ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸುತ್ತುಹಾದಿಗಳು

ಮುಂಚಿನ ಬರಹವೊಂದರಲ್ಲಿ, ವಸ್ತುಗಳು ಮತ್ತು ಜೀವಿಗಳ ಮೂಲ ಘಟಕವಾದ ಅಣುವಿನ ರಚನೆಯ ಬಗ್ಗೆ ತಿಳಿದುಕೊಂಡಿದ್ದೆವು. ಅದನ್ನು ಮುಂದುವರೆಸುತ್ತಾ ಈ ಬರಹದಲ್ಲಿ ಅಣುವಿನ ಒಳರಚನೆಗಳಲ್ಲಿ ಒಂದಾದ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಹೇಗೆ ಸುತ್ತುತ್ತವೆ ಎಂದು ಅರಿತುಕೊಳ್ಳೋಣ.

ಈ ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ತಿಳಿದುಕೊಂಡಂತೆ, ಅಣುವಿನ ನಡುವಣದಲ್ಲಿ ಪ್ರೋಟಾನ್‍ಗಳು ಮತ್ತು ನ್ಯೂಟ್ರಾನ್‍ಗಳು ಇರುತ್ತವೆ. ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ನಡುವಣದ ಸುತ್ತ ಸುತ್ತುತ್ತಿರುತ್ತವೆ. ಅಣುವಿನ ಕುರಿತ ತಿಳುವಳಿಕೆ ಶುರುವಾದಾಗಿನ ಮೊದಲ ಕೆಲವು ದಶಕಗಳವರೆಗೆ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ನಡುವಣದ ಸುತ್ತ ಬರೀ ದುಂಡನೆಯ ಹಾದಿಗಳಲ್ಲಿ ಸುತ್ತುತ್ತವೆ ಅಂತಾ ಅಂದುಕೊಳ್ಳಲಾಗಿತ್ತು. ಆದರೆ ಹೊಸ ಹೊಸ ಅರಕೆಗಳು ಈ ನಿಟ್ಟಿನಲ್ಲಿ ನಡೆದುದರಿಂದ ಕಂಡುಬಂದಿದ್ದೇನೆಂದರೆ,

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಸುತ್ತುವ ನೆಲೆಯನ್ನು 100% ರಷ್ಟು ನಿಕ್ಕಿಯಾಗಿ ಹೇಳಲು ಆಗುವುದಿಲ್ಲ, ಗಣಿತ ಸೂತ್ರಗಳ ತಳಹದಿಯಲ್ಲಿ ಸುಮಾರು 90% ರಷ್ಟು ನಿರ್ದಿಷ್ಟತೆಯಿಂದ ಇಂತಲ್ಲಿ ಇರಬಹುದು ಅಂತಾ ಹೇಳಬಹುದಷ್ಟೆ.

ಜರ್ಮನಿಯ ವಾರ್ನರ್ ಹಯ್ಸನ್‍ಬರ್ಗ್ (Werner Heisenberg) ಎಂಬ ವಿಜ್ಞಾನಿಯು 1927 ರಲ್ಲಿ ಮುಂದಿಟ್ಟಿದ್ದ, ಹಯ್ಸನ್‍ಬರ್ಗ್ ನಿರ್ದಿಷ್ಟವಲ್ಲದ ನಿಯಮ (Heisenberg uncertainty principle) ತಳಹದಿಯ ಮೇಲೆ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ನೆಲೆಯನ್ನು ಸೂಚಿಸಬಹುದು.

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ನಡುವಣದ ಸುತ್ತ ಸುತ್ತಲು ಬಳಸುವ ದಾರಿಗಳನ್ನು ಆರ್ಬಿಟಲ್ಸ್ (Orbitals) ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಕನ್ನಡದಲ್ಲಿ ಇವುಗಳನ್ನು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸುತ್ತುಹಾದಿಗಳು ಎನ್ನಬಹುದು. ಸುತ್ತುಹಾದಿಗಳಲ್ಲಿ ಮುಖ್ಯವಾಗಿ ನಾಲ್ಕು ಬಗೆಗಳಿವೆ. ಆ ಬಗೆಗಳನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ನೋಡಬಹುದು,

orbitals‘s’ ಬಗೆಯ ಸುತ್ತುಹಾದಿಗಳು ಗುಂಡನೆಯ ಆಕಾರದಲ್ಲಿದ್ದರೆ, ‘p’ ಮತ್ತು ‘d’ ಸುತ್ತುಹಾದಿಗಳು ಬಲೂನಿನ ರೂಪವನ್ನು ಹೋಲುತ್ತವೆ. ಅದೇ ‘f’ ಸುತ್ತುಹಾದಿಗಳು ಹೆಚ್ಚು ಸುತ್ತಿ ಬಳಸಿದ ದಾರಿಯಾಗಿರುತ್ತವೆ.
ಇನ್ನೊಂದು ಗಮನಿಸಬೇಕಾದ ವಿಷಯವೆಂದರೆ, ಈ ನಾಲ್ಕು ಬಗೆಯ ಸುತ್ತುಹಾದಿಗಳು, ಹಾದಿಯೊಂದರಲ್ಲಿ ಹೆಚ್ಚೆಂದರೆ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಮಾತ್ರ ಹೊಂದಿರಬಹುದು.

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಗಳಿಸಿಕೊಂಡಿರುವ ಶಕ್ತಿಯ ಆಧಾರದ ಮೇಲೆ ಅವುಗಳ ಸುತ್ತುಹಾದಿಗಳು ತೀರ್ಮಾನವಾಗುತ್ತವೆ. ಎಲ್ಲಕ್ಕಿಂತ ಕಡಿಮೆ ಶಕ್ತಿಹೊಂದಿರುವ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ’1s’ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಸುತ್ತಿದರೆ, ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಶಕ್ತಿ ಹೊಂದಿರುವ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ’2s’ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಸುತ್ತುತ್ತವೆ. ಹೀಗೆ ಮುಂದುವರೆಯುತ್ತಾ ಶಕ್ತಿಗೆ ಅನುಗುಣವಾಗಿ 2p, 3s, 3p… ಮುಂತಾದ ಸುತ್ತುಹಾದಿಗಳಲ್ಲಿ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಸುತ್ತುತ್ತವೆ.

ಇಲ್ಲಿ s,p,d,f ಪಕ್ಕದಲ್ಲಿರುವ ಅಂಕಿಗಳಾದ 1, 2, 3, 4… ಶಕ್ತಿಯ ಮಟ್ಟಗಳನ್ನು ಸೂಚಿಸುತ್ತವೆ (ಕಡಿಮೆ ಪ್ರಮಾಣದಿಂದ ಹೆಚ್ಚಿನ ಪ್ರಮಾಣದ ಶಕ್ತಿಯೆಡೆಗೆ)

ಅಣುವೊಂದರಲ್ಲಿ ಎಷ್ಟು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿವೆ ಅನ್ನುವುದರ ಮೇಲೆ ಅವುಗಳಲ್ಲಿ ಎಷ್ಟು ಸುತ್ತುಹಾದಿಗಳಿವೆ ಎನ್ನುವುದನ್ನು ಲೆಕ್ಕಹಾಕಬಹುದು. ಉದಾಹರಣೆಗೆ, ಅಣುವೊಂದರಲ್ಲಿ 10 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿದ್ದರೆ ಮೊದಲಿಗೆ ’1s’ ಬಗೆಯ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಮತ್ತು ’2s’ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಇನ್ನೆರಡು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿರುತ್ತವೆ. ಇನ್ನುಳಿದ 6 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಲ್ಲಿ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು 2px ಸುತ್ತುಹಾದಿಯಲ್ಲಿ, 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು 2py ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಮತ್ತು 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು 2pz ಸುತ್ತುಹಾದಿಯಲ್ಲಿರುತ್ತವೆ.

10 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿದ ಈ ಉದಾಹರಣೆಯನ್ನು ಕೆಳಗಿನಂತೆ ಸೂಚಿಸಲಾಗುತ್ತದೆ,

1s2 2s2 2p6

(ಇಲ್ಲಿ 1 ನೇ ಶಕ್ತಿ ಮಟ್ಟದಲ್ಲಿ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಮತ್ತು 2 ನೇ ಶಕ್ತಿ ಮಟ್ಟದಲ್ಲಿ 2+6= 8 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿರುವುದನ್ನು ಗಮನಿಸಬಹುದು)

ನೆನಪಿರಲಿ: ಒಂದು ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಹೆಚ್ಚೆಂದರೆ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಷ್ಟೇ ಇರಬಹುದು. ಕಡಿಮೆ ಶಕ್ತಿಯ ಸುತ್ತುಹಾದಿಗಳಿಂದ ಶುರುವಾಗಿ ಹೆಚ್ಚಿನ ಶಕ್ತಿಯ ಸುತ್ತುಹಾದಿಗಳಲ್ಲಿ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಸುತ್ತುತ್ತವೆ.

ಚಿಪ್ಪುಗಳು (Shells):

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸುತ್ತುವಿಕೆಯನ್ನು ಅವುಗಳ ಸುತ್ತುಹಾದಿಗಳಲ್ಲದೇ, ಚಿಪ್ಪುಗಳು (shells) ಎಂದು ಕರೆಯಲಾಗುವ ಬಗೆಯಲ್ಲೂ ಸೂಚಿಸಲಾಗುತ್ತದೆ. ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆಗೆ ಅನುಗುಣವಾಗಿ ಅವುಗಳು ಇಂತಿಷ್ಟು ಚಿಪ್ಪುಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ ಎಂದು ಸೂಚಿಸಲಾಗುತ್ತದೆ. ಈ ಬಗೆಯು ಮುಖ್ಯವಾಗಿ ಅಣುವೊಂದರ ವಿದ್ಯುತ್ ಗುಣವನ್ನು ತಿಳಿಯಲು ನೆರವಾಗುತ್ತದೆ.
ಚಿಪ್ಪುಗಳನ್ನು ’n’ ನಿಂದ ಸೂಚಿಸಿದರೆ, 2*(n)2 ಲೆಕ್ಕದಲ್ಲಿ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆಯನ್ನು ಹಂಚಿಕೆ ಮಾಡಲಾಗುತ್ತದೆ.

ಉದಾಹರಣೆಗೆ,
ಚಿಪ್ಪು 1 –> 2*(1)2 = 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 2 –> 2*(2)2 = 8 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 3 –> 2*(3)2 = 18 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.

ಇದನ್ನು ಇನ್ನೊಂದು ಬಗೆಯಲ್ಲಿ ಹೇಳಬೇಕೆಂದರೆ, ಅಣುವೊಂದರಲ್ಲಿ ಎಷ್ಟು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿವೆ ಎನ್ನುವುದರ ಮೇಲೆ ಅವುಗಳಲ್ಲಿ ಎಷ್ಟು ಚಿಪ್ಪುಗಳಿವೆ (shells) ಇವೆ ಎನ್ನುವುದನ್ನು ಲೆಕ್ಕ ಹಾಕಬಹುದು.
ಉದಾ: 10 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿದ್ದರೆ ಮೇಲೆ ತೋರಿಸಿದಂತೆ, 2 (ಚಿಪ್ಪು1) + 8 (ಚಿಪ್ಪು2) ಒಟ್ಟು 2 ಚಿಪ್ಪುಗಳಿರುತ್ತವೆ.

