂ ಹರವಿನ  ಆಗುಹಗಳನ್ನು ತಿಳಿಯೋಣ.

(ಚಿತ್ರ ಸೆಲೆಗಳು: worldatlas.comclimate.ncsu.edu)
facebooktwittergoogle_plusredditpinterestlinkedinmail

ಹಲಬದಿಗಳು (Polygons) ಭಾಗ -1

ನಮಗೆ ಹಲವಾರು ಹಲಬದಿಯ ಆಕೃತಿಗಳನ್ನು ತಿಳಿಸಿಕೊಡಲು ಹುಬ್ಬಳ್ಳಿಯ ಶರಣಪ್ಪ ಮತ್ತು ಆತನ ಚಿಕ್ಕಪ್ಪನ ಮಗ ಮೈಸೂರಿನ ಸಿದ್ದೇಶ್ ಎಂಬ ಹುಡುಗರಿದ್ದಾರೆ, ಬನ್ನಿ ಅವರ ಮಾತಲ್ಲೇ ಹಲವು ಆಕಾರದ ಹಲಬದಿಗಳನ್ನು ತಿಳಿಯೋಣ…

ಶರಣಪ್ಪ: ನಾನು ಒಂದಿಶ್ಟು ವಸ್ತುಗಳನ್ನು ಹೆಳ್ತೀನಿ, ನೀನ್ ಅವು ಯಾವ ಆಕಾರದಲ್ಲಯ್ತಿ ಅಂತ  ಹೇಳೋ ಸಿದ್ದ.

ಸಿದ್ದೇಶ್:  ಸರಿ, ನೀನು ಕೇಳು, ನಾನು ಹೇಳ್ತೀನಿ.

ಶರಣಪ್ಪ: ನೀನು ಈಜಿಪ್ಟಿನ ಪಿರಮಿಡ್ಡನ್ನು ಪೇಪರ್, ಟೀವಿನ್ಯಾಗ ನೋಡಿರ್ತೀ ಹೌದಲ್ಲೋ? ಅವುಗಳ ಮುಕಗಳು(ಗೋಡೆಗಳು) ಯಾವ  ಆಕಾರದಲ್ಲಯ್ತಿ ?

ಸಿದ್ದೇಶ್: ಈಜಿಪ್ಟಿನ ಪಿರಮಿಡ್ಡಿನ ಮುಕಗಳು ಮೂರ್ಬದಿ ಆಕಾರದಲ್ಲವೆ, ಅದಕ್ಕೆ ಮೂರು ಬದಿಗಳವೆ.

ಶರಣಪ್ಪ: ಸರಿಯಾಗಿ ಹೇಳ್ದಿ, ಒಂದಿಶ್ಟು ನಾಲ್ಬದಿಯಾಕಾರದ ವಸ್ತುಗಳ ಹೆಸರು ಹೇಳು ನೋಡೋಣ.

ಸಿದ್ದೇಶ್: ಚೆಸ್ ಬೋರ್ಡ್, ನಾಲ್ಬದಿಯಾಕಾರದ ಹೆಂಚು, ಟೈಲ್ಸು, ಮೊಬೈಲ್ ಪೋನ್, ಮೊನ್ನೆ ನಾವು ಹಾರಿಸಿದ್ದ  ಗಾಳಿಪಟ!.

ಶರಣಪ್ಪ: ನೀನು ಬಾರಿ ಶಾಣ್ಯಾ ಅದಿ, ಈಗ  ಒಂದಿಶ್ಟು ಐದುಬದಿ ಆಕಾರದ ವಸ್ತುಗಳನ್ನು ಹೇಳೋ ಸಿದ್ದ್ಯಾ.

ಸಿದ್ದೇಶ್: ನಾವು ಆವತ್ತು ವಾಲಿಬಾಲ್ ಅಡಿದ್ವಲ್ಲ ಅದರ ಮೇಲಿನ ಕೆಂಪು, ಅರಿಶಿಣದ ಪಟ್ಟೆಗಳಿದ್ಯಲ್ಲ ಅವು ಐದುಬದಿ ಆಕಾರದಲ್ಲಿವೆ.

ನಾವು ಮೊನ್ನೆ ಚಾಕಲೇಟ್ ತಿಂದ್ವಲ್ಲ ಅದು ಐದುಬದಿ ಆಕಾರದಲ್ಲಿದೆ.

Image1 Poಸಿದ್ದೇಶ್: ಈಗ ನಾನು ಕೇಳ್ತೀನಿ ನೀನ್ ಹೇಳು ಶರಣಾ, ಒಂದಿಶ್ಟು ಆರುಬದಿ ಆಕಾರದ ವಸ್ತುಗಳನ್ನು ಹೆಸರಿಸು ನೋಡೋಣ.

ಶರಣಪ್ಪ: ಆವತ್ತ  ನಮ್ಮನಿ ಪಂಪ್ಸೆಟ್ ರಿಪೇರಿ ಮಾಡಬೇಕಾದ್ರ, ಅದರ ನಟ್ಟು ,ಬೋಲ್ಟು, ಸ್ಪಾನರ್ ಎಲ್ಲಾ ಆರುಬದಿ ಆಕಾರದಲ್ಲೈತಿ  ಅಂತ ನೋಡೀನಿ, ಮತ್ತ ಜೇನು ತತ್ತಿ  ಗೂಡುಗಳು ಅದಾವಲ್ಲ, ಅವು ಆರುಬದಿ ಆಕಾರದೊಳಗ ಇರ್ತಾವ.

Image2 Poಸಿದ್ದೇಶ್: ಒಂದಿಶ್ಟು ಏಳುಬದಿ ಆಕಾರದ ವಸ್ತುಗಳನ್ನು ಹೆಸರಿಸು ನೋಡೋಣ, ಶರಣಾ.

ಶರಣಪ್ಪ: ನಮ್ಮ ಬಿಜಾಪುರದ ಕಾಕಾರ ಮನ್ಯಾಗ ಏಳುಬದಿ ಆಕಾರದ ಕಸದ ತೊಟ್ಟಿ ಐತಿ, ನಾನು ಚಾಕ್ಲೆಟ್ ಕವರು, ಹಣ್ಣಿನ್ ಸಿಪ್ಪಿ ಎಲ್ಲಾ ಅದಕ್ಕ ಹಾಕ್ತೀನಿ, ಮತ್ತ ನನಗ ಕಾಕರು ಪಾರಿನ್ ನಾಣ್ಯ ಕೊಟ್ಟಾರ, ಅದ ಏಳುಬದಿ ಆಕಾರದಲ್ಲೈತಿ.

Image3 Poಶರಣಪ್ಪ: ಈಗ ನಾವು ಒಂದು ಚಲೋ ಕೆಲಸ ಮಾಡೋಣು, ನಮ್ಮನಿ ಪೇಪರ್ನಾಗ ಇರೋ ಹಲವು ಬದಿ ಆಕಾರಗಳನ್ನ ಕತ್ತರಿಸಿ ಅದನ್ನ ಒಂದು ಪೇಪರ್ ಮ್ಯಾಲ ಅಂಟಿಸೋಣು. ಬರ್ತೀಯೋ ಇಲ್ವೋ.

ಸಿದ್ದೇಶ್: ನೀ ಹೇಳಿದ್ ಮ್ಯಾಲೆ ಇಲ್ಲ ಅನ್ನೋಕಾಗುತ್ತೇನ್ಲಾ !, ಮಾಡೋಣ.

ಟ್ರಾಪಿಕ್ ಸಿಗ್ನಲ್ಲ್, ಹಲವು ಆಕಾರದ  ಬಣ್ಣದ ಮಣೆ, ಮನೆ ಗೋಡೆ, ಹಾವು ಏಣಿ ಆಟದ ದಾಳ, ಕಟ್ಟಡ, ಪುಟ್ಬಾಲ್, ಸಿಟಿ ರೋಡು ಪಟ್ಟಿ, ಗಾಜಿನ ಪಿರಮಿಡ್, ಬಣ್ಣದ ಕ್ಯೂಬ್, ಬೇರೆ ಬೇರೆ ಬದಿಯಾಕಾರದ ಚಾಕಲೇಟ್ ಎಲ್ಲವನ್ನು ಈಗ ಅಂಟಿಸಿಯಾಯ್ತು.

ಇದರಲ್ಲಿ ನಾವು ಮೂರ್ಬದಿ, ನಾಲ್ಬದಿ, ಐದುಬದಿ, ಆರುಬದಿ ಎಂಬ ಹಲವುಬದಿ  (Polygon) ಆಕಾರಗಳನ್ನು ಕಾಣಬಹುದು.

Image4 Poಶರಣಪ್ಪ: ನಾವೀಗ ಒಂದಿಷ್ಟು ಆಕಾರಗಳನ್ನು ಗುರುತಿಸಿ ಆತು. ಹಂಗಾದ್ರ ಹಲಬದಿ ಅಂದ್ರ ಏನು ಅಂತ ಹೇಳೊ ಸಿದ್ಯಾ?

ಸಿದ್ದೇಶ್: ಮೂರು ಮತ್ತು ಅದಕ್ಕಿಂತ ಹೆಚ್ಚು ಬದಿಗಳನ್ನು ಹೊಂದಿರುವ ಮುಚ್ಚಿದ ಆಕಾರಗಳನ್ನು (Closed shapes)  ಹಲಬದಿ ಎಂದು ಕರೀತಾರೆ.

ಶರಣಪ್ಪ: ಎರಡು ಬದಿ ಯಾಕ ಹಲಬದಿ ಆಗೋವಲ್ದು ?

ಸಿದ್ದೇಶ್: ಕೆಳ್ಗಡೆ ಎರಡು ಬದಿ ಬಿಡಸ್ತೀನಿ ನೋಡು, ಇಲ್ಲಿ ಎರಡುಬದಿಗಳು ಯಾವುದೇ ಮುಚ್ಚಿದ ಆಕಾರವನ್ನು (Closed shape) ಮಾಡೋದಿಲ್ಲ. ಯಾವುದೇ ಮುಚ್ಚಿದ ಆಕಾರ ಇರ್ಬೇಕು ಅಂದ್ರೆ ಅದಕ್ಕೆ ಮೂರು ಬದಿಗಳು ಬೇಕೇ ಬೇಕು !. ಕೆಳಗಡೆ ಮೂರ್ಬದಿ (Triangle) ಬಿಡಿಸಿದ್ದೀನಿ ನೋಡು, ಮೂರ್ಬದಿ (Triangle)  ಒಂದು ಮುಚ್ಚಿದ ಆಕಾರವಾಗಿದೆ ಇದನ್ನು ಒಂದು ಹಲಬದಿ (Polygon) ಎಂದು ಕರೀಬಹುದು.

Image5 Po
ಈ ಇಬ್ಬರು ಹುಡುಗರು ಸೊಗಸಾಗಿ ಹಲಬದಿಗಳು ಎಂದರೇನು ತಿಳಿಸಿಕೊಟ್ಟರಲ್ಲವೇ ?, ಹಾಗಾದರೆ ಹಲಬದಿಗಳನ್ನು ಹೇಗೆ ಹಲವು ಬಗೆಗಳನ್ನಾಗಿಸಬಹುದು ಎಂಬುವುದನ್ನು ತಿಳಿಯೋಣ  ಬನ್ನಿ.

ಹಲಬದಿಗಳ ಬಗೆಗಳು (Types of Polygons).

ಹಲಬದಿಗಳನ್ನು ಅದರ ಬದಿಯ ಅಳತೆಗಳ ಮೇಲೆ, ಆಕೃತಿಯ ಉಬ್ಬು ತಗ್ಗುಗಳ ಮೇಲೆ ಹಾಗು ಸುಳುವಾದ, ಸುಳುವಲ್ಲದ ಆಕೃತಿಗಳ ಮೇಲೆ ಒಟ್ಟು ಮೂರು ಬಗೆಗಳನ್ನಾಗಿ ಮಾಡಬಹುದು.

1. ಸಾಟಿ ಹಲಬದಿಗಳು ಮತ್ತು ಸಾಟಿಯಿಲ್ಲದ ಹಲಬದಿಗಳು (Regular and Irregular polygons).

  • ಸಾಟಿ ಹಲಬದಿಗಳು (Regular Polygons):

ಯಾವುದೇ ಹಲಬದಿಯಲ್ಲಿ ಎಲ್ಲಾ ಬದಿಗಳು ಮತ್ತು ಅದರ ಒಳಮೂಲೆಗಳು ಸಮನಾಗಿದ್ದರೆ ಅದು ಸಾಟಿ ಹಲಬದಿ ಎಂದೆನಿಸಿಕೊಳ್ಳುತ್ತದೆ. ಸಾಟಿ ಹಲಬದಿಯನ್ನು(Regular Polygon) ಸರಿಬದಿಯ ಹಲಬದಿ (Equilateral Polygon) ಎಂದೂ ಕರೆಯಬಹುದು ಹಾಗು ಸರಿಮೂಲೆಯ ಹಲಬದಿ (Equiangular Polygon) ಎಂದೂ ಕರೆಯಬಹುದು.

ಉದಾಹರಣೆ 1: ಕೆಳಗಿನ ಎಲ್ಲಾ ಬಗೆಯ ಹಲಬದಿಗಳನ್ನು ನೋಡಿದಾಗ ನಮಗೆ ತಿಳಿಯುವುದೇನೆಂದರೆ ಹಲಬದಿಗಳ ಒಂದೊಂದು ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಾಗಿವೆ ಮತ್ತು ಬದಿಗಳು ಕೂಡುವೆಡೆಯಲ್ಲಿ ಉಂಟಾಗುವ ಮೂಲೆಗಳು ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಾಗಿರುತ್ತವೆ, ಹಾಗಾಗಿ ಕೆಳಗಿನವೆಲ್ಲವೂ ಸಾಟಿ ಹಲಬದಿಗಳಾಗಿವೆ.

Image6 Po

ಉದಾಹರಣೆ 2: ಕಳಗೆ ಒಂದು ಐದು ಮೂಲೆಯುಳ್ಳ ಅರಿಲು ಹಲಬದಿಯನ್ನು (Star Polygon) ನೋಡಬಹುದು, ಅವುಗಳ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಳತೆಯನ್ನು ಹೊಂದಿವೆ ಹಾಗೂ ಅದರ ಒಳಮೂಲೆಗಳು ಕೂಡ ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಾಗಿವೆ, ಹಾಗಾಗಿ ಅರಿಲು ಹಲಬದಿಯು ಒಂದು ಸಾಟಿ ಹಲಬದಿಯಾಗಿದೆ (Regular Polygon).

Image7 Po

  • ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಗಳು (Irregular Polygons):

ಯಾವುದೇ ಹಲಬದಿಗಳಲ್ಲಿ ಎಲ್ಲಾ ಬದಿಗಳು ಬೇರೆ ಬೇರೆ ಅಳತೆಯನ್ನು ಹೊಂದಿದ್ದರೆ ಮತ್ತು ಅದರ ಒಳಮೂಲೆಗಳು ಕೂಡ ಬೇರೆ ಬೇರೆ ಮೂಲೆಯಳತೆಯನ್ನು ಹೊಂದಿದ್ದರೆ ಅವುಗಳು ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಗಳು ಎಂದೆನಿಸಿಕೊಳ್ಳುತ್ತವೆ.

ಉದಾಹರಣೆ 1:  ಕೆಳಗಿನ ಎಲ್ಲಾ ಬಗೆಯ ಹಲಬದಿಗಳನ್ನು ನೋಡಿದಾಗ ನಮಗೆ ತಿಳಿಯುವುದೇನೆಂದರೆ ಹಲಬದಿಗಳು ಬೇರೆ ಬೇರೆ ಅಳತೆಯಲ್ಲಿವೆ ಮತ್ತು ಬದಿಗಳು ಕೂಡುವೆಡೆಯಲ್ಲಿ ಉಂಟಾಗುವ ಮೂಲೆಗಳು ಕೂಡ ಬೇರೆ ಬೇರೆ ಅಳತೆಯಲ್ಲಿವೆ, ಹಾಗಾಗಿ ಕೆಳಗಿನವೆಲ್ಲವೂ ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಗಳಾಗಿವೆ.

Image8 Poಉದಾಹರಣೆ 2: ಕಳಗೆ ಒಂದು ನೇರಡ್ಡಬದಿ ಹಲಬದಿಯನ್ನು (Rectilinear Polygon) ನೋಡಬಹುದು, ಅವುಗಳ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ನೇರಡ್ಡವಾಗಿವೆ ಅಂದರೆ ಅವುಗಳ ಮೂಲೆಗಳು 90° ಆಗಿವೆ ಆದರೆ ಬದಿಗಳು ಬೇರೆ ಬೇರೆ ಅಳತೆಯನ್ನು ಹೊಂದಿವೆ, ಹಾಗಾಗಿ ಈ ಹಲಬದಿಯು ಒಂದು ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಯಾಗಿದೆ (Irregular Polygon).

Image9 Po2. ಉಬ್ಬು ಹಲಬದಿಗಳು (Convex Polygons) ಮತ್ತು ತಗ್ಗು ಹಲಬದಿಗಳು (Concave Polygons).

  • ಉಬ್ಬು ಹಲಬದಿಗಳು (Convex Polygons).

ಯಾವುದೇ ಹಲಬದಿಗಳ ಬದಿಗಳು ಕೂಡುವೆಡೆಯ ಮೂಲೆಗಳು 180° ಕ್ಕಿಂತ ಕಮ್ಮಿ ಇಲ್ಲವೇ 180° ಗೆ ಸರಿಯಾಗಿದ್ದರೆ ಅವುಗಳು ಉಬ್ಬು ಹಲಬದಿಗಳು ಎಂದೆನಿಸಿಕೊಳ್ಳುತ್ತವೆ.

ಉದಾಹರಣೆ 1: ಕೆಳಗೆ ಹಲವಾರು ಹಲಬದಿಗಳನ್ನು ಕೊಡಲಾಗಿದೆ, ಅವುಗಳನ್ನು ನೋಡಿದಾಗ ನಮಗೆ ಕಾಣುವುದೇನೆಂದರೆ ಅವುಗಳ ಮೂಲೆಗಳು 180° ಗಿಂತ ಕಡಿಮೆಯಿದೆ, ಅವುಗಳು ಸಾಟಿ ಹಲಬದಿಗಳಾಗಿರಬಹುದು (Regular Polygons) ಇಲ್ಲವೇ ಸಾಟಿಯಲ್ಲದ (Irregular Polygons) ಹಲಬದಿಗಳಾಗಿರಬಹುದು ಕೂಡ.