ಚಿಪ್ಪುಗಳು ಮತ್ತು ಅಣುವಿನ ಗುಣ:
ಮೇಲೆ ತಿಳಿಸಿದಂತೆ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದುವ ಚಿಪ್ಪಿನ ಸಾಮರ್ಥ್ಯವನ್ನು 2*(n)2 ರಿಂದ ಲೆಕ್ಕಹಾಕಬಹುದು. ಅಣುವೊಂದರಲ್ಲಿ ಚಿಪ್ಪೊಂದರ ಸಾಮರ್ಥ್ಯಕ್ಕಿಂತ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆ ಕಡಿಮೆ ಇದ್ದರೆ ಅಂತಹ ಅಣುವಿನಲ್ಲಿ ಬೇರೊಂದು ಅಣುವಿನೊಂದಿಗೆ ಒಡನಾಡುವ ಸಾಮರ್ಥ್ಯ ಹೆಚ್ಚಿರುತ್ತದೆ.

ಉದಾಹರಣೆಗೆ: ಅಣುವೊಂದರಲ್ಲಿ 12 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿವೆ ಎಂದುಕೊಳ್ಳೋಣ. ಅದರಲ್ಲಿ ಚಿಪ್ಪುಗಳು ಮತ್ತು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆ ಹೀಗಿರುತ್ತದೆ.
ಚಿಪ್ಪು 1 –> 2*(1)2 = 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 2 –> 2*(2)2 = 8 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 3 –> 2*(3)2 = 18 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರಬಹುದು ಆದರೆ ಉಳಿದವು 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಷ್ಟೇ (12-2-8=2) ಆಗಿರುವುದರಿಂದ ಚಿಪ್ಪು3 ರ ಸಾಮರ್ಥ್ಯಕ್ಕಿಂತ (18) ಕಡಿಮೆ ಸಂಖ್ಯೆಯಲ್ಲಿ (2) ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿರುವುದನ್ನು ಗಮನಿಸಬಹುದು. ಇಂತಹ ಅಣು ಬೇರೊಂದು ಅಣುವಿನೊಂದಿಗೆ ಸುಲಭವಾಗಿ ಒಡನಾಡಬಲ್ಲದ್ದಾಗಿರುತ್ತದೆ.

(ಮುಂದಿನ ಬರಹದಲ್ಲಿ ಅಣುಗಳ ಇನ್ನಷ್ಟು ವಿಷಯಗಳನ್ನು ತಿಳಿಯೋಣ)

ಬಿಸಿಲ್ನೆಲೆಗಳ ನಡುವಣ ಕೂಡು ಹರವು

ಎರಡೂ ಅರೆಗೋಳದ ಮಾರುಗಾಳಿಗಳು ಬಿಸಿಲನೆಲೆಗಳ ಮೇಲೆ ಸಾಗುತ್ತಾ  ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ ಬಂದು ಸೇರುವ ತಾವುಗಳಲ್ಲೆಲ್ಲಾ ಒಂದೇ ಬಗೆಯ ಗಾಳಿಪಾಡಿನ ಪಟ್ಟಿಯು ಏರ್ಪಡುತ್ತದೆ. ಕಡಿಮೆ ಒತ್ತಡದ ನೆಲೆಯಾದ ಈ ಪಟ್ಟಿಯನ್ನು ಬಿಸಿಲ್ನೆಲೆಗಳ ನಡುವಣ ಕೂಡು ಹರವು (Intertropical Convergence Zone) ಎಂದು ಕರೆಯಬಹುದಾಗಿದೆ. ಈ ಹರವು ಸರಿಗೆರೆಯಿಂದ ಮೇಲ್ಗಡೆಗೆ ಮತ್ತು ಕೆಳಗಡೆಗೆ ಕಾವಿನ ಸರಿಗೆರೆಯ ಕದಲಿಕೆಗೆ ತಕ್ಕಂತೆ ಜರುಗುತ್ತದೆ. ಹಾಗಾದರೆ ಕಾವಿನ ಸರಿಗೆರೆ ಅಂದರೇನು? ಕಾವಿನ ಸರಿಗೆರೆ ಕದಲುವುದಾದರೂ ಏತಕ್ಕೆ? ಬಿಸಿಲ್ನೆಲೆಗಳ ನಡುವಣ ಕೂಡು ಹರವು ನೆಲನಡುಗೆರೆಯ ಮೇಲೆ ಕೆಳಗೆ ಜರುಗುವುದರಿಂದ ಇಡಿನೆಲದ ಗಾಳಿಪರಿಚೆಯ ಮೇಲಾಗುವ ಆಗುಹಗಳೇನು? ಈ ಬರಹದಲ್ಲಿ ತಿಳಿಯೋಣ.

ನೆಲದ ಹೊರಮಯ್ ನಡುವಿಗೆ ಸರಿಯಾಗಿ ಒಂದು ಅಡ್ಡಗೆರೆಯನ್ನು ಎಳೆದರೆ ಅದು ಸರಿಗೆರೆ. ನೆಲದ ಬಡಗು ತುದಿಯಿಂದ ತೆಂಕು ತುದಿಯವರೆಗು ಎಷ್ಟೇ ಅಡ್ಡಗೆರೆಗಳನ್ನು ಎಳೆದರೂ ಅವುಗಳಲ್ಲೆಲ್ಲಾ ಸರಿಗೆರೆಯೇ ಹೆಚ್ಚು ಉದ್ದವಾಗಿರುತ್ತದೆ. ಸರಿಗೆರೆಯು ನೆಲವನ್ನು ಬಡಗು ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳಗಳಾಗಿ ಸರಿಪಾಲು ಮಾಡುತ್ತದೆ. ಸರಿಗೆರೆಯ 0 ಡಿಗ್ರಿಯಿಂದ ಮೊದಲ್ಗೊಂಡು ಬಡಗು ತುದಿಯವರೆಗು 90 ಡಿಗ್ರಿ ಮತ್ತು ತೆಂಕುತುದಿಯವರೆಗು 90 ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಳಲ್ಲಿ ಅಳತೆ ಮಾಡಲಾಗುತ್ತದೆ.

ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ 10 ಡಿಗ್ರಿ ಬಡಗು ಮತ್ತು ತೆಂಕಿಗೆ ಹಬ್ಬಿರುವ ನೆಲದ ಸುತ್ತಲಿನ ಪಟ್ಟಿಯು ಸರಿಗೆರೆನೆಲೆಯಾಗಿದ್ದೂ ಇಲ್ಲಿ ಹೆಚ್ಚುಕಡಿಮೆ ಎಲ್ಲ ದಿನಗಳೂ ನೆಲವು ಕಡುಕಾಯುವುದರಿಂದ ಹೆಚ್ಚು ಬಿಸಿಲು, ಹೆಚ್ಚು ಮಳೆ ಮತ್ತು ದಟ್ಟ ಕಗ್ಗತ್ತಲ ಕಾಡುಗಳು ಉಂಟಾಗಿವೆ.  ತುದಿಗಳೆರೆಡನ್ನು ಜೋಡಿಸಿ ನೆಲದ ಒಳಗಿನಿಂದ ನಿಲುವಾಗಿ ಒಂದು ಗೆರೆಯನ್ನು ಎಳೆದರೆ ಅದು ನಡುಗೆರೆ. ಈ ನಡುಗೆರೆಯು ನೆಲವು ತನ್ಸುತ್ತ ತಿರುಗುವ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ನೇರಡ್ಡವಾಗಿ ಇರುತ್ತದೆ. ಆದರೆ ನೇಸರನ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ಓರೆಯಾಗಿರುತ್ತದೆ. ನೇಸರನ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ಎಳೆದ ನೇರಡ್ಡಗೆರೆಗೆ ನೆಲದ ನಡುಗೆರೆಯು 23.30’ ಮೂಲೆಯಷ್ಟು ಬೇರ್ಪಟ್ಟಿರುತ್ತದೆ. ಇದನ್ನೇ ನಡುಗೆರೆ ಓರೆ(Axis tilt) ಎನ್ನಲಾಗುತ್ತದೆ.

ಒಂದುವೇಳೆ ನೆಲದ ನಡುಗೆರೆಯು ನೇಸರನ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ನೇರಡ್ಡವಾಗಿ ಇದ್ದಿದ್ದರೆ ಈಗಿರುವ ಸೂಳುಗಳು (seasons) ಇರುತ್ತಿರಲಿಲ್ಲ. ನೆಲದ ನಡುಗೆರೆಯ ಓರೆಯಿಂದಾಗಿಯೇ ಇಡಿನೆಲದಮೇಲೆ ಈಗಿರುವ ಸೂಳುಗಳಾದ ಬೇಸಿಗೆಕಾಲ, ಮಳೆಗಾಲ ಮತ್ತು ಚಳಿಗಾಲಗಳು ಉಂಟಾಗಿವೆ. ನೆಲವು ತನ್ನಸುತ್ತ ಸುತ್ತುತ್ತಲೇ ನೇಸರನನ್ನೂ ಸುತ್ತುತ್ತಿರುತ್ತದೆ. ತನ್ನಸುತ್ತ ತಿರುಗಲು ಇರುವ ಸುತ್ತುಹಾದಿಯ(orbit) ಹಾದಿಮಟ್ಟಸವು(orbital plane), ನೇಸರನ ಸುತ್ತ ತಿರುಗಲು ಇರುವ ಸುತ್ತುಹಾದಿಯ ಹಾದಿಮಟ್ಟಸವು ಒಂದೇ ಮಟ್ಟಸದಲ್ಲಿರದೆ 23.30’ ಅಗಲದ ಮೂಲೆಯಷ್ಟು ಬೇರ್ಪಟ್ಟಿರುತ್ತವೆ. ಅಂದರೆ ನೇಸರನ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ನೆಲದ ಹಾದಿಮಟ್ಟಸವು 23.30’ ಮೂಲೆಯಶ್ಟು ವಾಲಿರುತ್ತದೆ.

unnamed

ಮೇಲೆ ಹೇಳಿದಂತೆ ನೇಸರನ ಕದಿರುಗಳು ಸರಿಗೆರೆನೆಲೆಯ ಪಟ್ಟಿಯಮೇಲೆ ಯಾವಾಗಲೂ ನೇರವಾಗಿ ಮತ್ತು ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ ಮೇಲಕ್ಕೆ ಹೋದಂತೆಲ್ಲಾ ಓರೆಯಾಗಿ ಬೀಳುತ್ತವೆ ಎಂದು ತಿಳಿದಿದ್ದೆವು. ಆದರೆ ಇದು ತುಂಬು ತಿಳುವಳಿಕೆಯಲ್ಲ. ಏಕೆಂದರೆ ನೆಲವು ನೇಸರನ ಹಾದಿಮಟ್ಟಸಕ್ಕೆ ಸಮತಟ್ಟಾಗಿ ಕೂಡಿಕೊಳ್ಳದೆ ವಾಲಿದ್ದರಿಂದಾಗಿ ನೇಸರನ ಕದಿರುಗಳು ಯಾವಾಗಲೂ ಸರಿಗೆರೆಯ ಮೇಲೆಯೇ ನೇರವಾಗಿ ಬೀಳುವುದಿಲ್ಲ. ನೆಲವು ಓರೆಯಾದ ನಡುಗೆರೆಗೆ ನಂಟಾಗಿ ತಿರುಗುತ್ತಾ ನೇಸರನನ್ನೂ ಸುತ್ತುತ್ತಿರುತ್ತದೆ.

ಮಾರ್ಚ್ 20 ಇಲ್ಲ 21ಕ್ಕೆ ಸರಿಯಾಗಿ ಸರಿಗೆರೆ ಇರುವೆಡೆಯೆಲ್ಲಾ ನೇರವಾಗಿ ಬಿದ್ದ ಕದಿರುಗಳು ದಿನದಿಂದ ದಿನಕ್ಕೆ ನೇರವಾಗಿ ಬೀಳುವ ಪಟ್ಟಿಯು ಮೇಲೆಕ್ಕೆ ಜರುಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಜೂನ್ 21  ಇಲ್ಲ 22ಕ್ಕೆ ಈ ಪಟ್ಟಿಯು ಬಡಗು ಅರೆಗೋಳದ 23.5’ ಡಿಗ್ರಿ ಮೇಲ್ಬಿಸಿಲ್ನೆಲೆ ಅಡ್ಡಗೆರೆಯ ಮೇಲೆ ಬೀಳುತ್ತದೆ. ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಅಂದು ಹಗಲು, ವರುಶದ ಎಲ್ಲಾ ಹಗಲುಗಳಿಗಿಂತ ಹೆಚ್ಚು ಹೊತ್ತಿನದಾಗಿರುತ್ತದೆ. ಅಂದರೆ ಅಂದು ಹಗಲು 12 ತಾಸುಗಳಿಗೂ ಹೆಚ್ಚಿನದ್ದಾಗಿರುತ್ತದೆ. ಅಂದು 23.5’ ಡಿಗ್ರಿ ದಾಟಿ ಬಡಗು ತುದಿಯೆಡೆಗೆ ಹೋದಂತೆಲ್ಲ ಹಗಲು ಹಿಗ್ಗುತ್ತಾ ಇರುಳು ಕುಗ್ಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಬಡಗು ತುದಿಯಲ್ಲಿ ನೆಲೆಸುವವರಿಗೆ ಇರುಳೇ ಇಲ್ಲದ 24ತಾಸೂ ಹಗಲೇ ಇರುತ್ತದೆ. ಆದರೆ ಇದೇ ಹೊತ್ತಲ್ಲಿ ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಹಗಲು ಕುಗ್ಗುತ್ತಾ ಇರುಳು ಹಿಗ್ಗುತ್ತಾ ಕೊನೆಗೆ ತೆಂಕು ತುದಿಯಲ್ಲಿ 24ತಾಸೂ ಇರುಳೇ ಇರುತ್ತದೆ. ಇದನ್ನು ಜೂನ್ ಇಲ್ಲ ಬಿಸಿಲ್ಗಾಲದ ಎಲ್ಲೆಹಗಲು ಎಂದು ಕರೆಯಬಹುದಾಗಿದೆ.

ಜೂನ್ ಎಲ್ಲೆ ಹಗಲಿನ ತರುವಾಯ ನೇಸರನ ನೇರ ಕದಿರುಗಳು ದಿನ ದಿನಕ್ಕೂ ಹಿಮ್ಮೆಟ್ಟುತ್ತಾ ಸೆಪ್ಟೆಂಬರ್ 21ಕ್ಕೆ 0 ಡಿಗ್ರಿ ಸರಿಗೆರೆಯ ಮೇಲೆ ಮತ್ತೇ ಬೀಳುತ್ತವೆ. 0ಡಿಗ್ರಿ ಸರಿಗೆರೆಯ ಮೇಲೆ ನೇರ ಕದಿರುಗಳು ಬಿದ್ದಾಗ ಇಡೀ ನೆಲದ ಮೇಲೆಲ್ಲಾ ಹಗಲೂ ಇರುಳು ಸರಿಸಮವಾಗಿರುತ್ತವೆ. ಈ ನಾಳನ್ನು ಸರಿನಾಳೆಂದು ಕರೆಯುತ್ತೇವೆ. ಒಂದು ಏಡಿಗೆ ನೇರ ಕದಿರುಗಳು ಎರಡು ಸಾರಿ ಅಂದರೆ ಮಾರ್ಚ್ 21 ಹಾಗು ಸೆಪ್ಟೆಂಬರ್ 21ಕ್ಕೆ ಬೀಳುವುದರಿಂದ ಎರಡು ಸರಿದಿನಗಳು ಉಂಟಾಗುತ್ತವೆ.

ಸೆಪ್ಟೆಂಬರ್ 21ರ ಸರಿದಿನ ಮುಗಿದಮೇಲೆ ನೇರ ಕದಿರುಗಳು ತೆಂಕು ದಿಕ್ಕಿಗೆ ಸಾಗುತ್ತಾ ಡಿಸೆಂಬರ್ 21ಕ್ಕೆ ತೆಂಕು ಅರೆಗೋಳದ  23.5’ ಡಿಗ್ರಿ ಕೆಳಬಿಸಿಲ್ನೆಲೆ ಅಡ್ಡಗೆರೆಯ ಮೇಲೆ ಬೀಳುತ್ತವೆ. ಅಂದು ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ 12ತಾಸಿಗೂ ಹೆಚ್ಚು ಹೊತ್ತಿನ ಹಗಲಿರುತ್ತದೆ ಮತ್ತು 23.5’ ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಿಂತ ಮೇಲಕ್ಕೆ ಹೋದಹಾಗೆಲ್ಲ ಹಗಲು ಹಿಗ್ಗುತ್ತಾ ಇರುಳು ಕುಗ್ಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ತೆಂಕು ತುದಿಯಮೇಲೆ 24ತಾಸೂ ಹಗಲೇ ಇರುತ್ತದೆ. ಇದನ್ನು ಡಿಸೆಂಬರ್ ಇಲ್ಲ ಚಳಿಗಾಲದ ಎಲ್ಲೆಹಗಲೆಂದು ಕರೆಯಬಹುದಾಗಿದೆ.

ದಿಟಕ್ಕೂ ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಆಗ ಬಿಸಿಲುಗಾಲವಿರುತ್ತದೆ. ಆದರೆ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಹೆಚ್ಚು ಗಟ್ಟಿನೆಲಗಳಿದ್ದೂ (60ಪಾಲು ನೆಲ, 40ಪಾಲು ನೀರು) ಗಾಳಿಪರಿಚೆಯ ಏರುಪೇರುಗಳು ಹೆಚ್ಚಿನದಾಗಿರುತ್ತವೆ. ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಹೆಚ್ಚು ನೀರಿದ್ದೂ (20ಪಾಲು ನೆಲ, 80ಪಾಲು ನೀರು) ಅಡೆತಡೆಗಳಿಲ್ಲದೆ ಗಾಳಿಪರಿಚೆಯು ಹೆಚ್ಚುಕಡಿಮೆ ಒಂದೇತೆರನಾಗಿ ಇರುತ್ತದೆ. ಮತ್ತು ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಹೆಚ್ಚು ಗಟ್ಟಿನೆಲಗಳು ಇರುವುದರಿಂದ ಮಂದಿ ನೆಲಸಿಕೆಯು ಹೆಚ್ಚಿರುತ್ತದೆ. ಆದ್ದರಿಂದ ನೆಲದರಿಮೆಯ ಹೆಚ್ಚಿನ ಹುರುಳುಗಳನ್ನು ಬಡಗು ಅರೆಗೋಳವನ್ನು ನಂಟಾಗಿ ಇಟ್ಟುಕೊಂಡು ಗುರುತಿಸಲಾಗುತ್ತದೆ. ಡಿಸೆಂಬರ್ 21ಕ್ಕೆ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಚಳಿಗಾಲವಿರುವುದರಿಂದಾಗಿ ಚಳಿಗಾಲದ ಎಲ್ಲೆಹಗಲೆಂದು ಕರೆಯಲಾಗಿದೆ.

unnamed (1)

ಅಡಕಮಾಡಿ ಹೇಳುವುದಾದರೆ, ನೆಲವು ಚೆಂಡಿನಂತೆ ಇರುವುದರಿಂದ ಅದರ ಹೊರಮೈ ಮಟ್ಟಸವಾಗಿರುವುದಿಲ್ಲ. ಆದ್ದರಿಂದಾಗಿ ನೇಸರನ ಕದಿರುಗಳು ಕೆಲವೆಡೆ ನೇರವಾಗಿ ಮತ್ತು ಹಲವೆಡೆ ಓರೆಯಾಗಿ ಬೀಳುತ್ತವೆ. ತುದಿಯಲ್ಲಿ ಹೆಚ್ಚು ಓರೆಯಾಗಿ, ತುದಿಯಿಂದ ಸರಿಗೆರೆಯೆಡೆಗೆ ಹೋದಂತೆಲ್ಲ ಕಡಿಮೆ ಓರೆಯಾಗುತ್ತಾ ಸರಿಗೆರೆಯಮೇಲೆ ನೇರವಾದ ಕದಿರುಗಳು ಬೀಳುತ್ತವೆ. ನೇರ ಕದಿರುಗಳು ಬಿದ್ದ ಎಡೆಗಳಲ್ಲೆಲ್ಲ ನೆಲವು ಹೆಚ್ಚು ಕಾಯುತ್ತದೆ. ನೆಲದ ವಾಲಿಕೆಯಿಂದಾಗಿ ನೇರ ಕದಿರುಗಳ ಬೀಳುವಿಕೆಯ   ಪಟ್ಟಿಯು ಎಲ್ಲ ದಿನಗಳು ಸರಿಗೆರೆ ಮೇಲಿರದೆ 23.5 ಡಿಗ್ರಿ ಬಡಗಿನ ಮೇಲ್ಬಿಸಿಲ್ನೆಲೆ ಅಡ್ಡಗೆರೆ ಮತ್ತು ತೆಂಕಿನ ಕೆಳಬಿಸಿಲ್ನೆಲೆ ಅಡ್ಡಗೆರೆವರೆಗೂ ಕದಲುತ್ತದೆ.  23.5ಡಿಗ್ರಿ ಬಡಗಿನಿಂದ 23.5 ಡಿಗ್ರಿ ತೆಂಕಿನವರೆಗೆ ನೆಲವನ್ನು ಕಡುಕಾಯುತ್ತ ಕದಲುವ ನೇರ ಕದಿರುಗಳ ಪಟ್ಟಿಯನ್ನು ಕಾವಿನ ಸರಿಗೆರೆ ಎನ್ನಬಹುದಾಗಿದೆ.