Image10 Poಉದಾಹರಣೆ 2:  ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಎಂಟ್ಬದಿ (Octogon) ಆಕಾರದ ಟ್ರಾಪಿಕ್ ಗುರುತು ಒಂದು ಹಲಬದಿಯಾಗಿದೆ (Polygon), ಇದರ ಎಲ್ಲಾ ಬದಿಗಳು ಕೂಡುವೆಡೆ ಉಬ್ಬಿಕೊಂಡಿದೆ (Convex) ಅಂದರೆ ಅದರ ಎಲ್ಲಾ ಮೂಲೆಗಳು 180° ಗಿಂತ ಕಡಿಮೆಯಿದೆ, ಹಾಗಾಗಿ ಇದು ಒಂದು ಉಬ್ಬಿದ ಹಲಬದಿಯಾಗಿದೆ.

Image11 Po ಉದಾಹರಣೆ 3:  ಈ ಕೆಳಗಿನ ಸರಿಮೂಲೆಯ  ಹಲಬದಿಯನ್ನು (Equiangular Polygon) ನೋಡಿದಾಗ ಅವುಗಳ ಮೂಲೆಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಾಗಿದೆ ಹಾಗು ಮೂಲೆಗಳು 180° ಗಿಂತ ಕಡಿಮೆಯಿದೆ, ಆದ್ದರಿಂದ ಇದು ಒಂದು ಉಬ್ಬಿದ ಹಲಬದಿಯಾಗಿದೆ (Convex Polygon)

Image12 Poತಗ್ಗು ಹಲಬದಿಗಳು (Concave Polygons):

ಯಾವುದೇ ಹಲಬದಿಗಳ ಬದಿಗಳು ಕೂಡುವೆಡೆಯ ಮೂಲೆಗಳು 180° ಕ್ಕಿಂತ ಹೆಚ್ಚಿದ್ದರೆ  ಅವುಗಳು ತಗ್ಗು  ಹಲಬದಿಗಳು ಎಂದೆನಿಸಿಕೊಳ್ಳುತ್ತವೆ.

ಉದಾಹರಣೆ 1: ಕೆಳಗೆ ಹಲವಾರು ಹಲಬದಿಗಳನ್ನು ಕೊಡಲಾಗಿದೆ, ಅವುಗಳನ್ನು ನೋಡಿದಾಗ ನಮಗೆ ಕಾಣುವುದೇನೆಂದರೆ ಅವುಗಳ ಕೆಲವು ಮೂಲೆಗಳು 180° ಗಿಂತ ಹೆಚ್ಚಿದೆ, ಅವುಗಳು ಸಾಟಿ ಹಲಬದಿಗಳಾಗಿರಬಹುದು (Regular Polygons) ಇಲ್ಲವೇ ಸಾಟಿಯಲ್ಲದ (Irregular Polygons) ಹಲಬದಿಗಳಾಗಿರಬಹುದು ಕೂಡ.

 Image13 Po

ಉದಾಹರಣೆ 2:  ನೀರಿನಲ್ಲಿ ಈಜಾಡುತ್ತಿರುವ ಈ ಅರಿಲು ಮೀನುಗಳು (Star Fish) ತಗ್ಗು ಬದಿಗಳನ್ನು ಹೊಂದಿದೆಯಲ್ಲವೇ? ಹೌದು, ಅದರ ಬದಿಗಳು ಕೂಡುವೆಡೆಗಳು 180° ಗಿಂತ ಹೆಚ್ಚಿನ ಮೂಲೆಗಳನ್ನು ಹೊಂದಿವೆ.

Image14 Po

 

3. ಸುಳುವಾದ (Simple) ಮತ್ತು ಸುಳುವಲ್ಲದ (Complex) ಹಲಬದಿಗಳು.

  • ಸುಳುವಾದ ಹಲಬದಿಗಳು (Simple Polygons)

ಯಾವುದೇ ಹಲಬದಿಯು ಒಂದೊಕ್ಕೊಂದು ಕತ್ತರಿಸುವ ಬದಿಗಳನ್ನು (Sides are not intersecting each other) ಹೊಂದಿರದಿದ್ದರೆ ಅದು ಸುಳುವಾದ (Simple) ಹಲಬದಿಗಳಾಗುತ್ತವೆ. ಮೂರ್ಬದಿ , ಚೌಕ, ಆಯತ ಮತ್ತು ಹಲವು ಬಗೆಯ ನಾಲ್ಬದಿಗಳೆಲ್ಲವೂ  ಸುಳುವಾದ ಹಲಬದಿಗಳಾಗಿವೆ.

ಉದಾಹರಣೆ 1: ಕೆಳಗೆ ಹಲವಾರು ಹಲಬದಿಗಳನ್ನು ಕೊಡಲಾಗಿದೆ, ಈ ಎಲ್ಲಾ ಹಲಬದಿಗಳಲ್ಲಿ ಸಾಮಾನ್ಯವಾಗಿ ಕಂಡುಬರುವುದೇನೆಂದರೆ ಯಾವುದೇ ಬದಿಯು ಇನ್ನೊಂದು ಬದಿಯ ಮೇಲೆ ಹಾದುಹೋಗಿಲ್ಲ, ಇನ್ನೂ ಸುಲಭವಾಗಿ ಹೇಳಬೇಕೆಂದರೆ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಕತ್ತರಿಸಿಲ್ಲ, ಹಾಗಾಗಿ ಇವುಗಳೆಲ್ಲವೂ ಸುಳುವಾದ ಹಲಬದಿಗಳಾಗಿವೆ.

Image15 Po

ಉದಾಹರಣೆ 2:  ಈ ಕೆಳಗೆ ಒಂದು ಸರಿಬದಿಯ ಐದ್ಬದಿಯನ್ನು ಕೊಡಲಾಗಿದೆ (Equilateral Pentagon), ಇದರಲ್ಲಿ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಳತೆಯನ್ನು ಹೊಂದಿವೆ ಹಾಗು ಅದರ ಯಾವುದೇ ಬದಿಗಳು ಒಂದರಮೇಲೊಂದು ಹಾದುಹೋಗಿಲ್ಲ, ಹಾಗಾಗಿ ಇದು ಒಂದು ಸುಳುವಾದ ಹಲಬದಿಯಾಗಿದೆ.

Image16 Po

  • ಸುಳುವಲ್ಲದ ಹಲಬದಿಗಳು (Complex Polygons)

ಯಾವುದೇ ಹಲಬದಿಯ ಬದಿಗಳು ಒಂದೊಕ್ಕೊಂದು ಕತ್ತರಿಸುವ ಬದಿಗಳನ್ನು(Sides are  intersecting each other) ಹೊಂದಿದ್ದರೆ  ಅದು ಸುಳುವಲ್ಲದ (Complex)  ಹಲಬದಿಯಾಗುತ್ತದೆ. ಅವುಗಳು ಸಾಟಿ ಹಲಬದಿಗಳಾಗಿರಬಹುದು (Regular Polygons) ಇಲ್ಲವೇ ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಗಳಾಗಿರಬಹುದು (Irregular Polygons).

ಉದಾಹರಣೆ 1: ಕೆಳಗೆ ಹಲವು ಸುಳುವಲ್ಲದ ಹಲಬದಿಗಳನ್ನು ಕೊಡಲಾಗಿದೆ, ಅವುಗಳನ್ನು ಗಮನಿಸಿದಾಗ ಅವುಗಳ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಕತ್ತರಿಸಿದಂತೆ ಕಂಡುಬರುತ್ತವೆ.

Image17 Po

ಮುಂದಿನ ಬರಹದಲ್ಲಿ ಹಲಬದಿಗಳ ಮೂಲೆಗಳು, ಸುತ್ತಳತೆ ಮತ್ತು ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳುವ ಬಗೆಯನ್ನು ತಿಳಿಯೋಣ.

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಬೀಸುಗಾಳಿಗಳು

ತಂಪುಪೆಟ್ಟಿಗೆಯ ಬಾಗಿಲನ್ನು ತೆಗೆದಾಗ ತಣ್ಣನೆ ಗಾಳಿಯು ಕೆಳಗೆ ಸುಳಿದಂತಾಗುತ್ತದೆ. ಬಿಸಿ ನೀರೆರಕೊಂಡು ಆದಮೇಲೆ ಬಚ್ಚಲುಮನೆ ಬಾಗಿಲು ತೆಗೆದಾಗ ಬಿಸಿಗಾಳಿ ಮೇಲೇರುತ್ತಿರುತ್ತಿದ್ದರೆ ತಣ್ಣನೆ ಗಾಳಿ ಕೆಳಗಿನಿಂದ ನುಸುಳುತ್ತಿರುತ್ತದೆ. ಹೀಗೇಕೆ ಎಂದು ಗಮನಿಸಿದ್ದೀರೇ?. ತಂಪಾದ ಗಾಳಿಯು ಹೆಚ್ಚು ಒತ್ತೊಟ್ಟಾಗಿರುವುದರಿಂದ, ಕಾದ ಬಿಸಿಗಾಳಿಗಿಂತ ಹೆಚ್ಚು ತೂಕದ್ದಾಗಿರುತ್ತದೆ. ಬಿಸಿಗಾಳಿಯಲ್ಲಿ ನೀರಾವಿ ಹೆಚ್ಚಿದ್ದೂ ತಂಪು ಗಾಳಿಗಿಂತ ಮಾಲಿಕ್ಯೂಲ್ಗಳು ಕಡಿಮೆ ಒತ್ತೊಟ್ಟಾಗಿರುತ್ತದೆ. ಇದರಿಂದಾಗಿ ತಂಪು ಗಾಳಿಯು ಬಿಸಿಗಾಳಿಗಿಂತ ಹೆಚ್ಚು ತೂಕ ಹೊಂದಿ ಕೆಳಗಿಳಿದರೆ, ಬಿಸಿ ಗಾಳಿಯು ಮೇಲೇರುತ್ತಿರುತ್ತದೆ. ನೀರಾವಿ ಕಡಿಮೆಯಿರುವ ತಂಪು ಗಾಳಿಯು ಒಣದಾಗಿದ್ದು ಹೆಚ್ಚು ತೂಕದಿಂದಾಗಿ ನೆಲಮಟ್ಟದಲ್ಲಿ ಬೀಸಿದರೆ, ನೀರಾವಿ ಹೆಚ್ಚು ತುಂಬಿಕೊಂಡಿರುವ ಹಗುರ ಬಿಸಿಗಾಳಿಯು ಮೇಲೇರಿ ಮಳೆ ಸುರಿಸುತ್ತದೆ. ಈ ತಿಳುವಳಿಕೆಯ ಹಿನ್ನೆಲೆಯಲ್ಲಿ ಗಾಳಿಹೊದಿಕೆಯ ಸುತ್ತೇರ್ಪಾಟು, ಬೀಸುಗಾಳಿಗಳ ಬಗ್ಗೆ ಅರಿಯಬಹುದು.

ನೇಸರದಿಂದ ನೆಲವು ಎಲ್ಲೆಡೆಯೂ ಒಂದೇ ಮಟ್ಟದಲ್ಲಿ ಕಾಯುವುದಿಲ್ಲ. ಹೀಗೆ ಏರುಪೇರಾಗಿ ಕಾದ ನೆಲವೇ ಗಾಳಿಯನ್ನು ಒಂದೆಡೆಯಿಂದ ಮತ್ತೊಂದೆಡೆಗೆ ಸಾಗುವಂತೆ ಮಾಡುತ್ತದೆ. ಬಿಸುಪಿನಿಂದ ಒಂದು ತಾಣದ ಗಾಳಿಹೊದಿಕೆಯು (Atmosphere) ಮತ್ತೊಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಕಾದಾಗ ಒತ್ತಡದ ಬೇರ್ಮೆ ಇಲ್ಲ ಒತ್ತಡದ ಏರಿಳಿತ (Pressure gradient) ಉಂಟಾಗುತ್ತದೆ. ಒತ್ತಡದ ಬೇರ್ಮೆ ಉಂಟಾದಾಗ, ಗಾಳಿಯು ಹೆಚ್ಚು ಒತ್ತಡದಿಂದ ಕಡಿಮೆ ಒತ್ತಡದೆಡೆಗೆ ಸಾಗುತ್ತದೆ. ಹೀಗೆ ಸಾಗಿದ ಗಾಳಿಯನ್ನು ಬೀಸುಗಾಳಿ ಎಂದು ಕರೆಯುತ್ತೇವೆ. ಕಾಣುವುದಕ್ಕು, ಹಿಡಿಯುವುದಕ್ಕು ಕುದರದ ಗಾಳಿಯು ಬೀಸಿದಾಗಿನ ಒತ್ತರದಿಂದ ಅದರ ಇರುವಿಕೆ ತಿಳಿಯುತ್ತದೆ. ಬೀಸುಗಾಳಿಯು ಬೇಸಿಗೆಯಲ್ಲಿ ಬಟ್ಟೆಗಳನ್ನು ಒಣಗಿಸಬಲ್ಲದು ಮತ್ತು ಚಳಿಹೊತ್ತಲ್ಲಿ ಎಲುಬುಗಳನ್ನು ನಡುಗಿಸಬಲ್ಲದು. ಅದು ಹಡಗುಗಳನ್ನು ಕಡಲುಗಳಾಚೆ ಸಾಗಿಸಬಲ್ಲದು ಮತ್ತು ಹೆಮ್ಮರಗಳನ್ನು ನೆಲಕ್ಕುರುಳಿಸಬಲ್ಲದು. ಗಾಳಿಹೊದಿಕೆಯನ್ನು ಒಂದೇ ಮಟ್ಟದಲ್ಲಿ ಇಡಲು, ಕಾವು ಸಾಗಣಿಕೆಗೆ, ಪಸೆ (moisture), ಕೊಳುಕೆ (pollutants), ದುಂಬು (dust)ಗಳಂತುವುನೆಲ್ಲಾ ಇಡಿನೆಲ (globe)ದೊಳು ಹೆಚ್ಚು ಗೆಂಟಿನುದ್ದಕ್ಕೂ ಹೊತ್ತೊಯ್ಯಲು ಬೀಸುಗಾಳಿಯು ಅನುವಾಗಿದೆ.

ಗಾಳಿಹೊದಿಕೆಯಲ್ಲಿನ ಒತ್ತಡದ ಬೇರ್ಮೆಗಳು ಬೀಸುಗಾಳಿಯನ್ನು ಉಂಟುಮಾಡುತ್ತವೆ. ನೆಲನಡುಗೆರೆ ಇರುವ ಎಡೆಯಲ್ಲಿ ನೇಸರವು ನೀರು ಮತ್ತು ನೆಲವನ್ನು ಇಡಿನೆಲದ ಉಳಿದೆಡೆಗಳಿಗಿಂತ ಹೆಚ್ಚು ಬಿಸಿಗೈಯ್ಯುತ್ತದೆ. ನೆಲನಡುಗೆರೆಯ ತಾವೆಲ್ಲ ಬಿಸಿಗೊಂಡ ಗಾಳಿಯು ಮೇಲಕ್ಕೇರಿ ತುದಿಗಳೆಡೆಗೆ ಸಾಗುತ್ತದೆ. ಇದು ಕಡಿಮೆ ಒತ್ತಡದೇರ್ಪಾಟು. ಹಾಗೆಯೇ ತಣಿದ, ಒತ್ತೊಟ್ಟಾದ (denser) ಗಾಳಿಯು ನೆಲದ ಮೇಲ್ಮಯ್ ಮೇಲೆ ಹಾದು ನೆಲನಡುಗೆರೆಯೆಡೆಗೆ, ಅದಾಗಲೇ ಬಿಸಿಗಾಳಿ ತೆರವುಗೊಂಡಿದ್ದ ತಾವನ್ನು ಸೇರಿಕೊಳ್ಳುತ್ತದೆ. ಇದು ಹೆಚ್ಚು ಒತ್ತಡದೇರ್ಪಾಟು. ಆದರೆ ಬೀಸುಗಾಳಿಗಳು ಹೆಚ್ಚು ಒತ್ತಡದ ನೆಲೆಗಳಿಂದ ಕಡಿಮೆ ಒತ್ತಡ ನೆಲೆಗಳೆಡೆಗೆ ಸಾಗುವಾಗ ನೇರವಾಗಿ ಬೀಸುವುದಿಲ್ಲ. ನೆಲದ ತಿರುಗುವಿಕೆಯಿಂದ ಉಂಟಾದ ಕೊರಿಯೋಲಿಸ್ ಆಗುಹವು ಬೀಸುವ ದಾರಿಯನ್ನು ಬಾಗಿದಂತೆ ಮಾಡುತ್ತದೆ. ಅಂದರೆ ಬೀಸುಗಾಳಿಗಳು ಎರಡೂ ಅರೆಗೋಳಗಳಲ್ಲಿ ನೇರಗೆರೆಯಂತೆ ಬಡಗು-ತೆಂಕು ದಿಕ್ಕಿನಲ್ಲಿ ಬೀಸುವುದಿಲ್ಲ. ಬದಲಾಗಿ ಓರೆಯಾಗಿ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಬಡಗು-ಮೂಡಣ ಇಲ್ಲ ತೆಂಕು-ಪಡುವಣ ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಬಡಗು-ಪಡುವಣ ಇಲ್ಲ ತೆಂಕು-ಮೂಡಣದ ದಿಕ್ಕಿನಿಂದ ಬೀಸುತ್ತವೆ. ಬೀಸುಗಾಳಿಗಳನ್ನು ಹೆಸರಿಸುವಾಗ ಅವು ಯಾವ ದಿಕ್ಕಿನಿಂದ ಬೀಸುತ್ತಿವೆಯೋ ಆ ದಿಕ್ಕಿನ ಬೀಸುಗಾಳಿಗಳೆಂದು ಗುರುತಿಸಲಾಗುತ್ತದೆ.