unnamed (2)

ಬೀಸುಗಾಳಿಗಳು ಕುರಿತ ಬರಹದಲ್ಲಿ ಹಾಡ್ಲೆ ಕುಣಿಕೆಯ ಬಗ್ಗೆ ತಿಳಿದುಕೊಂಡಂತೆ, ಸರಿಗೆರೆನೆಲೆಗಳ ಮೇಲೆ ಕಡು ಕಾದ ಗಾಳಿಯು ಮೇಲೇರಿ ಮಳೆ ಸುರಿಸಿ ಹಗುರಗೊಂಡು, 10-15ಕಿಮಿ ಎತ್ತರದಲ್ಲಿ ಬಡಗು ತುದಿಯೆಡೆಗೆ ಸಾಗುತ್ತಾ ತಂಪುಗೊಳ್ಳುತ್ತಾ ಒತ್ತೊಟ್ಟುಗೊಂಡು, 30 ಡಿಗ್ರಿ ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳ ಮೇಲಿಳಿದು ಮಾರುಗಾಳಿಗಳಾಗಿ ಮತ್ತೇ ಕಡಿಮೆ ಒತ್ತಡದ ಸರಿಗೆರೆನೆಲೆಗಳೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಈ ಬೀಸುಗಾಳಿಗಳು ಎರಡೂ ಅರೆಗೋಳದ ಬಿಸಿಲ್ನೆಲೆಗಳ ಮೇಲೆ ಬೀಸುತ್ತಾ ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ ಎದುರುಬದುರಾಗಿ ಬಂದು ಕೂಡುತ್ತವೆ. ಆದರೆ ಕಡುಕಾಯುವ ತಾವುಗಳು ನೇರಕದಿರುಗಳು ಬೀಳುವ ಎಡೆಗಳಾಗಿರುವುದರಿಂದ ಮಾರುಗಾಳಿಗಳು ಕಟ್ಟುನಿಟ್ಟಾಗಿ ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲೇ ಕೂಡುವುದಿಲ್ಲ, ಹೊರತಾಗಿ ಕಾವಿನ ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ ಒಟ್ಟುಸೇರುತ್ತವೆ. ಸರಿಗೆರೆಯು ಮಾರ್ಪಡದ ನೆನಸಿನ ಗೆರೆಯಾಗಿದೆ, ಆದರೆ ಕಾವಿನ ಸರಿಗೆರೆಯು ನೇರಕದಿರುಗಳಿಂದ ಕಾದ ನೆಲೆಗಳ ಪಟ್ಟಿಯಾಗಿದೆ. ಕಾವಿನ ಸರಿಗೆರೆಯ ಇಕ್ಕೆಲಗಳಲ್ಲಿ ಬೀಸುಗಾಳಿಗಳು ಒಟ್ಟುಸೇರುವ ನೆಲೆಗಳೇ ಬಿಸಿಲ್ನೆಲೆಗಳ ನಡುವಣ ಕೂಡು ಹರವಾಗಿದೆ. ಚಿಕ್ಕದಾಗಿ ಗುರುತಿಸಲು ಬಿನಕೂ ಹರವು ಎಂದೂ ಹೇಳಬಹುದು. ಕಾವಿನ ಸರಿಗೆರೆಯು ಮೇಲೆ ಕೆಳಗೆ ಕದಲಿದಂತೆಲ್ಲ ಬಿನಕೂ ಹರವು ಕೂಡ ಅದಕ್ಕೆ ಹೊಂದಿಕೊಂಡು ಕದಲುತ್ತದೆ.

unnamed (3)

ಮುಂದಕ್ಕೆ ಹೋಗುವುದಕ್ಕೂ ಮುಂಚೆ ಒಂದು ಸಣ್ಣ ಆರಯ್ಕೆಯನ್ನು ಮಾಡೋಣ. ಒಂದು ಗುಂಡಾಲದಲ್ಲಿ ನೀರು ಕಾಯಿಸಲು ಇಡಿ. ಮುಚ್ಚಳವನ್ನು ಗುಂಡಾಲಕ್ಕೆ ಮುಚ್ಚದೆ, ನೀರಾವಿಗೆ ಅಡ್ಡವಾಗಿ ಮೇಲೆ ಹಿಡಿದಿಟ್ಟುಕೊಳ್ಳಿ. ಮುಚ್ಚಳದ ಅಡಿಯಲ್ಲಿ ನೀರ ಹನಿಗಳು ಜೋತುಬಿದ್ದಿರುವುದು ಕಾಣಬಹುದು. ಅದೇ ಗುಂಡಾಲವನ್ನು ನೀರಿಲ್ಲದೆ ಬರಿದೆ ಕಾಯಲು ಇಡಿ. ಮುಚ್ಚಳದ ಅಡಿಯಲ್ಲಿ ನೀರ ಹನಿಗಳು ಕೂಡಿರುವುದಿಲ್ಲ, ಬದಲಿಗೆ ಮುಚ್ಚಳವು ಬಿಸಿಗಾಳಿ ತಗುಲಿ ಕಾದಿರುತ್ತದೆ. ಈ ಎತ್ತುಗೆಯನ್ನು ಬರಿನೆಲ ಮತ್ತು ನೀರನ್ನು ಗುಂಡಾಲದಂತೆ ತುಂಬಿಕೊಂಡಿರುವ ಕಡಲಿಗೆ ಹೊಂದಿಸಿ ನೋಡಿದಾಗ, ಕಾದ ಬಿಸಿಗಾಳಿಯು ಕಡಲಿಂದ ನೆಲದಮೇಲೆ ಮತ್ತು ನೆಲದಿಂದ ಕಡಲಿಗೆ ಬೀಸಿದಾಗ ಪಡಲಿಕೆಯನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ. ನೆಲದಿಂದ ನೆಲಕ್ಕೆ ಬೀಸಿದ ತೇವವಿಲ್ಲದ ಗಾಳಿಯು ಪಡಲಿಕೆಯನ್ನು ಉಂಟುಮಾಡುವುದಿಲ್ಲ.

ಬಿನಕೂ ಹರವಿನಿಂದಾಗಿ ಇಡಿನೆಲದ ಗಾಳಿಪರಿಚೆಯಲ್ಲಿ ಉಂಟಾಗುವ ಏರುಪೇರುಗಳ ಬಗ್ಗೆ ತಿಳಿಯೋಣ. ಅಡ್ಡಡ್ಡವಾಗಿ ಬಿಸುಪು, ಪಸೆ ಮತ್ತು ಒತ್ತಡದಲ್ಲಿ ಹೆಚ್ಚು ಮಾರ್ಪುಗಳಿಲ್ಲದ ನೂರು ಇಲ್ಲ ಸಾವಿರಾರು ಚದರ ಮೈಲಿಗಳವರೆಗೂ ಹಬ್ಬಿದ ಗಾಳಿಯ ದೊಡ್ಡ ಒಟ್ಟಲನ್ನು ಗಾಳಿಯೊಟ್ಟಲು(air mass) ಎನ್ನಬಹುದಾಗಿದೆ. ನೆಲದ ಮೇಲಿಂದ ಬೀಸುವ ಗಾಳಿಯೊಟ್ಟಲು ಒಣದಾಗಿದ್ದರೆ ಕಡಲ ಮೇಲಿಂದ ಬೀಸುವುವು ಒದ್ದೆಯಾಗಿರುತ್ತವೆ. ಮೇಲಿನ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿದಂತೆ ಆಫ್ರಿಕಾ ನೆಲತುಂಡಿನ ಮೇಲೆ ಬೀಸುವ ಮಾರುಗಾಳಿಗಳು ಎರಡು ಬಗೆಯ ಗಾಳಿಯೊಟ್ಟಲುಗಳಾಗಿ ಬೀಸುತ್ತವೆ. ಮೊದಲನೇದಾಗಿ, ಬಡಗು-ಮೂಡಣದ ಮಾರುಗಾಳಿಗಳು ಬಿಸಿಲ್ನೆಲೆಯ ನೆಲತುಂಡಿನ ಗಾಳಿಯೊಟ್ಟಲಾಗಿ (cT – Tropical Continental air mass) ಬೀಸುವುದು. ಎರಡೆನೇದಾಗಿ, ಬೀಸುವ ತೆಂಕು-ಪಡುವಣದ ಮಾರುಗಾಳಿಗಳು ಬಿಸಿಲ್ನೆಲೆಯ ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲು (mT – Tropical Maritime air mass).

ಬಿಸಿಲ್ನೆಲ ನೆಲತುಂಡಿನ ಗಾಳಿಯೊಟ್ಟಲು – Tropical Continental air mass:
ಈ ಗಾಳಿಯೊಟ್ಟಲು ಸಹಾರಾ ಮರಳುಗಾಡಿನಿಂದ ಮೊದಲ್ಗೊಂಡು ಬಿಸಿಲ್ನೆಲೆಯ ಅಡ್ಡಗೆರೆಗಳ ಮೇಲೆ ಕಡುಕಾದು, ಹೋಲಿಕೆಯಲ್ಲಿ ಕಡಿಮೆ ಗಾಳಿಯೀರ(humid)ವನ್ನು ಹೊಂದಿ ಮಾರ್ಪಡದ ಗಾಳಿಪಾಡನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ.

ಬಿಸಿಲ್ನೆಲ ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲು – Tropical Maritime air mass:
ಈ ಗಾಳಿಯೊಟ್ಟಲು ಅಟ್ಲಾಂಟಿಕ್ ಹೆಗ್ಗಡಲ/ಗಲ್ಫ್ ಆಪ್ ಗಿನೀಯಿಂದ ಮೊದಲ್ಗೊಂಡು ಬಿಸಿಲ್ನೆಲೆಯ ಅಡ್ಡಗೆರೆಗಳ ಮೇಲೆ ಕಡುಕಾದು, ಹೋಲಿಕೆಯಲ್ಲಿ ಹೆಚ್ಚು ಗಾಳಿಯೀರವನ್ನು ಹೊಂದಿದ್ದರಿಂದಾಗಿ ಮಾರ್ಪಿನ ಗಾಳಿಪಾಡನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ.

ಇವೆರೆಡು ಗಾಳಿಯೊಟ್ಟಲುಗಳು ಕಡಿಮೆ ಒತ್ತಡದ ಬಿನಕೂ ಹರವಿನಲ್ಲಿ ಕೂಡಿದಾಗ ಪಸೆ/ತೇವವುಳ್ಳ ಗಾಳಿಯು ಮೇಲಕ್ಕೆ ತಳ್ಳಲ್ಪಡುತ್ತದೆ. ಮೇಲೇರಿದಂತೆ ತಂಪುಗೊಂಡ ಗಾಳಿಯಲ್ಲಿನ ನೀರಾವಿಯು ನೀರಾಗಿ ಇಡಿನೆಲದ ಸುತ್ತಲೂ ಮೋಡಕವಿದ ಮಳೆಯು ಸುರಿಯುತ್ತದೆ.