ಕೆಲವೆಡೆ ಬೀಸುಗಾಳಿಗಳು ಒಂದೇ ದಿಕ್ಕಿನಿಂದ ಒಂದೇತೆರನಾಗಿ ಬೀಸುತ್ತಿರುತ್ತವೆ, ಅಂತವುಗಳನ್ನು ವಾಡಿಕೆಯ ಬೀಸುಗಾಳಿಗಳು (Prevailing winds) ಎಂದು ಕರೆಯುತ್ತೇವೆ. ವಾಡಿಕೆಯ ಬೀಸುಗಾಳಿಗಳು ಬಂದು ಸೇರುವ ನೆಲೆಗಳನ್ನು ಕೂಡು/ಒಟ್ಟುಸೇರು ಹರವುಗಳೆಂದು (convergence zones) ಕರೆಯುತ್ತೇವೆ. ಕೊರಿಯೋಲಿಸ್ ಆಗುಹದಿಂದ ಬೀಸುಗಾಳಿಯ ಏರ್ಪಾಡುಗಳು ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಎಡಸುತ್ತು (counter-clockwise) ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಬಳಸುತ್ತು (clockwise) ತಿರುಗುತ್ತವೆ.

ನೆಲವು ಅಯ್ದು ಬೀಸುಗಾಳಿ ಹರವುಗಳನ್ನು ಹೊಂದಿದೆ

  1. ತಗ್ಗಿದ ಗಾಳಿನೆಲೆಗಳು,
  2. ಮಾರು ಗಾಳಿಗಳು,
  3. ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳು,
  4. ಪಡುವಣಗಾಳಿಗಳು
  5. ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು.

ಇವುಗಳ ಜೊತೆಗೆ ಗಾಳಿಹೊದಿಕೆಯ ಸುತ್ತೇರ್ಪಾಟನ್ನು ಮೂರು ಕುಣಿಕೆಗಳಲ್ಲಿ ಹೆಸರಿಸಲಾಗಿದೆ. ಅವು (1) ಹ್ಯಾಡ್ಲಿಸ್ ಗಾಳಿಕುಣಿಕೆ(cell), (2) ಫ್ಯಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆ ಮತ್ತು (3) ತುದಿಯ ಗಾಳಿಕುಣಿಕೆ.

ಗಾಳಿಹೊದಿಕೆಯ ಸುತ್ತೇರ್ಪಾಟಿನ ಕುಣಿಕೆಗಳು (Atmospheric Circulation Cells)

ಇಡಿನೆಲದೊಳು ಈ ಬೀಸುಗಾಳಿ ಕುಣಿಕೆಗಳು 30ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಳಿಗೆ ಒಂದರಂತೆ ಗುರುತಿಸಲಾಗಿದೆ. 0-30ಡಿಗ್ರಿಯ ಕುಣಿಕೆಯನ್ನು ಹ್ಯಾಡ್ಲಿ ಗಾಳಿಕುಣಿಕೆ, 30-60ಡಿಗ್ರಿಯದ್ದು ಫ್ಯಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆ ಮತ್ತು 60-90ಡಿಗ್ರಿಗೆ ತುದಿಯ ಗಾಳಿಕುಣಿಕೆ ಎಂದು ಹೆಸರಿಸಲಾಗಿದೆ.
ಹ್ಯಾಡ್ಲಿ ಗಾಳಿಕುಣಿಕೆ: ಹ್ಯಾಡ್ಲಿಸ್ ಕುಣಿಕೆಯು ಜಾರ್ಜ್ ಹ್ಯಾಡ್ಲಿ ಎಂಬವರ ಹೆಸರಿನಲ್ಲಿ ಕರೆಯಲಾಗಿದ್ದೂ, ಇದು ನೆಲನಡುಗೆರೆಯ ಎರಡೂ ಬದಿಗಳು ಅಂದರೆ ಬಡಗು ಅರೆಗೋಳ ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದ 0-30ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಳವರೆಗೆ ಸುತ್ತುವ ಗಾಳಿಯ ಇಡಿನೆಲ ಮಟ್ಟದ ಕುಣಿಕೆಯಾಗಿದೆ. ನೆಲನಡುಗೆರೆಯ ಹತ್ತಿರದ ಗಾಳಿಯು ಮೇಲಕ್ಕೇರಿ, ಸುಮಾರು 10-15ಕಿಮೀ ಎತ್ತರದಲ್ಲಿ ತುದಿಗಳ ಕಡೆಗೆ ಸಾಗುತ್ತಾ, ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಗಳ (subtropics) ಮೇಲೆ ಕೆಳಗಿಳಿದು ಮತ್ತೇ ನೆಲದ ಮೇಲ್ಮಯ್ಗೆ ಹತ್ತಿರವಾಗಿ ನೆಲನಡುಗೆರೆಯ ಕಡೆಗೆ ಮಾರು ಗಾಳಿಗಳಾಗಿ (trade winds) ಹಿಂದಿರುಗಿದಾಗ ಒಂದು ಕುಣಿಕೆ ಮುಗಿದಂತಾಗುತ್ತದೆ. ಈ ಸುತ್ತುವಿಕೆಯಿಂದ ಮಾರು ಗಾಳಿಗಳು, ಬಿಸಿಲ್ನೆಲೆಯ ಮಳೆಗಳು, ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಯ ಮರಳುಗಾಡುಗಳು, ಹರಿಕೇನ್ ಗಳು ಮತ್ತು ಕಡುಬಿರುಗಾಳಿಗಳು (Jet Streams) ಉಂಟಾಗಿವೆ.

ನೆಲನಡುಗೆರೆಯ ಪಟ್ಟಿ ಹಾಗು ಅದಕ್ಕೆ ಹೊಂದಿಕೊಂಡಿರುವ ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವು ತಾಣಗಳಲ್ಲೆಲ್ಲಾ ಇತರೆಲ್ಲೆಡೆಗಿಂತ ಹೆಚ್ಚಾಗಿ ಕಾದ ಗಾಳಿಯು ತೇಲಿಕೊಂಡು ಮೇಲೇರಿ ದಟ್ಟ ಮೋಡಗಳು ಉಂಟಾಗಿ ಗುಡುಗಿನಿಂದ ದಟ್ಟ ಮಳೆಯನ್ನು ಸುರಿಸುತ್ತದೆ. ಮಳೆಯಿಂದಾಗಿ ನೀರಾವಿಯನ್ನು ಕಳೆದುಕೊಂಡ ಗಾಳಿಯು ಒಣದಾಗಿ ಅಡಿ-ಬಿಸಿಲನೆಲೆಗಳ ಮೇಲೆ ಕೆಳಗಿಳಿಯುತ್ತದೆ. ಇದರಿಂದಾಗಿ ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಗಳಲ್ಲಿ ನೆಲನಡುಗೆರೆಯ ಪಟ್ಟಿಯಲ್ಲಿ ಉಂಟಾಗುವಂತೆ ದಟ್ಟ ಗುಡುಗು ಮಳೆಯಾಗುವುದಿಲ್ಲ. ಆದ್ದರಿಂದಲೇ ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಗಳಲ್ಲಿ ಹೆಚ್ಚು ಮರಳುಗಾಡುಗಳು ಕಂಡುಬರುತ್ತವೆ.
ಫ್ಯಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆ: ಹ್ಯಾಡ್ಲಿ ಮತ್ತು ತುದಿಯ ಗಾಳಿಕುಣಿಕೆಗಳು ಸೇರಿ 30-60ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಳ ನಡುವೆ ಫ್ಯಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆಯನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ. ಹ್ಯಾಡ್ಲಿ ಗಾಳಿಕುಣಿಕೆಯಲ್ಲಿ ಕೆಳಗಿಳಿಯುತ್ತಿರುವ ಗಾಳಿಯ ಒಂದುಪಾಲು ಫ್ಯಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆಯ ಪಾಲಾಗಿ ನೆಲದಮಟ್ಟದಲ್ಲಿ ಪಡುವಣಗಾಳಿಗಳಾಗಿ ಬೀಸುತ್ತವೆ. 60ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಯ ಹತ್ತಿರ ಮೇಲಕ್ಕೇರಿ ನೆಲನಡುಗೆರೆಯ ದಿಕ್ಕಿನೆಡೆಗೆ ಸಾಗುತ್ತದೆ.

Hadley-Farell-Atmospheric-Cell

ತುದಿಯ ಗಾಳಿಕುಣಿಕೆ: ೬೦ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಯಲ್ಲಿ ನೆಲ/ಹೆಗ್ಗಡಲಿಗೆ ತಾಕಿ ಬಿಸಿಗೊಂಡ ಗಾಳಿ ಮೇಲೇರಿ ತುದಿಗಳಿಗೆ ತಲುಪಿದಾಗ ತಣಿದಿರುತ್ತದೆ. ಎತ್ತುಗೆಗೆ ಬಡಗು ತುದಿಗೆ ತಲುಪುವ ಹೊತ್ತಿಗೆ ತಂಪುಗೊಂಡ ಗಾಳಿ ಕೆಳಗಿಳಿದು ನೆಲದಮಟ್ಟದಲ್ಲಿ ತೆಂಕು-ಪಡುವಣ ದಿಕ್ಕಿನಲ್ಲಿ ತುದಿಯ-ಮೂಡಣಗಾಳಿಗಳಾಗಿ ಬೀಸುತ್ತದೆ.

ಬೀಸುಗಾಳಿ ಹರವುಗಳು (Wind Zones)

ಡೋಲ್-ಡ್ರಮ್ಸ್ (ತಗ್ಗಿದಗಾಳಿನೆಲೆಗಳು)

ಹ್ಯಾಡ್ಲಿ ಗಾಳಿಕುಣಿಕೆಯಿಂದಾಗಿ ಮಾರುಗಾಳಿಗಳು ಮತ್ತು ಕಡಿಮೆ ಒತ್ತಡದ ಡೋಲ್-ಡ್ರಮ್ಸ್ ಉಂಟಾಗುತ್ತವೆ. ಎರಡೂ ಅರೆಗೋಳದ ಮಾರುಗಾಳಿಗಳು ಕೂಡುವ ತಾಣವನ್ನು ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವು (ITCZ – intertropical convergence zone) ಎಂದು ಕರೆಯುತ್ತೇವೆ. ಈ ಹರವಿನ ಸುತ್ತಲಿರುವುದೇ ಡೋಲ್-ಡ್ರಮ್ಸ್. ನೆಲನಡುಗೆರೆಯಿಂದ 5ಡಿಗ್ರಿ ಬಡಗು ಮತ್ತು ತೆಂಕಿಗೆ ಹರಡಿದೆ. ಇಲ್ಲಿ ನೆಲವು ಕಡುಕಾದು, ಗಾಳಿಯು ಹಿಗ್ಗುತ್ತಾ ಮೇಲೇರುತ್ತದೆ. ಈ ವಾಡಿಕೆಯ ಗಾಳಿಗಳು ಅಸಳೆಯವಾಗಿದ್ದೂ ಗಾಳಿಪಾಡು (weather) ನಿಂತಗಾಳಿಯಂತೆ ಇರುತ್ತದೆ.

ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವು, ನೆಲನಡುಗೆರೆಯ ಎರಡು ಬದಿಗೂ ಹರಡಿರುತ್ತದೆ. ನೇಸರದಿಂದ ನೆಲನಡುತಾಣವು ಕಾದಂತೆಲ್ಲ ಗಾಳಿಯ ರಾಶಿಯು ಮೇಲಕ್ಕೇರಿ ಬಡಗು ಮತ್ತು ತೆಂಕಿನೆಡೆಗೆ ಸಾಗುತ್ತದೆ. ಹೀಗೆ ಸಾಗಿಬಂದ ಕಡಿಮೆ ಒತ್ತಡದ ಬಿಸಿ ಗಾಳಿಯು 30ಡಿಗ್ರಿ ಬಡಗು ಮತ್ತು ತೆಂಕಿನ ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಯ ಹೆಚ್ಚು ಒತ್ತಡದ ಪಟ್ಟಿಗಳಾದ ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳ ಸುತ್ತ ಕೆಳಗಿಳಿಯುತ್ತದೆ. ಅದರಲ್ಲಿ ಒಂದುಪಾಲು ಗಾಳಿ ರಾಶಿಯು ಮರಳಿ ತಗ್ಗಿದಗಾಳಿನೆಲೆಗಳೆಡೆಗೆ ಸಾಗಿದರೆ, ಇನ್ನೊಂದುಪಾಲು ಎದುರು ದಿಕ್ಕಿನಲ್ಲಿ ಪಡುವಣಗಾಳಿಗಳಾಗಿ ಬೀಸುತ್ತವೆ.

Wind-Zones

ಮಾರು ಗಾಳಿಗಳು (Trade Winds)

ಮಾರು ಗಾಳಿಗಳು ಹೆಚ್ಚು ಬಲವುಳ್ಳ ವಾಡಿಕೆಯ ಗಾಳಿಗಳಾಗಿದ್ದು ಬಿಸಿಲ್ನೆಲೆಗಳ (tropics) ಮೇಲೆ ಬೀಸುತ್ತವೆ. ಕೊರಿಯೋಲಿಸ್ ಬಲವು ನೆಲನಡುಗೆರೆಯಲ್ಲಿ ಇರುವುದೇ ಇಲ್ಲ ಮತ್ತು ಅದು ತುದಿಗಳೆಡೆಗೆ ಸಾಗಿದಂತೆ ಹೆಚ್ಚುತ್ತಾ ಹೋಗುತ್ತದೆ. ಈ ದೂಸರೆಯಿಂದಾಗಿ ಮಾರುಗಾಳಿಗಳು, ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಯ ಹೆಚ್ಚು ಒತ್ತಡದ ನೆಲೆಗಳಿಂದ ಕಡಿಮೆ ಒತ್ತಡದ ನೆಲನಡುಗೆರೆಯೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಬಡಗು-ಮೂಡಣ ಕಡೆಯಿಂದ ತೆಂಕು-ಪಡುವಣ ದಿಕ್ಕಿನಲ್ಲಿ ಹಾಗೆಯೆ ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ತೆಂಕು-ಮೂಡಣ ಕಡೆಯಿಂದ ಬಡಗು-ಪಡುವಣ ದಿಕ್ಕಿನಲ್ಲಿ ನೆಲನಡುಗೆರೆಯೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಮಾರು ಗಾಳಿಗಳು ಮುಂದಾಗಿಯೇ ತಿಳಿಯಬಹುದಾಗಿವೆ. ಅರಸುಕೆ (exploration), ಅರುಹುಕೆ (communication) ಮತ್ತು ಮಾರಾಟದ ಹಿನ್ನಡವಳಿಯಲ್ಲಿ ಮಾರುಗಾಳಿಗಳೂ ಕೂಡ ದೂಸರೆಯಾಗಿವೆ. ಇಂದಿಗೂ ಹಡಗಿನ ಸರಕುಸಾಗಣಿಕೆಗೆ ಮಾರುಗಾಳಿಗಳು ಮತ್ತು ಅವುಗಳಿಂದ ಹರಿಯುವ ಹೆಗ್ಗಡಲ ಒಳಹರಿವುಗಳು ಅನುವಾಗಿವೆ.
ನೆಲದಿಂದ ಬೀಸುವ ಮಾರುಗಾಳಿಗಳು ಕಡಲ (ಕಡಲಿನ ಮಾರುಗಾಳಿಗಳು – maritime trade winds) ಮೇಲಿನವುಗಳಿಗಿಂತ ಹೆಚ್ಚು ಒಣ ಮತ್ತು ಬಿಸಿಯಾಗಿರುತ್ತವೆ, ಇವಗಳನ್ನು ಪೆರ್ನೆಲದ ಮಾರುಗಾಳಿಗಳು (continental trade winds) ಎನ್ನಲಾಗುತ್ತದೆ. ಬಿರುಸಾದ ಮಾರುಗಾಳಿಗಳು ಪಡಲಿಕೆ (precipitation) ಇಲ್ಲದ್ದರಿಂದ ಉಂಟಾದರೆ, ಅಸಳಾದ ಮಾರುಗಾಳಿಗಳು ಒಳನಾಡಿನುದ್ದಕ್ಕೂ ಮಳೆಸುರಿಸಬಲ್ಲವು. ತಕ್ಕುದಾದ ಎತ್ತುಗೆಯೆಂದರೆ ತೆಂಕು-ಮೂಡಣ ಏಶಿಯಾದ ಮಾನ್ಸೂನ್ (southeast Asian monsoon).

ಹಡಗು ಸಾಗಣಿಕೆ ಮತ್ತು ಮಳೆಸುರಿತದ ಹೊರತಾಗಿ ಮಾರುಗಾಳಿಗಳು ಸಾವಿರಾರು ಕಿಲೋಮೀಟರುದ್ದಕ್ಕೂ ದುಂಬು, ಮರಳನ್ನು ಹೊತ್ತೊಯ್ಯೊಬಲ್ಲದು. ಎತ್ತುಗೆಗೆ ಸಹಾರ ಮರಳುಗಾಡಿಂದ ಹೊತ್ತೊಯ್ದ ಮರಳು ದುಮ್ಮಿನ ಗಾಳಿಮಳೆಯು (storm) ಕೆರೀಬಿಯನ್ ಕಡಲಿನಲ್ಲಿರುವ ನಡುಗಡ್ಡೆಗಳು ಮತ್ತು ಫ್ಲೋರಿಡಾ ವರೆಗೂ ಸುಮಾರು 8,047ಕಿಮೀ ಉದ್ದಕ್ಕೂ ಬೀಸುತ್ತವೆ.

ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳು (Horse Latitudes)

ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳು ಪಡುವಣಗಾಳಿಗಳು ಮತ್ತು ಮಾರು ಗಾಳಿಗಳ ನಡುವಣ ಕಿರಿದಾದ ಹರವಿನಲ್ಲಿನ ಒಣ, ಬಿಸಿಯಾದ ಗಾಳಿಪರಿಚೆಗಳಾಗಿವೆ (climates). ಹ್ಯಾಡ್ಲಿ ಮತ್ತು ಫಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆಗಳ ನಡುವಲ್ಲಿ ಈ ಗಾಳಿಪರಿಚೆಗಳು ಏರ್ಪಡುತ್ತವೆ. ಇವು 30-35ಡಿಗ್ರಿ ಬಡಗು ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಹಬ್ಬಿರುತ್ತವೆ. ತೆಂಕು-ಅಮೇರಿಕಾದ ಮಳೆಯಿಲ್ಲದ ಅಟಕಾಮಾದಿಂದ ಹಿಡಿದು ಆಪ್ರಿಕಾದ ಕಲಹರಿ ಬಗೆಯ ಹಲವಾರು ಮರಳುಗಾಡುಗಳು ಈ ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳಲ್ಲಿ ಕಂಡುಬರುತ್ತವೆ. ಇಲ್ಲಿ ವಾಡಿಕೆಯ ಬೀಸುಗಾಳಿಗಳು ಹೆಚ್ಚಾಗಿ ಹಗುರವಾಗಿರುತ್ತವೆ. ಒಂದುವೇಳೆ ಬಿರುಸಾಗಿ ಬೀಸಿದರೂ ಚೂರು ಹೊತ್ತಿಗೆಲ್ಲಾ ತಗ್ಗುತ್ತವೆ. ಆದ್ದರಿಂದ ಇಲ್ಲಿ ಹೆಚ್ಚುಸಲ ಬೀಸುಗಾಳಿಯೇ ಇಲ್ಲವೆಂಬಂತೆ ಅಲುಗಾಡದ ತಾಣವಿದ್ದಂತೆ ಇರುತ್ತದೆ. ವಲಸೇನೆಲಸು (colonial) ನಾಳುಗಳಲ್ಲಿ ನ್ಯೂ-ಜಿಲ್ಯಾಂಡಿನ ಹಡಗಾಳುಗಳು ಕುದುರೆಗಳನ್ನು ವೆಸ್ಟ್-ಇಂಡೀಸ್ಗೆ ಸಾಗಿಸುತ್ತಿದ್ದಾಗ ಗಾಳಿಯೂ ಅಲುಗಾಡದ ಈ ತಾಣಗಳಲ್ಲಿ ನಾಳುಗಟ್ಟಲೆ ಸಿಕ್ಕಿಕೊಂಡು, ಕುಡಿಯಲು ನೀರೂ ಇಲ್ಲದಂತಾಗಿ ಸತ್ತ ಕುದುರೆಗಳನ್ನು ಅಲ್ಲಿಯೇ ಕಡಲಿಗೆ ಬಿಸಾಡಿ ಹೋಗುತ್ತಿದ್ದರಂತೆ. ಈ ದೂಸರೆಯಿಂದಾಗಿಯೇ ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳು ಎಂಬ ಹೆಸರು ಬಂತೆಂದು ಹೇಳಲಾಗಿದೆ.

trade-winds

ಪಡುವಣಗಾಳಿಗಳು (Westerlies)

ಪಡುವಣಗಾಳಿಗಳು ಪಡುವಣದಿಂದ ನಟ್ಟಡ್ಡಗೆರೆಗಳ (mid latitudes) ತಾಣಗಳೆಡೆಗೆ ಬೀಸುವ ವಾಡಿಕೆಯ ಗಾಳಿಗಳಾಗಿವೆ. ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಗಳ ಹೆಚ್ಚು ಒತ್ತಡದ ನೆಲೆಗಳಿಂದ ನಡುತರ ಕಡಿಮೆ ಒತ್ತಡದ ನೆಲೆಗಳೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಇವು ಫಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆಯಿಂದಾಗಿ ಉಂಟಾಗುವ ನೆಲಮಟ್ಟದ ಬೀಸುಗಾಳಿಗಳು. ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು ಮತ್ತು ಹೆಚ್ಚು ಒತ್ತಡದ ಕುದುರೆ ಅಡ್ಡಗೆರೆ ತಾಣಗಳ ಬೀಸುಗಾಳಿಗಳು, ಎರಡು ಬದಿಗಳಿಂದ ಕೂಡಿ ಪಡುವಣಗಾಳಿಗಳನ್ನು ಉಂಟುಮಾಡುತ್ತವೆ. ಪಡುವಣಗಾಳಿಗಳು ಚಳಿಗಾಲದಲ್ಲಿ ಹಾಗು ತುದಿಗಳಮೇಲೆ ಕಡಿಮೆ ಒತ್ತಡವಿದ್ದ ಹೊತ್ತಲ್ಲಿ ಹೆಚ್ಚು ಬಿರುಸಾಗಿರುತ್ತವೆ ಮತ್ತು ಬೇಸಿಗೆಯಲ್ಲಿ ಹಾಗು ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು ಬಿರುಸಾಗಿದ್ದಾಗ ಪಡುವಣಗಾಳಿಗಳು ಅಳವುಗುಂದುತ್ತವೆ.

ತೆಂಕು ಅರೆಗೋಳದ 40, 50 ಮತ್ತು 60ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಳ ನಡುವಿನ ಬೀಸುಗಾಳಿಗಳ ಹರವನ್ನು ಸಾಲಾಗಿ “ಬೊಬ್ಬಿರಿವ ನಲವತ್ತುಗಳು – (Roaring Forties)”, “ರೊಚ್ಚಿನ ಅಯ್ವತ್ತುಗಳು – (Furious Fifties)” ಮತ್ತು “ಕಿರುಚುವ ಅರವತ್ತುಗಳು – (Shrieking Sixties)” ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಏಕೆಂದರೆ ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಹೆಗ್ಗಡಲು ಹೆಚ್ಚಾಗಿ ಹಬ್ಬಿರುವುದರಿಂದ ಇಲ್ಲಿನ ಪಡುವಣಗಾಳಿಗಳು ಕಡುಬಿರುಸಾಗಿ ಬೀಸುತ್ತವೆ. ಈ ತಾಣಗಳಲ್ಲೆಲ್ಲ ಬಹಳ ಕಡಿಮೆ ಗಟ್ಟಿನೆಲಗಳು (Land mass) ಕಾಣಸಿಗುವುದರಿಂದ ಇಲ್ಲಿ ಬೀಸುಗಾಳಿಗೆ ಹೆಚ್ಚು ತಡೆಯಿಲ್ಲದಂತಾಗುತ್ತದೆ. ತೆಂಕು ಅಮೆರಿಕಾ ಮತ್ತು ಆಸ್ಟ್ರೇಲಿಯಾಗಳ ತುತ್ತತುದಿ ಹಾಗು ನ್ಯೂಜಿಲ್ಯಾಂಡಿನ ನಡುಗಡ್ಡೆಗಳೊಂದೇ (island) ಬೊಬ್ಬಿರಿವ ನಲವತ್ತುಗಳು ಹಾದುಹೋಗುವ ಗಟ್ಟಿನೆಲಗಳು. ಅರಸುಗೆಯ (exploration) ನಾಳುಗಳಲ್ಲಿ ಹಡಗಾಳುಗಳಿಗೆ ಬೊಬ್ಬಿರಿವ ನಲವತ್ತುಗಳು ಬಹಳ ಮುಕ್ಯವಾಗಿದ್ದವು. ಯುರೋಪ್ ಹಾಗು ಪಡುವಣ ಏಶಿಯಾದ ಅರಸುಗರು ಮತ್ತು ಮಾರಾಳಿಗಳು ತೆಂಕು-ಮೂಡಣದ ಸಾಂಬಾರು ಮಾರುಕಟ್ಟೆಗಳಿಗೆ ಮತ್ತು ಆಸ್ಟ್ರೇಲಿಯಾಗೆ ಸೇರಲು ಈ ಬೊಬ್ಬಿರಿವ ನಲವತ್ತುಗಳು ಎಂಬ ಪಡುವಣಗಾಳಿಗಳನ್ನು ಬಳಸಿ ಹೋಗುತ್ತಿದ್ದರು.

ಹೆಗ್ಗಡಲ ಒಳಹರಿವುಗಳ (Oceanic Currents) ಮೇಲೆ ಅದರಲ್ಲೂ ಹೆಚ್ಚಾಗಿ ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಪಡುವಣಗಾಳಿಗಳು ಹೆಚ್ಚು ಪ್ರಬಾವ ಬೀರಿವೆ. ಇಡೀ ನೆಲದಲ್ಲೆಲ್ಲಾ ದೊಡ್ಡದಾದ ಅಂಟಾರ್ಟಿಕ್ ತುದಿಸುತ್ತುವ ಒಳಹರಿವು (Antarctic Circumpolar Current-ACC), ಪಡುವಣಗಾಳಿಗಳ ಪ್ರಬಾವದಿಂದ ಪಡುವಣ-ಮೂಡಣ ದಿಕ್ಕಿನಲ್ಲಿ ಪೆರ್ನೆಲವನ್ನು (continent) ಸುತ್ತುತ್ತದೆ. ಹೀಗೆ ಸುತ್ತುತ್ತಾ ಎಣಿಸಲಾಗದಶ್ಟು ತಂಪಾದ, ಹೆಚ್ಚು ಪೊರೆತಗಳ (nutrients) ನೀರನ್ನು ಸಾಗಿಸುವುದಲ್ಲದೆ ಒಳ್ಳೆಯ ಕಡಲಬಾಳಿನ ಹೊಂದಿಕೆಯೇರ್ಪಾಟುಗಳನ್ನು (marine ecosystems) ಮತ್ತು ಉಣಿಸುಬಲೆಗಳನ್ನು (food webs) ಉಂಟುಮಾಡುತ್ತದೆ.

ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು (Polar Easterlies)

ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು ಒಣ ಹಾಗು ತಂಪಾದ ವಾಡಿಕೆಯ ಗಾಳಿಗಳಾಗಿದ್ದು ಮೂಡಣದ ಕಡೆಯಿಂದ ಬೀಸುತ್ತವೆ. ಇವು ಬಡಗು-ತೆಂಕು ತುದಿಗಳ (poles) ಎತ್ತರದ ಹಾಗು ಹೆಚ್ಚು ಒತ್ತಡದ ನೆಲೆಗಳಿಂದ ನಡುತರ ಕಡಿಮೆ ಒತ್ತಡದ ಅಡಿ-ತುದಿಯ (sub-polar) ನೆಲೆಗಳೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಇವು ತಂಡ್ರಾ ಮತ್ತು ಮಂಜು ಹೊದ್ದ ನೆಲೆಗಳಿಂದ ಬೀಸುವುದರಿಂದ ಕಡುತಂಪಾಗಿರುತ್ತವೆ. ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು ಬಡಗು ತುದಿಗಿಂತ ಹೆಚ್ಚು ತೆಂಕಲ್ಲಿ ಕಂಡುಬರುತ್ತವೆ.

ಮುಂದಿನ ಬಾಗದಲ್ಲಿ ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವು ಮತ್ತು ಅದರ ಕದಲಿಕೆಯಿಂದ ನೆಲದ ಗಾಳಿಪಾಡಿನ ಮೇಲೆ ಉಂಟಾಗುವ ಆಗುಹಗಳ ಬಗ್ಗೆ ತಿಳಿಯೋಣ.

facebooktwittergoogle_plusredditpinterestlinkedinmail

‘ಕೊರಿಯೋಲಿಸ್’ ಎಂಬ ಬಲ

ಕೊರಿಯೋಲಿಸ್ (Coriolis) ಎಂಬ ವಿಜ್ಞಾನದ ಆಗುಹವನ್ನು ಹೀಗೆ ಬಣ್ಣಿಸಬಹುದು.

ಒಂದು ತಿರುಗುತ್ತಿರುವ ನೆಲೆಗಟ್ಟಿಗೆ ನಂಟಾಗಿ ಸಾಗುತ್ತಿರುವ ವಸ್ತುವೊಂದರ ಮೇಲೆ ಉಂಟಾಗುವ
ನಿಲ್ಮೆಯ ಬಲವಿದು (inertial force).

ನೆಲೆಗಟ್ಟು(Reference frame) ಬಲಸುತ್ತು ತಿರುಗುತ್ತಿದ್ದರೆ, ಸಾಗುತ್ತಿರುವ ವಸ್ತುವಿನ ಎಡಕ್ಕೆ ಬಲ ಉಂಟಾಗುತ್ತದೆ. ನೆಲೆಗಟ್ಟು ಎಡಸುತ್ತು ತಿರುಗುತ್ತಿದ್ದರೆ ಸಾಗುತ್ತಿರುವ ವಸ್ತುವಿನ ಬಲಕ್ಕೆ ಬಲ
ಉಂಟಾಗುತ್ತದೆ.

ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ಕಪ್ಪುಚುಕ್ಕೆಯಲ್ಲಿ ತೋರಿಸಲಾಗಿರುವ ವಸ್ತು ನೇರವಾದ ಗೆರೆಯಲ್ಲಿ ಸಾಗಿದರೂ, ಅದನ್ನು ನೋಡುವವನಿಗೆ (ಕೇಸರಿ ಚುಕ್ಕೆಯಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ) ಆ ವಸ್ತು ಓರೆಗೆರೆಯಲ್ಲಿ ಸಾಗುತ್ತಿರುವಂತೆ ಕಾಣಿಸುತ್ತದೆ. ನೋಡುಗನು ನಿಂತ ನೆಲೆಗಟ್ಟು ತಿರುಗುತ್ತಿರುವುದೇ ಇದಕ್ಕೆ ಕಾರಣ. ಹೀಗೆ ತಿರುಗುತ್ತಿರುವ ನೆಲೆಗಟ್ಟು ಉಂಟುಮಾಡುವ ಪರಿಣಾಮವೇ ಕೊರಿಯೋಲಿಸ್.

Corioliskraftanimation

ಕೊರಿಯೋಲಿಸ್ ಆಗುಹವುನ್ನು ಗಸ್ಪಾರ್ಡ್-ಗುಸ್ತಾವ್ ದು ಕೊರಿಯೋಲಿಸ್ ( Gaspard-Gustave de Coriolis) ಎಂಬ ಎಣಿಕೆಯರಿಗನು ಅರಿತು ಬಿಡಿಸಿ ಹೇಳಿದ್ದರಿಂದ ಅವನ ಹೆಸರನಲ್ಲಿ ಕರೆಯಲಾಗಿದೆ.

ನೆಲವು ಒಂದು ತಿರುಗುವ ನೆಲೆಗಟ್ಟಾಗಿದ್ದು ಅದಕ್ಕೆ ನಂಟಾಗಿ ಗಾಳಿಯು ಬೀಸಿದಾಗಲೂ ಕೊರಿಯೋಲಿಸ್ ಆಗುಹ ಉಂಟಾಗುತ್ತದೆ.

ಬೀಸುಗಾಳಿಯು ಹೆಚ್ಚು ಒತ್ತಡದ ನೆಲೆಯಿಂದ ಕಡಿಮೆ ಒತ್ತಡದ ನೆಲೆಯೆಡಿಗೆ ಬೀಸುತ್ತದೆ. ಆದರೆ ಬೀಸುಗಾಳಿಯು ನೇರಗೆರೆಯಲ್ಲಿ ಸಾಗಿದಂತೆ ಕಾಣುವುದಿಲ್ಲ. ಕೊರಿಯೋಲಿಸ್ ಆಗುಹದಿಂದ ಬೀಸುಗಾಳಿಯು ಒಂದು ದಿಕ್ಕಿನೆಡೆಗೆ ನೇರವಾಗಿ ಸಾಗದೆ ಬಾಗಿದಂತಾಗುತ್ತದೆ.

ನೆಲದ ನಡುಗೆರೆಯು (Equator) ಹೆಚ್ಚು ಅಗಲವಾಗಿರುವುದರಿಂದ ನೆಲವು ಅಲ್ಲಿ, ತುದಿಗಳಿಗಿಂತ ಹೆಚ್ಚು ಬಿರುಸಾಗಿ ತಿರುಗುತ್ತದೆ. ನೆಲನಡುಗೆರೆಯ ಮೇಲಿನ ಒಂದು ಚುಕ್ಕೆಯು ನೆಲೆದ ಬೇರೆಡೆ ಇರುವ ಇನ್ನಾವುದೇ ಚುಕ್ಕೆಗಿಂತ ಒಂದು ದಿನದಲ್ಲಿ ಹೆಚ್ಚು ದೂರವನ್ನು ಸಾಗಿರುತ್ತದೆ. ಚುಕ್ಕೆಯುನ್ನು ನೆಲನಡುಗೆರೆಯಿಂದ ತುದಿಗಳೆಡೆಗೆ ಜರುಗಿಸಿದಂತೆಲ್ಲ ಚುಕ್ಕೆಯ ತಿರುಗುವಿಕೆಯ ಬಿರುಸು ಕಡಿಮೆಯಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಬಡಗಣ ತುದಿಯೊ ಇಲ್ಲ ತೆಂಕಣ ತುದಿಯ ಮೇಲಿನ ಚುಕ್ಕೆಯನ್ನು ನೆಲನಡುಗೆರೆಯ ಕಡೆಗೆ ಜರುಗಿಸಿದಂತೆಲ್ಲ ಅಲ್ಲಿ ಅದರ ತಿರುಗುವಿಕೆಯ ಬಿರುಸು ಹೆಚ್ಚುತ್ತಾ ಹೋಗುತ್ತದೆ.

ತೋರಿಕೆಗೆ ಹೀಗೆಂದುಕೊಳ್ಳೋಣ, ನೀವು ಈಗ ನೆಲದ ಬಡಗಣ ತುದಿಯಮೇಲೆ ನಿಂತಿದ್ದೀರಿ. ನೀವು ಒಂದು ಚೆಂಡನ್ನು ತೆಂಕಣದ ಕಡೆಗೆ ಬಲು ದೂರದಲ್ಲಿ ನಿಂತ ಗೆಳೆಯನೆಡೆಗೆ ಎಸೆದರೆ ಅದು ಅವನಿರುವಿಕೆಯಿಂದ ಬಲಕ್ಕೆ ಹೋದಂತೆ ಕಾಣಿಸುತ್ತದೆ. ಏಕೆಂದರೆ ನಿಮ್ಮ ಗೆಳೆಯ ನೆಲನಡುಗೆರೆಗೆ ನಿಮಗಿಂತ ಹತ್ತಿರದಲ್ಲಿದ್ದಾನೆ ಮತ್ತು ನಿಮಗಿಂತ ಹೆಚ್ಚು ಬಿರುಸಾಗಿ ಪಡುವಲಿನಿಂದ ಮೂಡಲ ಕಡೆಗೆ ನೆಲಕ್ಕಂಟಿಕೊಂಡೇ ಸಾಗಿರುತ್ತಾನೆ. ಏಕೆಂದರೆ ನೆಲವು ಪಡುವಲಿನಿಂದ ಮೂಡಲ ಕಡೆಗೆ ತಿರುಗುತ್ತಿರುತ್ತದೆ. ಆದ್ದರಿಂದಲೇ ನೀವೆಸೆದ ಚೆಂಡು ನೇರವಾಗಿ ಸಾಗಿ ನಿಮ್ಮ ಗೆಳೆಯ ನಿಂತಲ್ಲಿಗೆ ಹೋದರೂ ನಿಮ್ಮ ಗೆಳೆಯ ಮೂಡಣದ ಕಡೆಗೆ ಹೆಚ್ಚು ಬಿರುಸಾಗಿ ಸಾಗಿದ್ದರಿಂದ, ಚೆಂಡು ಬಲಕ್ಕೆ ಬಾಗಿದಂತೆ ಕಾಣುತ್ತದೆ.

ಇನ್ನು ಸುಳುವಾಗಿ ತಿಳಿಯಬೇಕೆಂದರೆ ಈ ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು ನೋಡಿ. ಇದು ಕುದುರೆ ಗೊಂಬೆಗಳ ಮೇಲೆ ಕುಳಿತು ತಿರುಗುವ ಆಟ. ತಿರುಗುವ ತಟ್ಟೆಯಮೇಲೆ ಅರಿಶಿಣ ಅಂಗಿಯ ತೊಟ್ಟ ಮಗುವು ತನ್ನೆದುರಿಗಿನ ತಿಳಿನೀಲಿ ಬಣ್ಣದಂಗಿಯ ಪೋರನಿಗೆ ಚೆಂಡು ನೇರವಾಗಿ ಎಸೆದಾಗ ಅದು ಎಡಕ್ಕೆ ಹೋದಂತೆ ಕಾಣಿಸುತ್ತದೆ ಅಲ್ಲವೆ. ಇಲ್ಲಿ ತಿರುಗುವ ತಟ್ಟೆಯು ಬಲಸುತ್ತು ತಿರುಗುತ್ತಿದೆ.

imageಮೇಲ್ನೋಟಕ್ಕೆ ಹೀಗೆ ಬಾಗಿದಂತೆ ಕಾಣುವ ಆಗುಹವನ್ನು ಕೊರಿಯೋಲಿಸ್ ಆಗುಹ ಎಂದು ಕರೆಯುತ್ತೇವೆ. ಗಾಳಿಯು ಒಂದು ಚೆಂಡಿನಂತೆ. ಅದು ಬೀಸುವಾಗ ನೆಲದ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ(north hemisphere) ಬಲಕ್ಕೆ ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ(south hemisphere) ಎಡಕ್ಕೆ ಬಾಗಿದಂತೆ ಕಾಣುತ್ತದೆ. ಅಂದರೆ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಬೀಸುಗಾಳಿಯು ಹೆಚ್ಚು ಒತ್ತಡ ನೆಲೆಗಳಿಂದ ಕಡಿಮೆ ಒತ್ತಡದ ನೆಲೆಗಳೆಡೆಗೆ ಬಲಕ್ಕೆ ಸಾಗುತ್ತದೆ. ಆದ್ದರಿಂದಲೇ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಉಂಟಾಗುವ ಸುಂಟರಗಾಳಿಗಳು ಬಲಸುತ್ತಿನವು ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದವು ಎಡಸುತ್ತಿನವು ಆಗಿರುತ್ತವೆ.
image (1)ಬಿರುಸಾಗಿ ಓಡುವ ವಿಮಾನ, ಏರುಗಣಿಗಳಂತವು (Rocket) ಕೊರಿಯೋಲಿಸ್ ಆಗುಹಕ್ಕೆ ಒಳಗಾಗುತ್ತವೆ. ಓಡಿಸುಗರು ಹಾರಾಟದ ಹಂಚಿಕೆಯನ್ನು ಹೆಣೆಯುವಾಗ ನೆಲದ ತಿರುಗುವಿಕೆಯನ್ನು ಎಣಿಕೆಗೆ ತೆಗೆದುಕೊಳ್ಳಬೇಕಾಗುತ್ತದೆ. ಉದಾಹರಣೆಗೆ ನೀವು ಚೆನ್ನೈನ ಬಾನಿನಲ್ಲಿ ನಿಂತು ಕೆಳಗೆ ವಿಮಾನದ ಹಾರುವಿಕೆಯನ್ನು ನೋಡುತ್ತಿರುವಿರಿ. ಚೆನ್ನೈಯಿಂದ (ಉದ್ದದೂರ 80°16′ಮೂಡಣಕ್ಕೆ-80°16′E Longitude) ಲಕನೌ (ಉದ್ದದೂರ 80°55′ಮೂಡಣಕ್ಕೆ-80°55′E Longitude) ಕಡೆಗೆ ತೆರಳುತ್ತಿರುವ ವಿಮಾನ ಹಾರುವುದನ್ನು ನೋಡುತ್ತಿದ್ದೀರಿ. ಒಂದುವೇಳೆ ನೆಲವು ತಿರುಗದೇ ಇದ್ದಿದ್ದರೆ, ಕೊರಿಯೋಲಿಸ್ ಆಗುಹವಿರುತ್ತಿರಲಿಲ್ಲ.

ಆಗ ಓಡಿಸುಗನು ನೇರಗೆರೆಯಂತೆ ಬಡಗಿನ ಕಡೆಗೆ ಹಾರಿಸಿದರೆ ಸಾಕಾಗುತ್ತಿತ್ತು ಮತ್ತು ಬಾನಿನಲ್ಲಿ ನೋಡುತ್ತಿರುವ ನಿಮಗೆ ವಿಮಾನ ಸಾಗಿದ ಹಾದಿ ನೇರಗೆರೆಯಂತೆ ಕಾಣುತಿತ್ತು. ಆದರೆ ನೆಲದ ತಿರುಗುವಿಕೆಯಿಂದ ಕೊರಿಯೋಲಿಸ್ ಉಂಟಾಗಿ ಲಕನೌ ಮೂಡಲಕ್ಕೆ ಸಾಗಿರುತ್ತದೆ ಮತ್ತು ಇದನ್ನು ಎಣಿಕೆಗೆ ತೆಗೆದುಕೊಳ್ಳದೆ ನೇರ ಸಾಗಿ ಬಂದರೆ, ವಿಮಾನ ಲಕನೌ ಬಿಟ್ಟು ಬೇರಾವುದೋ ಊರನ್ನು ಮುಟ್ಟಿರುತ್ತದೆ. ಅದಕ್ಕಾಗಿ ಓಡಿಸುಗನು ಹಾರಾಟದ ನಡುವಲ್ಲಿ ಆಗಾಗ ನೆಲದ ತಿರುಗುವಿಕೆಯನ್ನು ಎಣಿಕೆಗೆ ತಗೊಂಡು ಸಾಗುವ ಹಾದಿಯನ್ನು ಸರಿಮಾಡಿಕೊಳ್ಳುತ್ತಾ ಓಡಿಸಬೇಕಾಗುತ್ತದೆ. ಕೊರಿಯೋಲಿಸ್ ಆಗುಹವನ್ನು ಎಣಿಕೆಗೆ ತಗೊಂಡು ಲಕನೌ ಕಡೆಗೆ ಸಾಗಿದ ಹಾದಿಯು ಬಾನಿನಲ್ಲಿ ಗಮನಿಸುತ್ತಿರುವ ನಿಮಗೆ, ಬಲಕ್ಕೆ ಬಾಗುತ್ತಾ ಹೋದಂತೆ ಕಾಣಿಸುತ್ತದೆ.

ಕೊರಿಯೋಲಿಸ್ ಆಗುಹವನ್ನು ಅರಿಯುವುದರಿಂದ ನೆಲದ ಮೇಲಿನ ಬೀಸುಗಾಳಿಗಳು, ಹೆಗ್ಗಡಲ ಒಳ ಹರಿವುಗಳು ಮತ್ತು ಅವುಗಳಿಂದ ನೆಲದಮೇಲೆ ಉಂಟಾಗುವ ಏರುಪೇರುಗಳನ್ನು ತಿಳಿಯಲು ಅನುವಾಗುತ್ತದೆ. ಮುಂದಿನ ಬಾಗದಲ್ಲಿ ಈ ಕುರಿತು ಹೆಚ್ಚು ತಿಳಿಯೋಣ.

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಅಲ್ಜಿಬ್ರಾ ಏಕೆ ಕಲಿಯಬೇಕು?

ಎಣಿಕೆಯರಿಮೆ (Mathematics) ಅಥವಾ ಗಣಿತವನ್ನು ಒಂದನೇ ತರಗತಿಯಿಂದ ಕಲಿಯುತ್ತೇವೆ, ಅದರಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆ (Algebra) ಎಂದರೇನು ಮತ್ತು ಅದನ್ನು ಕಲಿಯುವ ಬಗೆಯನ್ನು ಏಳನೇ ತರಗತಿಯಲ್ಲಿ ಕಲಿಯುತ್ತೇವೆ, ಹೀಗೆ ಮುಂದುವರೆದು ಹತ್ತನೇ ತರಗತಿಯವರೆಗೆ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಗಣಿತದ ಒಂದು ಭಾಗವಾಗಿ ಕಲಿಯುತ್ತೇವೆ. ಇದು ಶಾಲೆಯ ಕಲಿಕೆಯ ಬಗ್ಗೆಯಾಯ್ತು, ಇನ್ನು ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಮೇಲು ಹಂತದ ಕಲಿಕೆಯಲ್ಲಿ ಮತ್ತು ಹಲವಾರು ಅರಿಮೆಯ ಕವಲುಗಳಲ್ಲಿ (Fields of science) ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಲಾಗಿದೆ.

ಬರಿಗೆಯೆಣಿಕೆ ಎಂದರೇನು ಮತ್ತು ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಏಕೆ ಕಲಿಯಬೇಕು ?

ಬರಿಗೆಯೆಣಿಕೆ ಎಂಬುವುದು ಎಣಿಕೆಯರಿಮೆ ಅಥವಾ ಗಣಿತದ ಒಂದು ಭಾಗವಾಗಿದೆ, ಯಾವುದೇ ಸರಿಹೊಂದಿಕೆಯಲ್ಲಿ (Equation)  ಬರಿಗೆಗಳು (Letters) ಮತ್ತು ಹಲವು ಗುರುತುಗಳನ್ನು (Symbols) ಬಳಸಿಕೊಂಡು ಅಂಕೆ ಮತ್ತು ಬೆಲೆಯನ್ನು (numbers and quantities/values) ಕಂಡುಕೊಳ್ಳಲಾಗುವುದು.

ಇನ್ನು ಸುಲಭವಾಗಿ ಹೇಳಬೇಕೆಂದರೆ,

ಬರಿಗೆಯೆಣಿಕೆ ಎಂಬುವುದು ಬರಿಗೆಗಳು ಮತ್ತು ಗುರುತುಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಗಣಿತದ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಬಿಡಿಸುವುದು.

ಇಲ್ಲಿ ಯಾವುದೇ ಬರಿಗೆಗಳನ್ನು (Letters/ ಅಕ್ಷರ) ಬಳಸಿಕೊಳ್ಳಬಹುದಾಗಿದೆ, ಉದಾಹರೆಣೆಗೆ x,y,z,a,b,c,d,α,β, , , ಇಲ್ಲಿ ಗುರುತುಗಳೆಂದರೆ ಕೂಡು (+), ಕಳೆ (-), ಭಾಗಿಸು (/), ಗುಣಿಸು (*, x), ಸರಿ (=) ಹಾಗು ಇತರೆ ಚಿಹ್ನೆಗಳು. ಮುಂದಿನ ಉದಾಹರಣೆಗಳಲ್ಲಿ ಈ ಬರಿಗೆಗಳು ಮತ್ತು ಗುರುತುಗಳನ್ನು ಹೇಗೆ ಬಳಸಿಕೊಳ್ಳಲಾಗಿದೆ ಎಂಬುವುದನ್ನು ತಿಳಿಯೋಣ.

ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಏಕೆ ಕಲಿಯಬೇಕು ಎಂಬುವುದನ್ನು ಮೊದಲು ತಿಳಿಯೋಣ ಬನ್ನಿ.

ಬರಿಗೆಯೆಣಿಕೆ ಎಂಬುವುದು ದಿನದ ಬದುಕಿನ ಹಲವು ಲೆಕ್ಕಾಚಾರವನ್ನು ಬಿಡಿಸಲು ನೆರವಾಗುತ್ತದೆ:

ನಾವುಗಳು ಬದುಕಿನಲ್ಲಿ ಒಂದಲ್ಲಾ ಒಂದು ರೀತಿಯಲ್ಲಿ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡುತ್ತಾ ಇರುತ್ತೇವೆ, ಈ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಸುಲಭವಾಗಿಸಿದರೆ ನಮಗೆ ಒಂದಿಷ್ಟು ತಲೆಬಿಸಿ ತಪ್ಪುತ್ತದೆ ಅಲ್ಲವೇ? :-)  ಈ ನಿಟ್ಟಿನಲ್ಲಿಕೆಳಗಿನ ತುಂಬಾ ಸುಲಭವಾದ ಉದಾಹರಣೆಗಳನ್ನು ನೋಡೋಣ.

ಉದಾಹರಣೆ 1: ನೀವು ಒಂದು ವಾರದಲ್ಲಿ ಶನಿವಾರ 2 ಲೀಟರ್ ಹಾಲು ಕೊಳ್ಳುತ್ತೀರಿ, ಭಾನುವಾರ 3 ಲೀಟರ್ ಮತ್ತು ಉಳಿದ ಐದು ದಿನವೂ 1 ಲೀಟರ್ ಹಾಲು ಕೊಳ್ಳುತ್ತೀರಿ. ಒಂದು ಲೀಟರ್ ಹಾಲಿನ ಬೆಲೆ 30 ರೂಪಾಯಿಗಳು ಆಗಿರಲಿ, ಹಾಗಾದರೆ ಒಂಬತ್ತು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಹಾಲಿನ ಮೊತ್ತವೆಷ್ಟು?.

Image1 ALG

ಮೊದಲನೇ ವಾರದಲ್ಲಿ ಕೊಂಡ ಹಾಲು = ಶನಿವಾರ ಕೊಂಡ ಹಾಲು + ಭಾನುವಾರ ಕೊಂಡ ಹಾಲು + ಉಳಿದ ಐದು ದಿನಗಳು ಕೊಂಡ ಹಾಲು = 2 + 3 + 5 x 1 = 2 + 3 + 5 = 10 ಲೀಟರ್ ಗಳು.

ಎರಡು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಹಾಲು = ಎರಡು ಶನಿವಾರ ಕೊಂಡ ಹಾಲು + ಎರಡು  ಭಾನುವಾರ ಕೊಂಡ ಹಾಲು + ಐದು ದಿನಗಳಂತೆ ಎರಡು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಹಾಲು = 2 x 2 + 2 x 3 + 2 x 5 x 1 = 4 +6 + 10 = 20 ಲೀಟರ್ ಗಳು.

ಹೀಗೆ ಹಲವು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಒಟ್ಟು ಹಾಲು = 2n+3n + 5n x 1 = 10n ಎಂದು ಬರೆಯಬಹುದು.

ಇಲ್ಲಿ n ಎಂಬ ಬರಿಗೆಯು (Letter/Alphabet) ಮಾರ್ಪುಕವಾಗಿದೆ (Variable), ಅಂದರೆ ಅದು ಒಂದೇ ಬೆಲೆಯಾಗಿರದೇ, ಮಾರ್ಪಾಟು ಹೊಂದುವಂತಹ ಬೆಲೆಯಾಗಿದೆ. ನಮಗೆ ಬೇಕಾದ ವಾರಗಳನ್ನು n ಗೆ ಅಳವಡಿಸಿಕೊಳ್ಳಬಹುದು.

ಮೇಲಿನ ಉದಾಹರಣೆಯಲ್ಲಿ10 ಎಂಬುವುದು ಒಡಬೆಲೆಯಾಗಿದೆ (Coefficient).

ಒಂಬತ್ತು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಹಾಲನ್ನು n = 9 ಎಂದು ತೆಗೆದುಕೊಂಡು, 10n = 10 x 9 = 90 ಲೀಟರ್ ಗಳು ಎಂದು ಕಂಡುಕೊಳ್ಳಬಹುದು.

∴ ಒಂಬತ್ತು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಒಟ್ಟು ಹಾಲಿನ ಬೆಲೆ = 90 x 30 = 2700 ರೂಪಾಯಿಗಳು.

 ಉದಾಹರಣೆ 2: ಕೆಳಗಿನ ಚಿತ್ರಲ್ಲಿರುವಂತೆ X ಬರಿಗೆಯನ್ನು (Letter) ತೋರಿಸಲು ನಮಗೆ 4 ಬೆಂಕಿಕಡ್ಡಿಗಳು ಬೇಕಾಗುತ್ತವೆ.

Image2 ALG

ಅದೇ ರೀತಿ XXನ್ನು ತೋರಿಸಲು 4 + 4 = 8 ಬೆಂಕಿಕಡ್ಡಿಗಳು ಬೇಕಾಗುತ್ತವೆ ಮತ್ತು XXXನ್ನು ತೋರಿಸಲು 4 + 4 + 4 = 12  ಬೆಂಕಿಕಡ್ಡಿಗಳು ಬೇಕಾಗುತ್ತವೆ, ಹೀಗೆ ಒಂದಿಷ್ಟು X ಬರಿಗೆಗಳನ್ನು ತೋರಿಸಲು 4 + 4 + 4 + 4 …..+ 4 = 4n  ಬೆಂಕಿಕಡ್ಡಿಗಳು ಬೇಕಾಗುತ್ತವೆ ಎಂದು ಬರೆಯಬಹುದು.

ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ XXXXXXXರಲ್ಲಿ ಏಳು X ಬರಿಗೆಗಳಿವೆ, ಹೀಗಾಗಿ XXXXXXX ನ್ನು ತೋರಿಸಲು 4n ಬರಿಗೆಯೆಣಿಕೆ ಸರಿಹೊಂದಿಕೆಯನ್ನು (Algebraic Equation) ಬಳಸಿಕೊಂಡು ನಮಗೆ 4 x 7 = 28 ಬೆಂಕಿಕಡ್ಡಿಗಳು ಬೇಕಾಗುತ್ತವೆ ಎಂದು ಹೇಳಬಹುದು.

Image3 ALG

4n ರಲ್ಲಿ 4 ಎಂಬುದು ಒಂದು ಬರಿಗೆಯನ್ನು ಮಾಡಲು ಬೇಕಾದ ಬೆಂಕಿಕಡ್ಡಿಗಳು, “n ಬರಿಗೆ (Letter) ಎಂಬುದು ಎಷ್ಟು ಸಲ ನಾವು X ಅನ್ನು ಬಳಸಿಕೊಳ್ಳುತ್ತೇವೆ ಎಂಬುದು, 4n ಎಂಬುದು ಕೊಟ್ಟಿರುವ X ಬರಿಗೆಗಳಿಗೆ ಬೇಕಾದ ಒಟ್ಟು ಬೆಂಕಿಕಡ್ಡಿಗಳು.

-> 4 ಬೆಂಕಿಕಡ್ಡಿಗಳು    -> 4n = 4 x 7 = 28 ಬೆಂಕಿಕಡ್ಡಿಗಳು

ಸೂಚನೆ: 4n  ಸರಿಹೊಂದಿಕೆಯು(equation) ಒಂದೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಯಾಗಿದೆ (Linear equation) ಮುಂದೆ ಈ ಬಗೆಯನ್ನು ತಿಳಿದುಕೊಳ್ಳೋಣ.

ನಮ್ಮ ಸುತ್ತಮುತ್ತಲ ವಿಜ್ಞಾನವನ್ನು ಅರಿಯಲು:

ನಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನ ವಿಜ್ಞಾನವನ್ನು ತಿಳಿಯುವುದಕ್ಕೂ ಈ ಬರಿಗೆಯೆಣಿಕೆಗೂ ಏನಪ್ಪಾ ನಂಟು ಅಂದ್ಕೊಂಡ್ಬಿಟ್ರಾ!?

ಬನ್ನಿ ಕೆಳಗಿನ ಉದಾಹರಣೆಯೊಂದಿಗೆ ತಿಳಿಯೋಣ!

ಉದಾಹರಣೆ 3: ನೀವು 2 ಮೀಟರ್ ಎತ್ತರವಿದ್ದೀರಿ ಎಂದುಕೊಳ್ಳಿ ಹಾಗು ನೀವು ಒಂದು ಕಲ್ಲನ್ನು 14 m/s ವೇಗದಲ್ಲಿ ಎಸೆಯುತ್ತೀರ, ಆ ಕಲ್ಲು ನೆಲಕ್ಕೆ ಬೀಳಲು ಎಷ್ಟು ಹೊತ್ತು ತೆಗೆದುಕೊಳ್ಳುತ್ತದೆ?

ಭೌತಶಾಸ್ತ್ರದಿಂದ ತಿಳಿದುಬರುವುದೇನೆಂದರೆ ನಮ್ಮ ನೆಲದ ರಾಶಿಸೆಳೆತವು g =9.8 m/s2 ರಷ್ಟು ಇರುತ್ತದೆ. ಯಾವುದೇ ಸಮಯದಲ್ಲಿ ಎಸೆದ ವಸ್ತುವು ತಲುಪುವ ಎತ್ತರವನ್ನು h = h1 + ut 1/2(gt2) ಎಂದು ಬರೆಯಬಹುದಾಗಿದೆ. ನಾವು ತೆಗೆದುಕೊಂಡ ಉದಾಹರಣೆಯಲ್ಲಿ h1 = ನಿಮ್ಮ ಎತ್ತರ = 2 m, u = ಎಸೆದ ಮೊದಲ ವೇಗ (Initial velocity) = 14 m/s, ಕಲ್ಲು ನೆಲಕ್ಕೆ ಬೀಳುವಾಗ ಎತ್ತರ h = 0 ಆಗಿರುತ್ತದೆ.

ಆದ್ದರಿಂದ ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆ (Equation) h = h1 + ut 1/2(gt2) ಯನ್ನು 0 = 2 + 14t 1/2(9.8 t2 ) ಎಂದು ಬರೆಯಬಹುದು

2 + 14t -1/2(9.8 t2 ) = 2 + 14t -4.9 t2  =  0 ಈ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಿಡಿಸಿದಾಗ ನಮಗೆ t= 3.058 seconds ಎಂದಾಗುತ್ತದೆ. ಆದ್ದರಿಂದ ಎಸೆದ ಕಲ್ಲು ನೆಲವನ್ನು ತಲುಪಲು 3.058 ಸೆಕೆಂಡ್‍ಗಳನ್ನು ತೆಗೆದುಕೊಂಡಿತು!

ಸೂಚನೆ: 2 + 14t -4.9 t2  ಸರಿಹೊಂದಿಕೆಯು(equation) ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಯಾಗಿದೆ (Quadratic equation) ಮುಂದೆ ಈ ಬಗೆಯನ್ನು ತಿಳಿದುಕೊಳ್ಳೋಣ ಹಾಗು ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಿಡಿಸುವ ಬಗೆಯನ್ನು ಮುಂದಿನ ಬರಹಗಳಲ್ಲಿ ತಿಳಿದುಕೊಳ್ಳೋಣ.

 ಗಣಿತದ ಮೇಲು ಹಂತದ ಕಲಿಕೆಯನ್ನು (Higher Education) ಚೆನ್ನಾಗಿ ತಿಳಿಯಲು:

ನಾವು ಯಾವುದೇ ಮೇಲು ಹಂತದ ಕಲಿಕೆಯನ್ನು ಚೆನ್ನಾಗಿ ಮಾಡಲು ಮೊದಲಹಂತದ ಅರಿವು ಬೇಕಾಗುತ್ತದೆ. ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಮೊದಲ ಹಂತದಲ್ಲೇ ಚೆನ್ನಾಗಿ ತಿಳಿದರೆ ನಂತರದ ಎಣಿಕೆಯರಿಮೆಯ ಕಲಿಕೆಯು ಸುಲಭವಾಗುತ್ತದೆ. ಏಕೆಂದರೆ ಎಣಿಕೆಯರಿಮೆ ಅಥವಾ ಗಣಿತದಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಹೆಚ್ಚಾಗಿ ಬಳಸಿಕೊಳ್ಳಲಾಗುತ್ತದೆ. ಗೆರೆಯರಿಮೆ (Geometry) ಮತ್ತು ಅಂಕೆಯರಿಮೆಯಲ್ಲಿ (Arithmetic) ಕೂಡ ಹೆಚ್ಚಾಗಿ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಉದಾಹರೆಣೆಗೆ 1 ರಿಂದ n ವರೆಗೆ ಎಣಿಯನ್ನು(ಅಂಕೆ) ಸುಲಭವಾಗಿ ಕೂಡಲು S =  (n2+n)/2 ಎಂಬ ಬರಿಗೆಯೆಣಿಕೆ ಸರಿಹೊಂದಿಕೆಯನ್ನು(Algebraic Equation) ಬಳಸಿಕೊಳ್ಳುತ್ತೇವೆ.

ಇಲ್ಲಿ n ಎಂಬುವುದು ಮಾರ್ಪುಕವಾಗಿದೆ (Variable), ಅಂದರೆ ನಮಗೆ ಬೇಕಾದ ಅಂಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹುದು, ನಾವು 1 ರಿಂದ 100 ರ ವರೆಗೆ ಅಂಕೆಗಳನ್ನು ಕೂಡೋಣ, ಇಲ್ಲಿ S ಎಂಬುವುದು ಮೊತ್ತವಾಗಿದೆ

S = (n2+n)/2  = (1002 +100)/2 = (10000+100)/2 = (10100)/2 = 5050 ಆಗಿದೆ.

ಗಣಿತದ ಹಲವಾರು ಅರಿಮೆಯ ಕವಲುಗಳ ಅಧ್ಯಯನ ಮಾಡಲು:

ಯಾವುದೇ ಅರಿಮೆಯ ಅರಕೆಗಳು(ಸಂಶೋಧನೆಗಳು) ಹೊಸತನ್ನು ಹುಟ್ಟುಹಾಕುತ್ತವೆ, ಹೆಚ್ಚಿನ ಅರಿಮೆಯ ಕವಲುಗಳು ಮತ್ತು ಎಣಿಕೆಯರಿಮೆಯ ಅರಕೆಯಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆ ಬಳಕೆಯಾಗುತ್ತದೆ. ಉದಾಹರಣೆಗೆ ಭೂಮಿಯ ಮತ್ತು ಅದರ  ಸುತ್ತ ತಿರುಗುತ್ತಿರುವ ಒಂದು ವಸ್ತುವಿನ ಮೇಲಿನ ಬಲ ಕಂಡುಹಿಡಿಯಲು ಎಣಿಕೆಯರಿಮೆಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ. ಬಲವನ್ನು ಕಂಡುಹಿಡಿಯಲು ಹೀಗೆ ಬರಿಗೆಯೆಣಿಕೆ ಸರಿಹೊಂದಿಕೆಯನ್ನು (Algebraic Equation) ಬಳಸಲಾಗುತ್ತದೆ.

ಬಲ (Force) F = GMm1/(R+h)2 

M = ನೆಲದ ರಾಶಿ

 m2 = ವಸ್ತುವಿನ ರಾಶಿ

G = ನೆಲೆಬೆಲೆ (Constant)

R = ನೆಲದ ದುಂಡಿ (Radius of Earth)

h = ನೆಲದ ಮೇಲ್ಮಯ್ಯಿಂದ ಅದರ ಸುತ್ತ ತಿರುಗುತ್ತಿರುವ ವಸ್ತುವಿನ ನಡುವಿರುವ ದೂರ.

 ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಗುರುತಿಸುವ ಅಂಶಗಳು:

 1. ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯನ್ನು ಗುರುತಿಸುವುದು (Algebraic Expression):

 Image4 ALG

ಮೇಲಿನ ಒಂದು ಸರಿಹೊಂದಿಕೆ(equation) 3x2 2xy + 6  ನ್ನು ನೋಡೋಣ ಮತ್ತು ಅವುಗಳ ಏರ್ಪಾಡುಗಳನ್ನು ಕೆಳಗಿನಂತೆ ಎಳೆ ಎಳೆಯಾಗಿ ತಿಳಿಯೋಣ.

ಮಾರ್ಪುಕ (Variables): ಯಾವುದೇ ಸರಿಹೊಂದಿಕೆಯಲ್ಲಿ (equation) ಮಾರ್ಪಡುವ ಅಥವಾ ಬದಲಾಗುವ ಬೆಲೆಯನ್ನು ಹೊಂದಿರುವ ಬರಿಗೆಗೆ (Letters) ಮಾರ್ಪುಕ ಎಂದು ಕರೆಯುವರು.

ಕೊಟ್ಟಿರುವ  ಸರಿಹೊಂದಿಕೆ  3x2 2xy + 6  ಯಲ್ಲಿ x ಮತ್ತು y ಗಳು ಮಾರ್ಪುಕಗಳಾಗಿವೆ. ಮಾರ್ಪುಕವೆನ್ನುವುದು ತಿಳಿಯದ ಬೆಲೆ (Unknown Value) ಅಥವಾ ನಾವು ಕಂಡುಹಿಡಿಯುವ ಬೆಲೆಯಾಗಿರುತ್ತದೆ. ಮೊದಲಿಗೆ ಬೆಂಕಿಕಡ್ಡಿಯ ಉದಾಹರಣೆಗಳನ್ನು ಕೊಟ್ಟಿದ್ದೇವಲ್ಲವೇ, ಅಲ್ಲಿ ಕೊಟ್ಟಿರುವ 4n ಅಲ್ಲಿ n ಎಂಬುವುದು ಮಾರ್ಪುಕವಾಗಿದೆ.

ಒಡಬೆಲೆ (Coefficient): ಯಾವುದೇ ಮಾರ್ಪುಕಗಳ ಒಟ್ಟಿಗೆ ಇರುವ ಬೆಲೆಯನ್ನು ಒಡಬೆಲೆ ಎಂದು ಕರೆಯಬಹುದು.

ಕೊಟ್ಟಿರುವ  ಸರಿಹೊಂದಿಕೆ 3x2 2xy + 6  ಯಲ್ಲಿ x2   ಮಾರ್ಪುಕದ ಒಡನೆ ಇರುವ ಬೆಲೆ 3  ಆಗಿದೆ ಮತ್ತು xy ಮಾರ್ಪುಕಗಳ ಒಡನೆ ಇರುವ ಬೆಲೆ 2 ಆಗಿದೆ. ಒಡಬೆಲೆಯು ಇಡಿಯಂಕೆ (whole number) ಅಥವಾ ಪಾಲುಗಳು (fractions) ಆಗಬಹುದು. ಉದಾಹರೆಣೆಗೆ 1.5x2 – (2/3)xy + 8 , ಇಲ್ಲಿ ಒಡಬೆಲೆಗಳು 1.5  ಮತ್ತು 2/3 ಆಗಿವೆ.

ಬರಿಗೆಯೆಣಿಕೆ ಪದ (Algebraic Term): ಯಾವುದೇ ಒಡಬೆಲೆ(Coefficient) ಮತ್ತು ಮಾರ್ಪುಕದ(Variables) ಜೊತೆಯನ್ನು ಬರಿಗೆಯೆಣಿಕೆ ಪದ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 3x2 – 2xy + 6  ಯಲ್ಲಿ 3x2  ಮತ್ತು 2xy ಎಂಬುದು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳಾಗಿವೆ.

 ನೆಲೆಬೆಲೆ (Constant) :  ಯಾವುದೇ ಮಾರ್ಪುಕಗಳಿಲ್ಲದ (Without Variables) ಮತ್ತು ಬದಲಾಗದ ನೆಲೆಸಿರುವ ಬೆಲೆಯನ್ನು (Constant Value) ನೆಲೆಬೆಲೆ ಎಂದು ಕರೆಯಬಹುದು.

ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 3x2 – 2xy + 6  ಯಲ್ಲಿ 6  ಎಂಬುವುದು ನೆಲೆಬೆಲೆಯಾಗಿದೆ. ನೆಲೆಬೆಲೆಯು ಇಡಿಯಂಕೆ (whole number) ಅಥವಾ ಪಾಲುಗಳು (fractions) ಆಗಬಹುದು. ಉದಾಹರೆಣೆಗೆ 6x2 – 3.33xy + 7.8  ಇಲ್ಲಿ ನೆಲೆಬೆಲೆ 7.8 ಆಗಿವೆ. ನೆಲೆಬೆಲೆಯನ್ನು ಬರಿಗೆಯೆಣಿಕೆ ನೆಲೆಬೆಲೆಪದ (Algebraic Constant Term) ಎಂದೂ ಕರೆಯಬಹುದು.

ಎಣಿಕೆಬಳಕ (Mathematical Operator): ಯಾವುದೇ ಬರಿಗೆಯೆಣಿಕೆ ಪದಗಳನ್ನು (Algebraic Terms) ಕೂಡಲು, ಕಳೆಯಲು, ಪಾಲುಮಾಡಲು(ಭಾಗಿಸು), ಪೆಚ್ಚಿಸಲು(ಗುಣಿಸು) ಎಣಿಕೆಬಳಕಗಳಾದ (Mathematical Operators) –, +, x, ÷ ಅನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ, 3x2 – 2xy + 6  ಯಲ್ಲಿ – ಮತ್ತು + ಎಣಿಕೆಬಳಕಗಳನ್ನು ಬಳಸಿರುವುದನ್ನು ನೋಡಬಹುದು.

 ಏರ್ಮಡಿ (Power/Exponent): ಯಾವುದೇ ಮಾರ್ಪುಕದ ತಲೆಯ ಬಲ ಬದಿಯ ಬೆಲೆಯು (Right top Value) ಏರ್ಮಡಿ ಆಗಿದೆ, ಇಲ್ಲಿ ಏರ್ಮಡಿಯು ಮಾರ್ಪುಕವನ್ನು ಹಲಮಡಿಸುತ್ತದೆ, ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 3x2 – 2xy + 6  ಯಲ್ಲಿ ಮೊದಲ ಬರಿಗೆಯೆಣಿಕೆ ಪದ (Algebraic Term) 3x2 ದಲ್ಲಿರುವ ಮಾರ್ಪುಕದ ತಲೆಯೆಣಿ 2 ಆಗಿದೆ. ಇಲ್ಲಿ x2  ನ್ನು (x) ಗುಣಿಸು (x)  ಎಂದು ಬರೆಯಬಹುದು.

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Algebraic Expression):

ಸರಿಹೊಂದಿಕೆಯ (equation) ಎಲ್ಲಾ ಬರಿಗೆಯೆಣಿಕೆ ಪದಗಳು (Algebraic Terms), ನೆಲೆಬೆಲೆಗಳು (Constants)  ಮತ್ತು ಎಣಿಕೆಬಳಕಗಳನ್ನು (Operators) ಒಟ್ಟಾಗಿ ಸೇರಿಸಿದರೆ ಅದು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗುತ್ತದೆ.

ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 3x2 – 2xy + 6  ಯಲ್ಲಿ 3x2  ಮತ್ತು 2xy ಎಂಬುದು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳಾಗಿವೆ, – ಮತ್ತು + ಎಣಿಕೆಬಳಕಗಳಾಗಿವೆ ಹಾಗು 6  ನೆಲೆಬೆಲೆಯಾಗಿದೆ, ಇವೆಲ್ಲವನ್ನು ಒಟ್ಟಾಗಿ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ ಎನ್ನಬಹುದು.