ಕಾವಿನ ಸರಿಗೆರೆಯು ಕದಲಿದಂತೆ ಬಿನಕೂ ಹರವೂ ಕದಲುತ್ತದೆ ಎಂದು ತಿಳಿದಿದ್ದೇವೆ. ಹೀಗೆ ಮಾರ್ಚ್ 21ರ ತರುವಾಯ ಬಡಗಿಗೆ ಕದಲುವಾಗ ಈ ಹರವು, ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲನ್ನೂ(mT) ಬಡಗಿನೆಡೆಗೆ ಎದುರಾಗುವ ನೆಲಕ್ಕೆ ಹೊತ್ತೊಯ್ಯುವುದರಿಂದ ಅಲ್ಲೆಲ್ಲಾ ಒದ್ದೆ ಗಾಳಿಪಾಡು ತರುತ್ತದೆ. ಅದೇ ಹೊತ್ತಲ್ಲಿ ಬಿನಕೂ ಹರವಿಗೆ ಬಡಗು ದಿಕ್ಕಿನಲ್ಲಿರುವ ನೆಲಕ್ಕೆ ನೆಲತುಂಡಿನ ಗಾಳಿಯೊಟ್ಟಲಿಂದಾಗಿ ಒಣ ಬಿಸಿ ಗಾಳಿಪಾಡು ಉಂಟಾಗುತ್ತದೆ. ಅದೇ ಹೊತ್ತಲ್ಲಿ ಸರಿಯಾಗಿ ಹರವಿನ ಕೆಳಗೆ ಗುಡುಗುಮಳೆಯಾಗುತ್ತಿರುತ್ತದೆ.

ಒಟ್ಟಿನಲ್ಲಿ ಬಿನಕೂ ಹರವು ಮೇಲೆ/ಕೆಳಗೆ ಕದಲುವುದರಿಂದ ಸರಿಗೆರೆನೆಲೆಯಲ್ಲಿ ಬರುವ ನಾಡುಗಳಲ್ಲೆಲ್ಲಾ ಒದ್ದೆ ಮತ್ತು ಒಣ ಸೂಳುಗಳು ತಳೆಯುತ್ತವೆ. ಆಫ್ರಿಕಾ ನೆಲತುಂಡಿನೊಳಗೆ ಜರುಗುವ ಕೆಲವು ಎತ್ತುಗೆಗಳನ್ನು ನೋಡುವುದಾದರೆ,

unnamed (4)

ಗಾವ್: ಬಿನಕೂ ಹರವು ಬಡಗಿನ 10ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಯನ್ನು ದಾಟಿದಾಗ, ಹರವಿನ ಬಡಗಿಗೆ ಇರುವ ನಾಡು ಮಾಲಿ. ಮಾಲಿ ನಾಡಿನ ಗಾವ್ ಪಟ್ಟಣಕ್ಕೆ ಏಡಿಗೆ 200mm ಮಳೆಸುರಿಯುವುದರಿಂದ ಅಲ್ಲೆಲ್ಲಾ ಬಿಸಿ ಮರಗಾಡಿನ ಗಾಳಿಪರಿಚೆಯಿರುತ್ತದೆ. ಇಲ್ಲಿ ವರುಶದುದ್ದಕ್ಕೂ ಒಣದಾದ, ಬಿಸಿ ಗಾಳಿಯೊಟ್ಟಲು ನೆಲತುಂಡಿನ ಮೇಲಿಂದ ಬೀಸುವುದರಿಂದ ಕಡಿಮೆ ದಿನಗಳಲ್ಲಷ್ಟೇ ಮಳೆ ಸುರಿಯುತ್ತದೆ ಮತ್ತು ವರುಶದ ಒಟ್ಟು ಪಡಲಿಕೆ ಬಹಳ ಕಡಿಮೆಯಿರುತ್ತದೆ. ಏಕೆಂದರೆ ಗಾವ್ ಪಟ್ಟಣವು ವರುಶದ ಹೆಚ್ಚು ದಿನ ಹರವಿನ ಬಡಗಿಗೆ ಇರುತ್ತದೆ.

ಅಬಿಜಾನ್: ಅಬಿಜಾನ್ ಪಟ್ಟಣವು ಅಯ್ವೊರಿ ಕೋಸ್ಟ್ ನಾಡಿನ ಗಲ್ಪ್ ಆಪ್ ಗಿನಿಯಾ ಕರಾವಳಿಯಲ್ಲಿ ಬರುತ್ತದೆ. ಇಲ್ಲಿ ವರುಶದ ಒಟ್ಟು ಮಳೆಸುರಿತ  1700mm ಆಗಿದ್ದೂ ಬಿನಕೂ ಹರವು, ಮೇ ಕೊನೆಯಲ್ಲಿ ಬಡಗಿಗೆ ಮತ್ತು ಅಕ್ಟೋಬರ್ ಕೊನೆಗೆ ತೆಂಕಿಗೆ ಕದಲುವುದರಿಂದ ಬಿಸಿ, ಗಾಳಿಯೀರ ಹೊಂದಿದ ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲು ವರುಶದುದ್ದಕ್ಕೂ ಮಳೆಸುರಿಸುತ್ತದೆ. ಜೂನ್ ಮತ್ತು ಅಕ್ಟೋಬರ್ ಅಲ್ಲಿ ಎರಡು ಹೆಚ್ಚಿನ ಮಳೆ ಸುರಿತಗಳು ಮತ್ತು ವರುಶದುದ್ದಕ್ಕೂ ಬಿಸಿಲು, ಮಳೆಯಿರುವುದರಿಂದ ಇಲ್ಲಿ ಬಿಸಿಲ್ನೆಲೆಯ ದಟ್ಟಕಾಡುಗಳು(tropical rainforest) ಕಂಡುಬರುತ್ತವೆ.

ಬೊಬೊ-ಡಿಯೋಲಾಸ್ಸೋ: ಈ ಪಟ್ಟಣವು ಗಾವ್ ಮತ್ತು ಅಬಿಜಾನ್ ಪಟ್ಟಣಗಳ ನಡುವೆ ಬರುವುದರಿಂದ ಇಲ್ಲಿ ಒದ್ದೆ ಮತ್ತು ಒಣ ಸೂಳುಗಳೆರೆಡೂ ಉಂಟಾಗುತ್ತವೆ. ಬಿನಕೂ ಹರವು ಜೂನಿನಲ್ಲಿ ಬಡಗು ಮತ್ತು ಅಗಸ್ಟಿನಲ್ಲಿ ತೆಂಕಿನೆಡೆಗೆ ಕದಲುವಾಗ, ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲುಗಳಿಂದಾಗಿ ಇಲ್ಲಿ ಮಳೆಯಾಗುತ್ತದೆ. ಇಲ್ಲಿ ವರುಶದ ಒಟ್ಟು ಮಳೆಸುರಿತ 1000mm ಆಗಿದೆ.

ಇಂಡಿಯಾದ ಮೇಲೆ ಬಿನಕೂ ಹರವಿನ ಆಗುಹಗಳು:
ಮೇಲೆ ನೋಡಿದ ಗುಂಡಾಲದ ಎತ್ತುಗೆಯ ಬಗೆಯಲ್ಲಿ ಬಿನಕೂ ಹರವು ಇಂಡಿಯಾದ ಮೇಲೆ ಕದಲುವಾಗ ಬೇಸಿಗೆ ಸೂಳು ಮೊದಲಾಗುತ್ತದೆ. ಬೇಸಿಗೆಯಲ್ಲಿ ನೆಲ ಕಡುಕಾದು ಇಂಡಿಯಾದ ಒಳನಾಡಿನಲ್ಲಿ ಕಡಿಮೆ ಒತ್ತಡ ಏರ್ಪಡುತ್ತದೆ. ನೆಲಕ್ಕಿಂತ ಹೋಲಿಕೆಯಲ್ಲಿ ತಂಪಾದ ಹಿಂದೂ ಹೆಗ್ಗಡಲ ಮೇಲಿಂದ ತೆಂಕು ಪಡುವಣದ ಮಾರುಗಾಳಿಗಳು ಬಿನಕೂ ಹರವಲ್ಲಿ ಒಟ್ಟುಸೇರಲು, ಅಂದರೆ ಕಡಿಮೆ ಒತ್ತಡದ ಇಂಡಿಯಾದ ಒಳನಾಡುಗೆಳೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಹೀಗೆ ಬೀಸುವಾಗ ಮೇಲೆ ತಿಳಿಸಿದ ಎತ್ತುಗೆಯಂತೆ ಕಡಲಿನಿಂದ ಪಸೆಯನ್ನು ಹೊತ್ತು ನೆಲದ ಮೇಲೆ ಪಡಲಿಕೆಯನ್ನು ಉಂಟುಮಾಡುತ್ತವೆ. ಇದೇ ಬಗೆಯಲ್ಲಿ ಚಳಿಗಾಲದ ಸೂಳು ಉಂಟಾಗುವುದನ್ನು ಕೆಳಗಿನ ತಿಟ್ಟದಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ.

unnamed (5)

unnamed (6)

23.5 ಡಿಗ್ರಿ ಮೇಲ್ಬಿಸಿಲ್ನೆಲೆ ಅಡ್ಡಗೆರೆಯು ಇಂಡಿಯಾದ ಗುಜರಾತ್, ರಾಜಸ್ತಾನ, ಮದ್ಯ ಪ್ರದೇಶ, ಚತ್ತೀಸ್ಗಡ, ಜಾರ್ಕಂಡ್, ಪಡುವಣ ಬಂಗಾಳ, ತ್ರಿಪುರ ಮತ್ತು ಮಿಜೋರಾಂ ರಾಜ್ಯಗಳ ಮೇಲೆ ಹಾದುಹೋಗುತ್ತದೆ. ಮಾರ್ಚ್ 21ರಿಂದ ಜೂನ್ 21ವರೆಗಿನ ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವಿನ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಾಗುವ ಕದಲಿಕೆಯು ಇಂಡಿಯಾದ ಮೇಲೆಯೂ ಜರುಗುತ್ತದೆ. ಇಂಡಿಯಾದ ಗಾಳಿಪಾಡಿನ ಮೇಲೂ ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವಿನಿಂದಾಗಿ ಏರುಪೇರುಗಳಾಗುತ್ತವೆ. ಎತ್ತುಗೆಗೆ ಜೂನ್ ಮೊದಲ ವಾರದಲ್ಲಿ ಮೊದಲಾಗುವ ಇಂಡಿಯಾದ ಮಳೆಗಾಲ. ಇದನ್ನು ತೆಂಕು-ಪಡುವಣದ ಮಾನ್ಸೂನ್ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಬೇಸಿಗೆಯಲ್ಲಿ ಅಂದರೆ ಮಾರ್ಚ್-ಏಪ್ರಿಲ್-ಮೇ-ಜೂನ್ ತಿಂಗಳುಗಳಲ್ಲಿ ನೇಸರನ ನೇರ ಕದಿರುಗಳು ಸರಿಗೆರೆಯ ಬಡಗಿಗೆ ಬೀಳತೊಡಗುವುದರಿಂದ ಕಾವಿನ ಸರಿಗೆರೆಯು ಬಡಗಿಗೆ ಕದಲತೊಡಗುತ್ತದೆ. ಕಾವಿನ ಸರಿಗೆರೆಗೆ ಹೊಂದಿಕೊಂಡೆ ಬಿನಕೂ  ಹರವು ಏರ್ಪಡುತ್ತದೆ ಎಂದು ಈಗಾಗಲೇ ತಿಳಿದಿದ್ದೇವೆ. ಇಂಡಿಯಾ ಕೂಡ ಬಡಗು ಬಿಸಿಲ್ನೆಲೆಯಲ್ಲಿರುವುದರಿಂದ ನೆಲವು ಇಲ್ಲಿ ಹೆಚ್ಚು ಕಾಯುತ್ತದೆ. ಇದರಿಂದಾಗಿ ಕಡಿಮೆ ಒತ್ತಡ ಏರ್ಪಟ್ಟು, ತೆಂಕು ಅರೆಗೋಳದ ತೆಂಕು-ಪಡುವಣ ಮಾರುಗಾಳಿಗಳು ಹಿಂದೂ ಪೆರ್ಗಡಲ ಮೇಲಿಂದ ಬಡಗು-ಮೂಡಣ ದಿಕ್ಕಿನಲ್ಲಿ ಕೇರಳದ ಕರಾವಳಿ ಮತ್ತು ಅಂಡಮಾನ್ ನಿಕೋಬಾರ್ ನಡುಗಡ್ಡೆಗಳ ಮೇಲಿನ ನೆಲವನ್ನು ಸರಿಯಾಗಿ ಜೂನ್ ಮೊದಲ ಇಲ್ಲ ಮೇ ಕೊನೆವಾರದಲ್ಲಿ ತಾಕಿದಾಗ ಮಾನ್ಸೂನ್/ಮಳೆಗಾಲವು ಇಂಡಿಯಾದಲ್ಲೆಲ್ಲಾ ಮೊದಲಾದಂತೆ. ಸರಿಗೆರೆಯೆಡೆಯ ಕಡಲಿನ ಗಾಳಿಯೊಟ್ಟಲು(mE) ಆಗಿದ್ದರಿಂದ ಇಂಡಿಯಾದ ಅಡಿ-ನೆಲತುಂಡಿನುದ್ದಕ್ಕೂ ಮಳೆಯಾಗುತ್ತದೆ.

unnamed (7)

ಚಳಿಗಾಲದ ಮಾನ್ಸೂನ್: ಅಕ್ಟೋಬರ್ ಇಂದ ಏಪ್ರಿಲ್ ವರೆಗೆ ಚಳಿಗಾಲದ ಮಾನ್ಸೂನ್ ಇರುತ್ತದೆ. ಬೇಸಿಗೆಯ ತೆಂಕು-ಪಡುವಣದ ಮಾನ್ಸೂನಿನಶ್ಟು ಚಳಿಗಾಲದ ಮಾನ್ಸೂನ್ ಹೆಸರಾಗಿಲ್ಲ. ಕಾವಿನ ಸರಿಗೆರೆ ಇಲ್ಲ ಬಿಸಿಲ್ನೆಲೆ ಕೂಡು ಹರವಿನೆಡೆಗೆ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಬೀಸುವ ಬಡಗು-ಮೂಡಣದ ಮಾರುಗಾಳಿಗಳು ತೆಂಕು-ಮೂಡಣದ ಏಸಿಯಾದಲ್ಲೆಲ್ಲಾ ಬಡಗು-ಮೂಡಣದ ಮಾನ್ಸೂನ್ ಗಾಳಿಗಳೆಂದು ಕರೆಯಲ್ಪಡುತ್ತವೆ. ಮೊಂಗೋಲಿಯಾ ಮತ್ತು ಬಡಗು-ಪಡುವಣದ ಚೀನಾದಿಂದ ಬೀಸುವ ಈ ಚಳಿಗಾಲದ ಒಣ ಮಾನ್ಸೂನ್ ಗಾಳಿಗಳು ಬೇಸಿಗೆಯ ಮಾನ್ಸೂನ್ ಗಾಳಿಯಶ್ಟು ಬಿರುಸಾಗಿರುವುದಿಲ್ಲ.  ಹಿಮಾಲಯದ ಬೆಟ್ಟಸಾಲುಗಳು ಅಡ್ಡಗಟ್ಟುವುದರಿಂದ ಕರಾವಳಿ ತಲುಪುವಶ್ಟರಲ್ಲಿ ಅಳವುಗುಂದುತ್ತವೆ ಮತ್ತು ತೆಂಕು ಇಂಡಿಯಾ ಮುಟ್ಟುವಶ್ಟರಲ್ಲಿ ಬಹಳಶ್ಟು ತಂಪನ್ನು ಕಳೆದುಕೊಂಡಿದ್ದಕ್ಕಾಗಿ ಚಳಿಗಾಲದಲ್ಲೂ ಕೊಂಚ ಬಿಸಿ ಗಾಳಿಪಾಡು ತೆಂಕು ಇಂಡಿಯಾದಲ್ಲಿ ಇರುತ್ತದೆ.

ಆದರೆ ತೆಂಕು-ಮೂಡಣದ ಏಸಿಯಾದ ಪಡುವಣ ಪಾಲಿನಂತಲ್ಲದೆ, ಮೂಡಣಪಾಲಿನಲ್ಲಿ ಬರುವ ಇಂಡೋನೇಶಿಯಾ, ಮಲೇಶಿಯಾಗಳಲ್ಲಿ ಚಳಿಗಾಲದಲ್ಲೂ ಮಳೆಯಾಗುತ್ತದೆ. ಏಕೆಂದರೆ ಮೊದಲನೇದಾಗಿ ಇಲ್ಲಿ ಹಿಮಾಲಯ ಬೆಟ್ಟಗಳು ಅಡ್ಡಬರುವುದಿಲ್ಲ. ಎರಡನೇದಾಗಿ ತೆಂಕು ಚೀನಾ ಕಡಲಿನಿಂದ ನೀರಾವಿಯನ್ನು ಹೊತ್ತ ಬಡಗು-ಮೂಡಣದ ಮಾನ್ಸೂನ್ ಗಾಳಿಯು ಮಳೆಸುರಿಸುತ್ತದೆ.
ಮುಂದಿನ ಅಂಕಣದಲ್ಲಿ ಹೆಗ್ಗಡಲ ಒಳಹರಿವುಗಳು ಮತ್ತು ಅವುಗಳ ಮೇಲೆ ಬಿನಕೂ ಹರವಿನ  ಆಗುಹಗಳನ್ನು ತಿಳಿಯೋಣ.

(ಚಿತ್ರ ಸೆಲೆಗಳು: worldatlas.comclimate.ncsu.edu)

ಹಲಬದಿಗಳು (Polygons) ಭಾಗ -1

ನಮಗೆ ಹಲವಾರು ಹಲಬದಿಯ ಆಕೃತಿಗಳನ್ನು ತಿಳಿಸಿಕೊಡಲು ಹುಬ್ಬಳ್ಳಿಯ ಶರಣಪ್ಪ ಮತ್ತು ಆತನ ಚಿಕ್ಕಪ್ಪನ ಮಗ ಮೈಸೂರಿನ ಸಿದ್ದೇಶ್ ಎಂಬ ಹುಡುಗರಿದ್ದಾರೆ, ಬನ್ನಿ ಅವರ ಮಾತಲ್ಲೇ ಹಲವು ಆಕಾರದ ಹಲಬದಿಗಳನ್ನು ತಿಳಿಯೋಣ…

ಶರಣಪ್ಪ: ನಾನು ಒಂದಿಶ್ಟು ವಸ್ತುಗಳನ್ನು ಹೆಳ್ತೀನಿ, ನೀನ್ ಅವು ಯಾವ ಆಕಾರದಲ್ಲಯ್ತಿ ಅಂತ  ಹೇಳೋ ಸಿದ್ದ.

ಸಿದ್ದೇಶ್:  ಸರಿ, ನೀನು ಕೇಳು, ನಾನು ಹೇಳ್ತೀನಿ.

ಶರಣಪ್ಪ: ನೀನು ಈಜಿಪ್ಟಿನ ಪಿರಮಿಡ್ಡನ್ನು ಪೇಪರ್, ಟೀವಿನ್ಯಾಗ ನೋಡಿರ್ತೀ ಹೌದಲ್ಲೋ? ಅವುಗಳ ಮುಕಗಳು(ಗೋಡೆಗಳು) ಯಾವ  ಆಕಾರದಲ್ಲಯ್ತಿ ?

ಸಿದ್ದೇಶ್: ಈಜಿಪ್ಟಿನ ಪಿರಮಿಡ್ಡಿನ ಮುಕಗಳು ಮೂರ್ಬದಿ ಆಕಾರದಲ್ಲವೆ, ಅದಕ್ಕೆ ಮೂರು ಬದಿಗಳವೆ.

ಶರಣಪ್ಪ: ಸರಿಯಾಗಿ ಹೇಳ್ದಿ, ಒಂದಿಶ್ಟು ನಾಲ್ಬದಿಯಾಕಾರದ ವಸ್ತುಗಳ ಹೆಸರು ಹೇಳು ನೋಡೋಣ.

ಸಿದ್ದೇಶ್: ಚೆಸ್ ಬೋರ್ಡ್, ನಾಲ್ಬದಿಯಾಕಾರದ ಹೆಂಚು, ಟೈಲ್ಸು, ಮೊಬೈಲ್ ಪೋನ್, ಮೊನ್ನೆ ನಾವು ಹಾರಿಸಿದ್ದ  ಗಾಳಿಪಟ!.

ಶರಣಪ್ಪ: ನೀನು ಬಾರಿ ಶಾಣ್ಯಾ ಅದಿ, ಈಗ  ಒಂದಿಶ್ಟು ಐದುಬದಿ ಆಕಾರದ ವಸ್ತುಗಳನ್ನು ಹೇಳೋ ಸಿದ್ದ್ಯಾ.

ಸಿದ್ದೇಶ್: ನಾವು ಆವತ್ತು ವಾಲಿಬಾಲ್ ಅಡಿದ್ವಲ್ಲ ಅದರ ಮೇಲಿನ ಕೆಂಪು, ಅರಿಶಿಣದ ಪಟ್ಟೆಗಳಿದ್ಯಲ್ಲ ಅವು ಐದುಬದಿ ಆಕಾರದಲ್ಲಿವೆ.

ನಾವು ಮೊನ್ನೆ ಚಾಕಲೇಟ್ ತಿಂದ್ವಲ್ಲ ಅದು ಐದುಬದಿ ಆಕಾರದಲ್ಲಿದೆ.