ಹೀಗಾಗಿ 3x2 2xy + 6  ಎಂಬುದು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ.

ಇನ್ನು ಸುಳುವಾಗಿ ಹೇಳಬೇಕೆಂದರೆ,

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ = ಬರಿಗೆಯೆಣಿಕೆ ಪದ1 (- ಅಥವಾ +)ಬರಿಗೆಯೆಣಿಕೆ ಪದ2 (- ಅಥವಾ +) …… (- ಅಥವಾ +) ನೆಲೆಬೆಲೆಗಳು.

ಪಟ್ಟುಕ (Factors): ಒಂದು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದದ ಪಟ್ಟನ್ನು ಹೆಚ್ಚಿಸುವ ಅಂಶಗಳನ್ನು ಪಟ್ಟುಕ ಎಂದು ಕರೆಯಬಹುದು. ಮೇಲೆ ಹೇಳಿದ ಮಾರ್ಪುಕಗಳು (Variables) ಮತ್ತು ಒಡಬೆಲೆಗಳು(Coefficients) ಪಟ್ಟುಕಗಳಾಗಿವೆ.

ಉದಾಹರೆಣೆಗೆ ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 3x2 – 2xy + 6  ಯಲ್ಲಿ 3x2  ನ ಪಟ್ಟುಕಗಳು 3, x, x ಮತ್ತು 2xy ನ  ಪಟ್ಟುಕಗಳು 2,x,y ಆಗಿವೆ. ನೆಲೆಬೆಲೆಯನ್ನು ಕೂಡ ಪಟ್ಟುಕಗಳಾಗಿ ಬರೆಯಬಹುದು, ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯ ನೆಲೆಬೆಲೆಯಾದ 6 ನ್ನು 2, 3 ಎಂದು ಪಟ್ಟುಕಗಳನ್ನಾಗಿ ಬರೆಯಬಹುದು.

ಉದಾಹರಣೆ1:  ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Algebraic Expression) 5x2 + 7xy – 10 ನ್ನು ಚಿತ್ರದಲ್ಲಿ ಬರೆದು ಅದರ ಅಡಕಗಳನ್ನು(ಅಂಶಗಳನ್ನು) ಗುರುತಿಸಿ.

5x2 + 7xy – 10 ಸರಿಹೊಂದಿಕೆಯನ್ನು ಕೆಳಕಂಡಂತೆ ಬಿಡಿಸಿ ಗುರುತಿಸೋಣ.

Image5 ALG

 1. ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯ ಬಗೆಗಳು (Types of algebraic Expression)

ಕೆಳಕಂಡಂತೆ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯನ್ನು ಗುರುತಿಸಬಹುದು.

ಒಂಟಿ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Monomial Algebraic Expressions).

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಲ್ಲಿ ಒಂದು ಪದವನ್ನು(Single Term) ಹೊಂದಿದ್ದರೆ ಅದು ಒಂಟಿ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗುತ್ತದೆ.

ಉದಾಹರಣೆ 1: ಒಂದು ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 4y2  ನ್ನುತೆಗೆದುಕೊಳ್ಳೋಣ, ಮೇಲೆ ಬರಿಗೆಯೆಣಿಕೆ ಪದ (Algebraic Term) ಎಂದರೇನು ಅಂತ ತಿಳಿದಿದ್ದೇವೆ, 4y2  ನ್ನು ನೋಡಿದಾಗ ಅದು ಒಂದು ಅಥವಾ ಒಂಟಿ (Mononomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ.

ಉದಾಹರಣೆ 2: ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಎಲ್ಲಾ ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳು ಒಂದು ಅಥವಾ ಒಂಟಿ (Mononomial) ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಕಂತೆಯಾಗಿವೆ.

5m4n, 2ax/3y, k5, 10ab3

ಎರಡು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Binomial Algebraic Expressions):

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಲ್ಲಿ ಎರಡು ಪದಗಳನ್ನು ಹೊಂದಿದ್ದರೆ ಅದು ಎರಡು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗುತ್ತದೆ.

ಉದಾಹರಣೆ 1: ಒಂದು ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 5y2 + 2x ನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ, 5y2 + 2x ನ್ನು ನೋಡಿದಾಗ ಅದರಲ್ಲಿ ಎರಡು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳು 5y2  ಮತ್ತು  2x ಕಂಡುಬರುತ್ತವೆ, ಹಾಗಾಗಿ ಇದು ಎರಡು (Binomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ.

ಮೂರು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Trinomial Algebraic Expressions):

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಲ್ಲಿ ಎರಡು ಪದಗಳನ್ನು ಹೊಂದಿದ್ದರೆ ಅದು ಮೂರು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗುತ್ತದೆ.

ಉದಾಹರಣೆ 1: ಒಂದು ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 6y3 + 2xy + 1.5x ನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ, 6y3 + 2xy + 1.5x ನ್ನು ನೋಡಿದಾಗ ಅದರಲ್ಲಿ ಮೂರು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳು 6y3 , 2xy  ಮತ್ತು 1.5x ಕಂಡುಬರುತ್ತವೆ, ಹಾಗಾಗಿ ಇದು ಮೂರು (Trinomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ.

ಹಲವು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Polynomial Algebraic Expressions):

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಲ್ಲಿ ಹಲವು ಪದಗಳನ್ನು ಹೊಂದಿದ್ದರೆ ಅದು ಹಲವು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗುತ್ತದೆ, ಇಲ್ಲಿ ಹಲವು ಎಂಬುವುದು ಒಂಟಿ (Monomial), ಎರಡು (Binomial), ಮೂರು (Trinomial) ಹಾಗು ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಬರಿಗೆಯೆಣಿಕೆ ಪದಗಳನ್ನು ಹೊಂದಿದೆ ಎಂದರ್ಥ.

ಉದಾಹರಣೆ 1: ಒಂದು ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 5x3 + 6xy + 3y + 4.5x ನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ, 5x3 + 6xy + 3y + 4.5x ನ್ನು ನೋಡಿದಾಗ ಅದರಲ್ಲಿ ನಾಲ್ಕು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳು 5x3, 6xy, 3y   ಮತ್ತು 4.5x ಕಂಡುಬರುತ್ತವೆ, ಹಾಗಾಗಿ ಇದು ಹಲವು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ(Polynomial Algebraic Equation).

ಉದಾಹರಣೆ2: ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಎಲ್ಲಾ ಬರಿಗೆಯೆಣಿಕೆಯ (Algebraic Terms) ಪದಗಳು ಹಲವು ಬರಿಗೆಯೆಣಿಕೆ ಪದಗಳಾಗಿವೆ (Polynomial Algebraic Expressions).

4y2  –> ಒಂಟಿ (Monomial) ಮತ್ತು ಹಲವು (Polynomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ ಕೂಡ.

5y2 + 2x –> ಎರಡು (Binomial) ಮತ್ತು ಹಲವು (Polynomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ ಕೂಡ.

6y3 + 2xy + 1.5x  –> ಮೂರು (Trinomial) ಮತ್ತು ಹಲವು (Polynomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ ಕೂಡ.

ಬರಿಗೆಯೆಣಿಕೆ ಸರಿಹೊಂದಿಕೆಯ ಬಗೆಗಳು (Types of algebraic equations):

ಬರಿಗೆಯೆಣಿಕೆಯ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಹಲವಾರು ಬಗೆಗಳನ್ನಾಗಿ ಗುರುತಿಸಬಹುದು, ಅವುಗಳನ್ನೆಲ್ಲಾ ಸೇರಿಸಿ ಉದಾಹರಣೆಗಳೊಂದಿಗೆ ಕೆಳಗೆ ಪಟ್ಟಿಯೊಂದನ್ನು ನೀಡಲಾಗಿದೆ.

ಮಟ್ಟ (Degree): ಯಾವುದೇ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಅದರ ಹಿರಿದಾದ ಏರ್ಮಡಿಯೊಂದಿಗೆ (Highest Exponent or Power)  ಅಳೆಯುತ್ತೇವೆ, ಈ ಅಳವನ್ನು ಮಟ್ಟ ಅಥವಾ ಸರಿಹೊಂದಿಕೆಯ ಮಟ್ಟ (Degree of an equation) ಎಂದು ಕರೆಯುತ್ತಾರೆ.

ಕೆಳಗಿನ ಪಟ್ಟಿಯಲ್ಲಿರುವ ಉದಾಹರಣೆಗಳಲ್ಲಿ ಮಟ್ಟವನ್ನು ಗುರುತಿಸುವ ಬಗೆಯನ್ನು ನೋಡಬಹದು.

ಯಾವುದೇ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಹಲವೇರ್ಮಡಿ(Polynomial) ಎಂದು ಕರೆಯಬೇಕಾದಲ್ಲಿ ಅದರ ಏರ್ಮಡಿಯ(Exponent) ಮಟ್ಟ 0, 1, 2,3 ಅಥವಾ ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಇಡಿಯಂಕೆ (whole number) ಆಗಿರಲೇಬೇಕು , ಏರ್ಮಡಿಯು ಸೊನ್ನೆಗಿಂತ ಕಮ್ಮಿ ಇದ್ದರೆ (Negative Number) ಅದು ಹಲವೇರ್ಮಡಿ ಎಂದೆನಿಸಿಕೊಳ್ಳುವುದಿಲ್ಲ. ಉದಾಹರಣೆಗಳೊಂದಿಗೆ ಬರಿಗೆಯೆಣಿಕೆಯ ಹಲವು ಬಗೆಗಳನ್ನು ನೋಡೋಣ ಈ ಕೆಳಕಂಡ ಪಟ್ಟಿಯಲ್ಲಿ ತಿಳಿಯೋಣ.

1. ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ (Polynomial Equation):

ಸರಿಹೊಂದಿಕೆಯ ಬಗೆ (Types of Equations) ಗುರುತಿಸುವಿಕೆ ಮಟ್ಟ (Degree) ಉದಾಹರಣೆ ಮತ್ತು ಹುರುಳು
1. ಹಲವೇರ್ಮಡಿ  ಸರಿಹೊಂದಿಕೆ
(Polynomial Equation)
P(x) = 0, ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಎಲ್ಲಾ ಸರಿಹೊಂದಿಕೆಗಳು. ಹಲಮಟ್ಟ
(Any Degree)
ಇಲ್ಲಿ ಹಲವೇರ್ಮಡಿ ಎಂದರೆ ಯಾವುದೇ ಏರ್ಮಡಿಯನ್ನು (Exponent) ಹೊಂದಿದೆ ಎಂದರ್ಥ, ಕೆಳಗಿನ ಉದಾಹರಣೆಗಳನ್ನು ನೋಡಿ.
1.1 ಒಂದೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ
(Linear Equations)
ax + b = 0, ಇಲ್ಲಿ a ≠ 0 1 2x + 3 = 0, ಇಲ್ಲಿ xನ ಹಿರಿದಾದ ಏರ್ಮಡಿ (Highest exponent) 1 ಆಗಿದೆ
1.2 ಎರಡೇರ್ಮಡಿ
(Quadratic Equations)
ax2 + bx + c = 0, ಇಲ್ಲಿ a ≠ 0, ಇಲ್ಲಿ a ≠ 0 2 x2 + 3x – 6 = 0, ಇಲ್ಲಿ xನ ಹಿರಿದಾದ ಏರ್ಮಡಿ (Highest exponent) 2 ಆಗಿದೆ
1.3 ಮೂರೇರ್ಮಡಿ
(Cubic Equations)
ax3 + bx2 + cx + d = 0, ಇಲ್ಲಿ a ≠ 0 3 4X3 + 5x2 – 7x +8 = 0, ಇಲ್ಲಿ xನ ಹಿರಿದಾದ ಏರ್ಮಡಿ (Highest exponent) 3 ಆಗಿದೆ
1.4 ನಾಲ್ಕೇರ್ಮಡಿ
(Quartic Equations)
ax4 + bx3 + cx2 + dx + e = 0, ಇಲ್ಲಿ a ≠ 0 4 7X4 – 3x3 + 4x2 – 2x +9 = 0, ಇಲ್ಲಿ xನ ಹಿರಿದಾದ ಏರ್ಮಡಿ (Highest exponent)
4 ಆಗಿದೆ
1.5 ಸರಿ-ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ

(Biquadratic Equations)

ax4 + bx2 + c = 0, ಇಲ್ಲಿ a ≠ 0, t = x2 ಎಂದು ಹೊಂದಿಸಿ
ಬರೆದಾಗ at2 + bt + c ಎಂದಾಗುತ್ತದೆ, ಇಲ್ಲಿ ನಮಗೆ ಎರಡೇರ್ಮಡಿ(Quadratic Equations) ಸರಿಹೊಂದಿಕೆ ಸಿಕ್ಕಿತು.
2 5x4 + 3x2 +7 = 0, ಇಲ್ಲಿ xನ ಏರ್ಮಡಿಗಳು 4 ಮತ್ತು 2 ಆಗಿದೆ, ಇಲ್ಲಿ ಯಾವುದೇ ಬೆಸವೆಣಿಕೆ ಏರ್ಮಡಿ (Odd number exponent) ಕಂಡುಬರುವದಿಲ್ಲ, ಇದನ್ನು ಚಿಕ್ಕದಾಗಿಸಿ ಬರೆದಾಗ  5t2 + 3t + 7 ನಲ್ಲಿ “t” ಯ ಹಿರಿದಾದ ಏರ್ಮಡಿ (Highest exponent) 2 ಆಗಿದೆ.

 

2. ಸುಳುವಾಗಿಸಬಲ್ಲ ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ (Rational Polynomial Equation):

ಸರಿಹೊಂದಿಕೆಯ ಬಗೆ (Types of Equations) ಗುರುತಿಸುವಿಕೆ ಮಟ್ಟ

(Degree)

ಉದಾಹರಣೆ ಮತ್ತು ಹುರುಳು
2. ಸುಳುವಾಗಿಸಬಲ್ಲ ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ (Rational Polynomial Equation) P(x)/Q(x) = 0, ಇಲ್ಲಿ P(x) ಮತ್ತು Q(x) ಹಲವೇರ್ಮಡಿ
ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ (Polynomial Equation)
ಹಲಮಟ್ಟ
(Any Degree)
6x3/(1+ x2 ) + 2x/(3+ X4) = 0 ಈ ರೀತಿಯ  ಸರಿಹೊಂದಿಕೆಯನ್ನು ಸುಳುವಾಗಿಸಿ ಬರೆಯಬಹುದಾಗಿದೆ,
ಸುಳುವಾಗಿಸಿದ ನಂತರ ಇವುಗಳು ಯಾವುದೇ ಏರ್ಮಡಿಗಳನ್ನು ಕೂಡ ಹೊಂದಿರಬಹುದು. ಇಲ್ಲಿ 6x3/(1+ x2 ) ಮತ್ತು 2x/(3+ X4) ಹಲವೇರ್ಮಡಿಯ ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ (Polynomial Equation).

3. ಸುಳುವಲ್ಲದ ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ (Irrational Polynomial Equation):

ಸರಿಹೊಂದಿಕೆಯ ಬಗೆ (Types of Equations) ಗುರುತಿಸುವಿಕೆ ಮಟ್ಟ (Degree) ಉದಾಹರಣೆ ಮತ್ತು ಹುರುಳು
3. ಸುಳುವಲ್ಲದ ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ
(Irrational Polynomial Equation)
p(x)/ (Q(x))1/n = 0, ಇಲ್ಲಿ P(x) ಮತ್ತು Q(x) ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ (Polynomial Equation), n ಎಂಬುದು ಹಲಮಡಿ ಬೇರಾಗಿದೆ(nth root). ಹಲಮಟ್ಟ
(Any Degree)
8x3/(1+ x2 ) + √(2x/ (9+ X8)) = 0,ಈ ರೀತಿಯ  ಸರಿಹೊಂದಿಕೆಯನ್ನು ಅಷ್ಟು ಸುಳುವಾಗಿ ಬರೆಯಲು
ಬರುವುದಿಲ್ಲ ಹಾಗು ಇವುಗಳು ಯಾವುದೇ ಏರ್ಮಡಿಗಳನ್ನು ಕೂಡ ಹೊಂದಿರಬಹುದು. ಇಲ್ಲಿ 8x3/(1+ x2 )
ಮತ್ತು √(2x/ (9+ X8))  ಹಲವೇರ್ಮಡಿಯ ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ (Polynomial Equation).

4. ಬರಿಗೆಯೆಣಿಕೆಮೀರಿದ ಸರಿಹೊಂದಿಕೆಗಳು (Transcendental Equations):

ಸರಿಹೊಂದಿಕೆಯ ಬಗೆ (Types of Equations) ಗುರುತಿಸುವಿಕೆ ಮಟ್ಟ (Degree) ಉದಾಹರಣೆ ಮತ್ತು ಹುರುಳು
4. ಬರಿಗೆಯೆಣಿಕೆಮೀರಿದ ಸರಿಹೊಂದಿಕೆಗಳು
( Transcendental Equations)
P(x) ಮತ್ತು Q(x) à ಹಲವೇರ್ಮಡಿಯ ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ
(Polynomial Equation) 1.ಏರ್ಮಡಿ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯ ಸರಿಹೊಂದಿಕೆ(Equation of exponential algebraic expressions):P(x)Q(x
2.ಇಳಿಮಡಿ(inverse exponentiation) ಅಥವಾ ಲಾಗರಿದಮಿಕ್ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯ ಸರಿಹೊಂದಿಕೆ(Equations of logarithmic Algebraic Expressions): log(P(x)) 3. ಮುಕ್ಕೋನದರಿಮೆ ಸರಿಹೊಂದಿಕೆ(Equation of Trigonometric algebraic expressions):Cos(P(x)), Sin(P(x)), tan(P(x))
ಹಲಮಟ್ಟ
(Any Degree)
1.ಏರ್ಮಡಿ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯ ಸರಿಹೊಂದಿಕೆ: (2+x)(1+x)
2.ಇಳಿಮಡಿ(inverse exponentiation)ಅಥವಾ ಲಾಗರಿದಮಿಕ್ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯ ಸರಿಹೊಂದಿಕೆ: log(3+x)
3.ಮುಕ್ಕೋನದರಿಮೆ ಸರಿಹೊಂದಿಕೆ: Cos(1+x), Sin(3+x), tan(4+x) ಮೇಲಿನ ಉದಾಹರಣೆಯಲ್ಲಿ 1+x, 2+x, 3+x, 4+x  ಗಳು ಒಂದೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ, ಉದಾಹರೆಣೆಗೆ ಯಾವುದೇ ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳಬಹುದು.