Image1 Poಸಿದ್ದೇಶ್: ಈಗ ನಾನು ಕೇಳ್ತೀನಿ ನೀನ್ ಹೇಳು ಶರಣಾ, ಒಂದಿಶ್ಟು ಆರುಬದಿ ಆಕಾರದ ವಸ್ತುಗಳನ್ನು ಹೆಸರಿಸು ನೋಡೋಣ.

ಶರಣಪ್ಪ: ಆವತ್ತ  ನಮ್ಮನಿ ಪಂಪ್ಸೆಟ್ ರಿಪೇರಿ ಮಾಡಬೇಕಾದ್ರ, ಅದರ ನಟ್ಟು ,ಬೋಲ್ಟು, ಸ್ಪಾನರ್ ಎಲ್ಲಾ ಆರುಬದಿ ಆಕಾರದಲ್ಲೈತಿ  ಅಂತ ನೋಡೀನಿ, ಮತ್ತ ಜೇನು ತತ್ತಿ  ಗೂಡುಗಳು ಅದಾವಲ್ಲ, ಅವು ಆರುಬದಿ ಆಕಾರದೊಳಗ ಇರ್ತಾವ.

Image2 Poಸಿದ್ದೇಶ್: ಒಂದಿಶ್ಟು ಏಳುಬದಿ ಆಕಾರದ ವಸ್ತುಗಳನ್ನು ಹೆಸರಿಸು ನೋಡೋಣ, ಶರಣಾ.

ಶರಣಪ್ಪ: ನಮ್ಮ ಬಿಜಾಪುರದ ಕಾಕಾರ ಮನ್ಯಾಗ ಏಳುಬದಿ ಆಕಾರದ ಕಸದ ತೊಟ್ಟಿ ಐತಿ, ನಾನು ಚಾಕ್ಲೆಟ್ ಕವರು, ಹಣ್ಣಿನ್ ಸಿಪ್ಪಿ ಎಲ್ಲಾ ಅದಕ್ಕ ಹಾಕ್ತೀನಿ, ಮತ್ತ ನನಗ ಕಾಕರು ಪಾರಿನ್ ನಾಣ್ಯ ಕೊಟ್ಟಾರ, ಅದ ಏಳುಬದಿ ಆಕಾರದಲ್ಲೈತಿ.

Image3 Poಶರಣಪ್ಪ: ಈಗ ನಾವು ಒಂದು ಚಲೋ ಕೆಲಸ ಮಾಡೋಣು, ನಮ್ಮನಿ ಪೇಪರ್ನಾಗ ಇರೋ ಹಲವು ಬದಿ ಆಕಾರಗಳನ್ನ ಕತ್ತರಿಸಿ ಅದನ್ನ ಒಂದು ಪೇಪರ್ ಮ್ಯಾಲ ಅಂಟಿಸೋಣು. ಬರ್ತೀಯೋ ಇಲ್ವೋ.

ಸಿದ್ದೇಶ್: ನೀ ಹೇಳಿದ್ ಮ್ಯಾಲೆ ಇಲ್ಲ ಅನ್ನೋಕಾಗುತ್ತೇನ್ಲಾ !, ಮಾಡೋಣ.

ಟ್ರಾಪಿಕ್ ಸಿಗ್ನಲ್ಲ್, ಹಲವು ಆಕಾರದ  ಬಣ್ಣದ ಮಣೆ, ಮನೆ ಗೋಡೆ, ಹಾವು ಏಣಿ ಆಟದ ದಾಳ, ಕಟ್ಟಡ, ಪುಟ್ಬಾಲ್, ಸಿಟಿ ರೋಡು ಪಟ್ಟಿ, ಗಾಜಿನ ಪಿರಮಿಡ್, ಬಣ್ಣದ ಕ್ಯೂಬ್, ಬೇರೆ ಬೇರೆ ಬದಿಯಾಕಾರದ ಚಾಕಲೇಟ್ ಎಲ್ಲವನ್ನು ಈಗ ಅಂಟಿಸಿಯಾಯ್ತು.

ಇದರಲ್ಲಿ ನಾವು ಮೂರ್ಬದಿ, ನಾಲ್ಬದಿ, ಐದುಬದಿ, ಆರುಬದಿ ಎಂಬ ಹಲವುಬದಿ  (Polygon) ಆಕಾರಗಳನ್ನು ಕಾಣಬಹುದು.

Image4 Poಶರಣಪ್ಪ: ನಾವೀಗ ಒಂದಿಷ್ಟು ಆಕಾರಗಳನ್ನು ಗುರುತಿಸಿ ಆತು. ಹಂಗಾದ್ರ ಹಲಬದಿ ಅಂದ್ರ ಏನು ಅಂತ ಹೇಳೊ ಸಿದ್ಯಾ?

ಸಿದ್ದೇಶ್: ಮೂರು ಮತ್ತು ಅದಕ್ಕಿಂತ ಹೆಚ್ಚು ಬದಿಗಳನ್ನು ಹೊಂದಿರುವ ಮುಚ್ಚಿದ ಆಕಾರಗಳನ್ನು (Closed shapes)  ಹಲಬದಿ ಎಂದು ಕರೀತಾರೆ.

ಶರಣಪ್ಪ: ಎರಡು ಬದಿ ಯಾಕ ಹಲಬದಿ ಆಗೋವಲ್ದು ?

ಸಿದ್ದೇಶ್: ಕೆಳ್ಗಡೆ ಎರಡು ಬದಿ ಬಿಡಸ್ತೀನಿ ನೋಡು, ಇಲ್ಲಿ ಎರಡುಬದಿಗಳು ಯಾವುದೇ ಮುಚ್ಚಿದ ಆಕಾರವನ್ನು (Closed shape) ಮಾಡೋದಿಲ್ಲ. ಯಾವುದೇ ಮುಚ್ಚಿದ ಆಕಾರ ಇರ್ಬೇಕು ಅಂದ್ರೆ ಅದಕ್ಕೆ ಮೂರು ಬದಿಗಳು ಬೇಕೇ ಬೇಕು !. ಕೆಳಗಡೆ ಮೂರ್ಬದಿ (Triangle) ಬಿಡಿಸಿದ್ದೀನಿ ನೋಡು, ಮೂರ್ಬದಿ (Triangle)  ಒಂದು ಮುಚ್ಚಿದ ಆಕಾರವಾಗಿದೆ ಇದನ್ನು ಒಂದು ಹಲಬದಿ (Polygon) ಎಂದು ಕರೀಬಹುದು.

Image5 Po
ಈ ಇಬ್ಬರು ಹುಡುಗರು ಸೊಗಸಾಗಿ ಹಲಬದಿಗಳು ಎಂದರೇನು ತಿಳಿಸಿಕೊಟ್ಟರಲ್ಲವೇ ?, ಹಾಗಾದರೆ ಹಲಬದಿಗಳನ್ನು ಹೇಗೆ ಹಲವು ಬಗೆಗಳನ್ನಾಗಿಸಬಹುದು ಎಂಬುವುದನ್ನು ತಿಳಿಯೋಣ  ಬನ್ನಿ.

ಹಲಬದಿಗಳ ಬಗೆಗಳು (Types of Polygons).

ಹಲಬದಿಗಳನ್ನು ಅದರ ಬದಿಯ ಅಳತೆಗಳ ಮೇಲೆ, ಆಕೃತಿಯ ಉಬ್ಬು ತಗ್ಗುಗಳ ಮೇಲೆ ಹಾಗು ಸುಳುವಾದ, ಸುಳುವಲ್ಲದ ಆಕೃತಿಗಳ ಮೇಲೆ ಒಟ್ಟು ಮೂರು ಬಗೆಗಳನ್ನಾಗಿ ಮಾಡಬಹುದು.

1. ಸಾಟಿ ಹಲಬದಿಗಳು ಮತ್ತು ಸಾಟಿಯಿಲ್ಲದ ಹಲಬದಿಗಳು (Regular and Irregular polygons).

  • ಸಾಟಿ ಹಲಬದಿಗಳು (Regular Polygons):

ಯಾವುದೇ ಹಲಬದಿಯಲ್ಲಿ ಎಲ್ಲಾ ಬದಿಗಳು ಮತ್ತು ಅದರ ಒಳಮೂಲೆಗಳು ಸಮನಾಗಿದ್ದರೆ ಅದು ಸಾಟಿ ಹಲಬದಿ ಎಂದೆನಿಸಿಕೊಳ್ಳುತ್ತದೆ. ಸಾಟಿ ಹಲಬದಿಯನ್ನು(Regular Polygon) ಸರಿಬದಿಯ ಹಲಬದಿ (Equilateral Polygon) ಎಂದೂ ಕರೆಯಬಹುದು ಹಾಗು ಸರಿಮೂಲೆಯ ಹಲಬದಿ (Equiangular Polygon) ಎಂದೂ ಕರೆಯಬಹುದು.

ಉದಾಹರಣೆ 1: ಕೆಳಗಿನ ಎಲ್ಲಾ ಬಗೆಯ ಹಲಬದಿಗಳನ್ನು ನೋಡಿದಾಗ ನಮಗೆ ತಿಳಿಯುವುದೇನೆಂದರೆ ಹಲಬದಿಗಳ ಒಂದೊಂದು ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಾಗಿವೆ ಮತ್ತು ಬದಿಗಳು ಕೂಡುವೆಡೆಯಲ್ಲಿ ಉಂಟಾಗುವ ಮೂಲೆಗಳು ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಾಗಿರುತ್ತವೆ, ಹಾಗಾಗಿ ಕೆಳಗಿನವೆಲ್ಲವೂ ಸಾಟಿ ಹಲಬದಿಗಳಾಗಿವೆ.

Image6 Po

ಉದಾಹರಣೆ 2: ಕಳಗೆ ಒಂದು ಐದು ಮೂಲೆಯುಳ್ಳ ಅರಿಲು ಹಲಬದಿಯನ್ನು (Star Polygon) ನೋಡಬಹುದು, ಅವುಗಳ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಳತೆಯನ್ನು ಹೊಂದಿವೆ ಹಾಗೂ ಅದರ ಒಳಮೂಲೆಗಳು ಕೂಡ ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಾಗಿವೆ, ಹಾಗಾಗಿ ಅರಿಲು ಹಲಬದಿಯು ಒಂದು ಸಾಟಿ ಹಲಬದಿಯಾಗಿದೆ (Regular Polygon).

Image7 Po

  • ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಗಳು (Irregular Polygons):

ಯಾವುದೇ ಹಲಬದಿಗಳಲ್ಲಿ ಎಲ್ಲಾ ಬದಿಗಳು ಬೇರೆ ಬೇರೆ ಅಳತೆಯನ್ನು ಹೊಂದಿದ್ದರೆ ಮತ್ತು ಅದರ ಒಳಮೂಲೆಗಳು ಕೂಡ ಬೇರೆ ಬೇರೆ ಮೂಲೆಯಳತೆಯನ್ನು ಹೊಂದಿದ್ದರೆ ಅವುಗಳು ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಗಳು ಎಂದೆನಿಸಿಕೊಳ್ಳುತ್ತವೆ.