 ಉದಾಹರಣೆ1: ಮೇಲೆ ತಿಳಿಸಿರುವ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಗುರುತಿಸುವ ಎಲ್ಲಾ ಅಂಶಗಳನ್ನು ಗಮನದಲ್ಲಿಟ್ಟುಕೊಂಡು ಕೆಳಗೆ ಪಟ್ಟಿಯೊಂದನ್ನು ಉದಾಹರಣೆಯಾಗಿ ನೀಡಲಾಗಿದೆ.

Image7 Algebraic Expressions Examples Saved from PPT format PNG

ಬರಿಗೆಯೆಣಿಕೆ ಬಳಕೆಯ ಬಗೆಗಳು:

 ಕಲಿಕೆಯೇರ್ಪಾಡನ್ನು ಗಮನದಲ್ಲಿಟ್ಟುಕೊಂಡು ಬರಿಗೆಯೆಣಿಕೆ ಅಥವಾ ಬೀಜಗಣಿತವನ್ನು ಎರಡು ಭಾಗಗಳನ್ನಾಗಿ ಮಾಡಬಹುದು.

1. ಮೊದಲ ಹಂತದ ಬರಿಗೆಯೆಣಿಕೆ ಅಥವಾ ಸುಳುವಾದ ಬರಿಗೆಯೆಣಿಕೆ (Elementary Algebra)

ಸುಮಾರು ಏಳನೇ ತರಗತಿಯಿಂದ ಹತ್ತನೇ ತರಗತಿಯವರೆಗೆ ಶಾಲಾ ಮಕ್ಕಳಿಗೆ ಕಲಿಸಬಹುದಾದ ಬರಿಗೆಯೆಣಿಕೆ.

2. ಸುಳುವಲ್ಲದ ಬರಿಗೆಯೆಣಿಕೆ ಅಥವಾ ಮೇಲು ಹಂತದ ಬರಿಗೆಯೆಣಿಕೆ (Higher Level Algebra)

ಮೇಲು ಹಂತದ ಕಲಿಕೆಯಲ್ಲಿ ಕಲಿಯಬಹುದಾದ ಮತ್ತು ಹಲವು ಅರಿಮೆಗಳಲ್ಲಿ (Field of science) ಬಳಸಬಹುದಾದ ಬರಿಗೆಯೆಣಿಕೆ. ಎಣಿಕೆಯರಿಮೆ ಅಥವಾ ಗಣಿತದ ಹಲವು ಕವಲುಗಳಾದ ಗೆರೆಯರಿಮೆ (Geometry), ಅಂಕೆಯರಿಮೆ(Arithmetic), ಮಾರ್ಪಡುವಿಕೆ (Differentiation), ಕೂಡಿಕೆ (Integration), ಒಗ್ಗೂಡಿಕೆಯರಿಮೆ (Combinatorics), ಹಿಡಿತದ ಕಟ್ಟಳೆ (Control theory) ಹಾಗು ಇನ್ನಿತರ ಕವಲುಗಳಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಅರಿಮೆಯ ಕವಲುಗಳಾದ(Field of science) ಬಿಡಿ ಕಟ್ಟಲೆ (Quantum theory), ಬಿಡಿ ಕದಲರಿಮೆ(Quantum mechanics), ಕಾವರಿಮೆ (Thermodynamics), ಹೋಲು ಕಟ್ಟಲೆ (Relativity) ಹಾಗು ಇನ್ನಿತರ ಅರಿಮೆಯ ಕವಲುಗಳಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಗಣಿತದ ಬಳಕೆಯ ಮೇಲೆ ಬರಿಗೆಯೆಣಿಕೆ ಅಥವಾ ಬೀಜಗಣಿತವನ್ನು ಹಲವು ಬಗೆಗಳನ್ನಾಗಿ ಗುರುತಿಸಬಹುದು, ಉದಾಹರಣೆಗೆ ಕೆಳಕಂಡ ಬಗೆಗಳನ್ನು ನೋಡಬಹುದು.

1. ಸುಳುವಾದ ಬರಿಗೆಯೆಣಿಕೆ (Elementary Algebra):

ಶಾಲೆಗಳಲ್ಲಿ ಗಣಿತವನ್ನು ತಿಳಿಸುವ ಸಲುವಾಗಿ ಸುಳುವಾದ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

2. ಆಯವಿಲ್ಲದ ಬರಿಗೆಯೆಣಿಕೆ (Abstract algebra):

ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಗುಂಪರಿಮೆ (group theory), ಉಂಗುರ (Rings) , ನೆರಕೆ (Sets), ಅಣಿಮಣೆ(Matrix) ಮತ್ತು ಹಲವಾರು ಎಣಿಕೆಯರಿಮೆಯ ಬಗೆಗಳಲ್ಲಿ (Fields of mathematics) ಬಳಸಲಾಗುತ್ತದೆ.

3. ಒಮ್ಮಟ್ಟವಾದ ಬರಿಗೆಯೆಣಿಕೆ (Linear Algebra):

ಈ ಬಗೆಯ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಒಂದೆರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ (Linear equation), ಅಣಿಮಣೆ (Matrix) ಮತ್ತು ತೂಗೆಡೆಗಳ (Vectors) ಕಲೆತವನ್ನು (Calculation) ಮಾಡಲು ಬಳಸಲಾಗುತ್ತದೆ.

4. ಕಂಪ್ಯೂಟರ್ ಬರಿಗೆಯೆಣಿಕೆ (Computer Algebra):

ಕಂಪ್ಯೂಟರ್ ತಂತ್ರಜ್ಞಾನದಲ್ಲಿಎಸಗುಬಗೆ (Algorithms) ಮತ್ತು ಹಮ್ಮುಗಾರಿಕೆಗಳಲ್ಲಿ (Programming)  ಬಳಸುವ ಬರಿಗೆಯೆಣಿಕೆಯ ಬಗೆಯನ್ನು ಕಂಪ್ಯೂಟರ್ ಬರಿಗೆಯೆಣಿಕೆ ಎಂದು ಹೇಳಬಹದು.

5) ಬರಿಗೆಯೆಣಿಕೆ ಗೆರೆಯರಿಮೆ (Algebraic Geometry):

ಬರಿಗೆಯೆಣಿಕೆ ಗೆರೆಯರಿಮೆಯು ಹಲವು ಬಗೆಯ ಆಕೃತಿಗಳನ್ನು ಅರಕೆಮಾಡಲು, ಗೆರೆಯರಿಮೆಯ ಸುಳುವಲ್ಲದ ತೊಡಕುಗಳನ್ನು (Complex Geometric problems) ಬಗೆಹರಿಸಲು ಬಳಸುವ ಬರಿಗೆಯೆಣಿಕೆಯ ಬಗೆಯಾಗಿದೆ

6). ನಂಟಿನ ಬರಿಗೆಯೆಣಿಕೆ (Relational Algebra):

ನಂಟಿನ ಬರಿಗೆಯೆಣಿಕೆ ಹೆಚ್ಚಾಗಿ ನಂಟಿನ ನೆರೆತಿಳಿಹದ (Relational Database) ಬಗ್ಗೆ ತಿಳಿಯಲು ಬಳಸಲಾಗುವ ಬಗೆಯಾಗಿದೆ.

ಇಲ್ಲಿ ಗುಂಪುಕಟ್ಟಳೆ (Group theory), ನೆರಕೆ(Sets), ನಂಟರಿಮೆ(Relation), ಕೇಳ್ವಿ ಎಣ್ಣುಕನುಡಿ (Query Language) ಗಳನ್ನು ಈ ಬಗೆಯ ಬರಿಗೆಯೆಣಿಕೆಯಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ.

ಬರಿಗೆಯೆಣಿಕೆಯ ಹಳಮೆ:

  • ಬ್ಯಾಬಿಲೋನಿಯನ್ನರು (Babylonians) ಬರಿಗೆಯಣಿಕೆಯ ಕಲೆತವನ್ನು(Calculation) ಮಾಡುತ್ತಿದ್ದರು, ಇದಕ್ಕೆ ಕುರುಹಾಗಿ 1800 B.C ಹೊತ್ತಿನ ಬರಿಗೆಯೆಣಿಕೆಯ ಬಳಕೆಮಾಡಿದ ಸ್ಟ್ರಾಸ್ಬರ್ಗ್ ಟ್ಯಾಬ್ಲೆಟ್ (Strassburg tablet Inscription) ಮತ್ತು ಲಿಂಪ್ಟನ್322 (Plimpton 322) ಎಂಬ ಮಣ್ಣುಗಟ್ಟಿ ಬರಹ (Clay Tablet Inscription) ಸಿಕ್ಕಿರುತ್ತದೆ.

Image8 ALG

  • ಬರ್ಲಿನ್ ಪ್ಯಾಪಿರಸ್ 6619 (ಈಗಿನ ಹೆಸರು) ಎಂಬ ಈಜಿಪ್ಟಿನ ನಡು ಅರಸೊತ್ತಿಗೆಯ(Middle Kingdom: 2055 B.C-1650 B.C) ಬರಹವು ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳ (Quadratic Equation) ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತದೆ.
  • 800 B.C ಹೊತ್ತಿನ ಎಣಿಕೆಯರಿಗ ಬೌದಾಯನನ ಸುಲಭ ಸೂತ್ರವು ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳ (Quadratic Equation) ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತದೆ.
  • 300 B.C ಹೊತ್ತಿನ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗ ಯೂಕ್ಲಿಡ್ ನ ಯೂಕ್ಲಿಡ್ ಅಡಕದಲ್ಲಿ (Euclids Elemets) ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳನ್ನು (Quadratic Equation) ಬಗೆಹರಿಸುವ ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತದೆ.
  • 100 B.C ಜಿಯುಜಾಂಗ್ ಸುವಾನ್ಶು (Jiuzhang suanshu) ಎಂಬ ಚೀನಿಯರ ಬರಹವು ಒಂದೇರ್ಮಡಿ (Linear), ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳ(Quadratic Equation) ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತದೆ.
  • 100 A.D ಹೊತ್ತಿನ ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾದ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗ(Mathematician) ಹೆರೋ(Hero/Heron) ಕಳೆತದೆಣಿಯ ಎರಡೇರ್ಮಡಿ ಸೆಲೆಯ (Square root of negative number) ಬಗ್ಗೆ ಅರಕೆ ಮಾಡಿದ್ದನು.
  • 200 A.D ಹೊತ್ತಿನ ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾದ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗ ಡಯೋಪಾಂಟಸ್ (Diophantus) ಬರಿಗೆಯೆಣಿಕೆ ಸರಿಹೊಂದಿಕೆ (Algebraic Equation) ಮತ್ತು ಎಣಿಕಟ್ಟಳೆ (Number Theory) ಬಗ್ಗೆ ತನ್ನ ಪುಸ್ತಕ ಅರಿತ್ಮೆಟಿಕಾದಲ್ಲಿ (Arithmetica) ತಿಳಿಸಿದ್ದನು.
  • 500 A.D ಹೊತ್ತಿನ ಉಜ್ಜಯಿನಿಯ ಎಣಿಕೆಯರಿಗ ಬ್ರಹ್ಮಗುಪ್ತನು ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳನ್ನು (Quadratic Equation) ಬಗೆಹರಿಸುವ ಬಗ್ಗೆ ತಿಳಿಸಿದ್ದನು.
  • 800 A.D ಹೊತ್ತಿನ ಪರ್ಶಿಯಾದ ಎಣಿಕೆಯರಿಗ ಅಲ್- ಕ್ವಾರಿಜ್ಮಿ (Al-Khwarizmi) ಒಂದೇರ್ಮಡಿ (Linear), ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳನ್ನು (Quadratic Equation) ಬಗೆಹರಿಸುವ ಬಗ್ಗೆ ತಿಳಿಸುತ್ತಾನೆ. ಅಷ್ಟೇ ಅಲ್ಲದೆ ಬರಿಗೆಯೆಣಿಕೆಯ ಹಲವಾರು ಇಟ್ಟಳ/ರಚನೆ (Fundamental of algebraic structure) ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತಾನೆ. ಅವನನ್ನು ಬರಿಗೆಯೆಣಿಕೆಯರಿಮೆಯ ತಂದೆ (Father of Algebra) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

Image9 ALG (1)

  • ನಿಮಗೆ ಗೊತ್ತೇ?, ಅಲ್ಜಿಬ್ರಾ (Algebra) ಎಂಬ ಪದವನ್ನು ಅಲ್- ಕ್ವಾರಿಜ್ಮಿ ಯ ಎಣಿಕೆಯರಿಮೆ ಪುಸ್ತಕ ಅಲ್-ಕಿತಾಬ್ ಅಲ್-ಜಬರ್ ವಾ-ಅಲ್- ಮುಕಾಬಲ (Al-Kitab al-Jabr wa-l-Muqabala)ದಿಂದ ಪಡೆದುಕೊಳ್ಳಲಾಗಿದೆ!. ಅಲ್ಜಿಬ್ರಾಕ್ಕೆ ಮೊದಲಿಗಿದ್ದ ಹೆಸರು ಅಲ್-ಜಾಬ್ರ್ (Al-Jabr), ನಂತರದಲ್ಲಿ ಯೂರೋಪಿನ ಎಣಿಕೆಯರಿಗರು ಅಲ್ಜಿಬ್ರಾ ಎಂದು ಕರೆದರು. ‘ತುಂಡಾದ ತುಣುಕುಗಳನ್ನು ಮರು ಸೇರಿಸುವುದು’ ಎಂಬುವುದು ಅಲ್-ಜಾಬ್ರ್ ಪದದ ಹುರುಳು.
  • 1000 A.D ಹೊತ್ತಿನ ಪರ್ಶಿಯಾದ ಎಣಿಕೆಯರಿಗ ಅಬು ಸಹಲ್ ಅಲ್-ಕುಹಿ (Abū Sahl al-Qūhī) ಹಲವೇರ್ಮಡಿಯ ಸರಿಹೊಂದಿಕೆಯನ್ನು (Polynomial Equation) ಬಗೆಹರಿಸುವ ಬಗೆಯನ್ನು ತಿಳಿಸುತ್ತಾನೆ.
  • 1200 A.D ಹೊತ್ತಿನ ಕರ್ನಾಟಕದ ವಿಜಯಪುರದ ಎಣಿಕೆಯರಿಗ ಭಾಸ್ಕರಾಚಾರ್ಯನು ತನ್ನ ಪುಸ್ತಕ ಬೀಜಗಣಿತದಲ್ಲಿ ಎರಡು ರೀತಿಯ ಎರಡೇರ್ಮಡಿ ಸೆಲೆಯನ್ನು (Two types of square root) ಕಂಡುಹಿಡಿಯುವ ಬಗೆಯನ್ನು ತಿಳಿಸುತ್ತಾನೆ.
  • 1200 A.D ಹೊತ್ತಿನ ಇಟಲಿಯ ಎಣಿಕೆಯರಿಗ ಲಿಯೊನಾರ್ಡೊ ಪಿಬೊನಾಕಿ (Leonardo Fibonacci) ಹಲವಾರು ಬರಿಗೆಯೆಣಿಕೆಯ ಸರಿಹೊಂದಿಕೆಗಳನ್ನು ತನ್ನದೇಯಾದ ರೀತಿಯಲ್ಲಿ ತಿಳಿಸುತ್ತಾನೆ.
  • 1540-1603 A.D ಹೊತ್ತಿನ ಪ್ರಾನ್ಸಿನ ಎಣಿಕೆಯರಿಗ ಪ್ರಾನ್ಸಿಸ್ಕಸ್ ವಿಯೆಸ್ಟಾ (Franciscus Vieta) ಎರ್ಮಡಿಗಳನ್ನು (Exponent) ಗುರುತಿಸಲು ಹಲವಾರು ಗುರುತುಗಳನ್ನು (Symbols) ಬಳಸುತ್ತಾನೆ.
  • 1596 -1650 A.D ಹೊತ್ತಿನ ಪ್ರಾನ್ಸಿನ ಎಣಿಕೆಯರಿಗ ರೇನ್ ಡೆಸ್ಕಾರ್ಟೆಸ್ (René Descartes) ಅರಿವುಮೀರಿದೆಣಿಯ (Imaginary Number i = √-1) ಬಗ್ಗೆ ಮೊದಲಬಾರಿಗೆ ದೊಡ್ಡಮಟ್ಟದ ಹಲವು ಅರಕೆಗಳನ್ನು ಮಾಡುತ್ತಾನೆ.
  • 1777-1855 A.D ಹೊತ್ತಿನ ಜರ್ಮನಿಯ ಎಣಿಕೆಯರಿಗ ಕಾರ್ಲ್ ಪ್ರೀಡ್ರಿಚ್ ಗಾಸ್ (Carl Friedrich Gauss) ಬರಿಗೆಯೆಣಿಕೆಯ ಅಡಿಪಾಯದ ಕಟ್ಟಳೆ (Fundamental theorem of algebra)ಯ ಬಗ್ಗೆ ಅರಕೆಮಾಡುತ್ತಾನೆ.
  • 20 ನೂರರ ಹೊತ್ತಿನಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆಯ ಮೇಲೆ ಹಲವಾರು ಅರಕೆಗಳಾಗಿವೆ ಮತ್ತು ನಡೆಯುತ್ತಲೇ ಇವೆ!.

(ಸೆಲೆಗಳು: study.comtutorvista.comvitutor.commath-only-math.combyjus.comen.wikipedia.org, 8. 7th standard Mathematics text book, Karnataka state syllabus, tutorial.math.lamar.edumath.stackexchange.com)

 

 

facebooktwittergoogle_plusredditpinterestlinkedinmail
  • ಹಂಚಿ

    facebooktwittergoogle_plusredditpinterestlinkedinmail