ಉದಾಹರಣೆ 1:  ಕೆಳಗಿನ ಎಲ್ಲಾ ಬಗೆಯ ಹಲಬದಿಗಳನ್ನು ನೋಡಿದಾಗ ನಮಗೆ ತಿಳಿಯುವುದೇನೆಂದರೆ ಹಲಬದಿಗಳು ಬೇರೆ ಬೇರೆ ಅಳತೆಯಲ್ಲಿವೆ ಮತ್ತು ಬದಿಗಳು ಕೂಡುವೆಡೆಯಲ್ಲಿ ಉಂಟಾಗುವ ಮೂಲೆಗಳು ಕೂಡ ಬೇರೆ ಬೇರೆ ಅಳತೆಯಲ್ಲಿವೆ, ಹಾಗಾಗಿ ಕೆಳಗಿನವೆಲ್ಲವೂ ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಗಳಾಗಿವೆ.

Image8 Poಉದಾಹರಣೆ 2: ಕಳಗೆ ಒಂದು ನೇರಡ್ಡಬದಿ ಹಲಬದಿಯನ್ನು (Rectilinear Polygon) ನೋಡಬಹುದು, ಅವುಗಳ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ನೇರಡ್ಡವಾಗಿವೆ ಅಂದರೆ ಅವುಗಳ ಮೂಲೆಗಳು 90° ಆಗಿವೆ ಆದರೆ ಬದಿಗಳು ಬೇರೆ ಬೇರೆ ಅಳತೆಯನ್ನು ಹೊಂದಿವೆ, ಹಾಗಾಗಿ ಈ ಹಲಬದಿಯು ಒಂದು ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಯಾಗಿದೆ (Irregular Polygon).

Image9 Po2. ಉಬ್ಬು ಹಲಬದಿಗಳು (Convex Polygons) ಮತ್ತು ತಗ್ಗು ಹಲಬದಿಗಳು (Concave Polygons).

  • ಉಬ್ಬು ಹಲಬದಿಗಳು (Convex Polygons).

ಯಾವುದೇ ಹಲಬದಿಗಳ ಬದಿಗಳು ಕೂಡುವೆಡೆಯ ಮೂಲೆಗಳು 180° ಕ್ಕಿಂತ ಕಮ್ಮಿ ಇಲ್ಲವೇ 180° ಗೆ ಸರಿಯಾಗಿದ್ದರೆ ಅವುಗಳು ಉಬ್ಬು ಹಲಬದಿಗಳು ಎಂದೆನಿಸಿಕೊಳ್ಳುತ್ತವೆ.

ಉದಾಹರಣೆ 1: ಕೆಳಗೆ ಹಲವಾರು ಹಲಬದಿಗಳನ್ನು ಕೊಡಲಾಗಿದೆ, ಅವುಗಳನ್ನು ನೋಡಿದಾಗ ನಮಗೆ ಕಾಣುವುದೇನೆಂದರೆ ಅವುಗಳ ಮೂಲೆಗಳು 180° ಗಿಂತ ಕಡಿಮೆಯಿದೆ, ಅವುಗಳು ಸಾಟಿ ಹಲಬದಿಗಳಾಗಿರಬಹುದು (Regular Polygons) ಇಲ್ಲವೇ ಸಾಟಿಯಲ್ಲದ (Irregular Polygons) ಹಲಬದಿಗಳಾಗಿರಬಹುದು ಕೂಡ.

Image10 Poಉದಾಹರಣೆ 2:  ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಎಂಟ್ಬದಿ (Octogon) ಆಕಾರದ ಟ್ರಾಪಿಕ್ ಗುರುತು ಒಂದು ಹಲಬದಿಯಾಗಿದೆ (Polygon), ಇದರ ಎಲ್ಲಾ ಬದಿಗಳು ಕೂಡುವೆಡೆ ಉಬ್ಬಿಕೊಂಡಿದೆ (Convex) ಅಂದರೆ ಅದರ ಎಲ್ಲಾ ಮೂಲೆಗಳು 180° ಗಿಂತ ಕಡಿಮೆಯಿದೆ, ಹಾಗಾಗಿ ಇದು ಒಂದು ಉಬ್ಬಿದ ಹಲಬದಿಯಾಗಿದೆ.

Image11 Po ಉದಾಹರಣೆ 3:  ಈ ಕೆಳಗಿನ ಸರಿಮೂಲೆಯ  ಹಲಬದಿಯನ್ನು (Equiangular Polygon) ನೋಡಿದಾಗ ಅವುಗಳ ಮೂಲೆಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಾಗಿದೆ ಹಾಗು ಮೂಲೆಗಳು 180° ಗಿಂತ ಕಡಿಮೆಯಿದೆ, ಆದ್ದರಿಂದ ಇದು ಒಂದು ಉಬ್ಬಿದ ಹಲಬದಿಯಾಗಿದೆ (Convex Polygon)

Image12 Poತಗ್ಗು ಹಲಬದಿಗಳು (Concave Polygons):

ಯಾವುದೇ ಹಲಬದಿಗಳ ಬದಿಗಳು ಕೂಡುವೆಡೆಯ ಮೂಲೆಗಳು 180° ಕ್ಕಿಂತ ಹೆಚ್ಚಿದ್ದರೆ  ಅವುಗಳು ತಗ್ಗು  ಹಲಬದಿಗಳು ಎಂದೆನಿಸಿಕೊಳ್ಳುತ್ತವೆ.

ಉದಾಹರಣೆ 1: ಕೆಳಗೆ ಹಲವಾರು ಹಲಬದಿಗಳನ್ನು ಕೊಡಲಾಗಿದೆ, ಅವುಗಳನ್ನು ನೋಡಿದಾಗ ನಮಗೆ ಕಾಣುವುದೇನೆಂದರೆ ಅವುಗಳ ಕೆಲವು ಮೂಲೆಗಳು 180° ಗಿಂತ ಹೆಚ್ಚಿದೆ, ಅವುಗಳು ಸಾಟಿ ಹಲಬದಿಗಳಾಗಿರಬಹುದು (Regular Polygons) ಇಲ್ಲವೇ ಸಾಟಿಯಲ್ಲದ (Irregular Polygons) ಹಲಬದಿಗಳಾಗಿರಬಹುದು ಕೂಡ.

 Image13 Po

ಉದಾಹರಣೆ 2:  ನೀರಿನಲ್ಲಿ ಈಜಾಡುತ್ತಿರುವ ಈ ಅರಿಲು ಮೀನುಗಳು (Star Fish) ತಗ್ಗು ಬದಿಗಳನ್ನು ಹೊಂದಿದೆಯಲ್ಲವೇ? ಹೌದು, ಅದರ ಬದಿಗಳು ಕೂಡುವೆಡೆಗಳು 180° ಗಿಂತ ಹೆಚ್ಚಿನ ಮೂಲೆಗಳನ್ನು ಹೊಂದಿವೆ.

Image14 Po

 

3. ಸುಳುವಾದ (Simple) ಮತ್ತು ಸುಳುವಲ್ಲದ (Complex) ಹಲಬದಿಗಳು.

  • ಸುಳುವಾದ ಹಲಬದಿಗಳು (Simple Polygons)

ಯಾವುದೇ ಹಲಬದಿಯು ಒಂದೊಕ್ಕೊಂದು ಕತ್ತರಿಸುವ ಬದಿಗಳನ್ನು (Sides are not intersecting each other) ಹೊಂದಿರದಿದ್ದರೆ ಅದು ಸುಳುವಾದ (Simple) ಹಲಬದಿಗಳಾಗುತ್ತವೆ. ಮೂರ್ಬದಿ , ಚೌಕ, ಆಯತ ಮತ್ತು ಹಲವು ಬಗೆಯ ನಾಲ್ಬದಿಗಳೆಲ್ಲವೂ  ಸುಳುವಾದ ಹಲಬದಿಗಳಾಗಿವೆ.

ಉದಾಹರಣೆ 1: ಕೆಳಗೆ ಹಲವಾರು ಹಲಬದಿಗಳನ್ನು ಕೊಡಲಾಗಿದೆ, ಈ ಎಲ್ಲಾ ಹಲಬದಿಗಳಲ್ಲಿ ಸಾಮಾನ್ಯವಾಗಿ ಕಂಡುಬರುವುದೇನೆಂದರೆ ಯಾವುದೇ ಬದಿಯು ಇನ್ನೊಂದು ಬದಿಯ ಮೇಲೆ ಹಾದುಹೋಗಿಲ್ಲ, ಇನ್ನೂ ಸುಲಭವಾಗಿ ಹೇಳಬೇಕೆಂದರೆ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಕತ್ತರಿಸಿಲ್ಲ, ಹಾಗಾಗಿ ಇವುಗಳೆಲ್ಲವೂ ಸುಳುವಾದ ಹಲಬದಿಗಳಾಗಿವೆ.

Image15 Po

ಉದಾಹರಣೆ 2:  ಈ ಕೆಳಗೆ ಒಂದು ಸರಿಬದಿಯ ಐದ್ಬದಿಯನ್ನು ಕೊಡಲಾಗಿದೆ (Equilateral Pentagon), ಇದರಲ್ಲಿ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಳತೆಯನ್ನು ಹೊಂದಿವೆ ಹಾಗು ಅದರ ಯಾವುದೇ ಬದಿಗಳು ಒಂದರಮೇಲೊಂದು ಹಾದುಹೋಗಿಲ್ಲ, ಹಾಗಾಗಿ ಇದು ಒಂದು ಸುಳುವಾದ ಹಲಬದಿಯಾಗಿದೆ.

Image16 Po

  • ಸುಳುವಲ್ಲದ ಹಲಬದಿಗಳು (Complex Polygons)

ಯಾವುದೇ ಹಲಬದಿಯ ಬದಿಗಳು ಒಂದೊಕ್ಕೊಂದು ಕತ್ತರಿಸುವ ಬದಿಗಳನ್ನು(Sides are  intersecting each other) ಹೊಂದಿದ್ದರೆ  ಅದು ಸುಳುವಲ್ಲದ (Complex)  ಹಲಬದಿಯಾಗುತ್ತದೆ. ಅವುಗಳು ಸಾಟಿ ಹಲಬದಿಗಳಾಗಿರಬಹುದು (Regular Polygons) ಇಲ್ಲವೇ ಸಾಟಿಯಲ್ಲದ ಹಲಬದಿಗಳಾಗಿರಬಹುದು (Irregular Polygons).

ಉದಾಹರಣೆ 1: ಕೆಳಗೆ ಹಲವು ಸುಳುವಲ್ಲದ ಹಲಬದಿಗಳನ್ನು ಕೊಡಲಾಗಿದೆ, ಅವುಗಳನ್ನು ಗಮನಿಸಿದಾಗ ಅವುಗಳ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಕತ್ತರಿಸಿದಂತೆ ಕಂಡುಬರುತ್ತವೆ.

Image17 Po

ಮುಂದಿನ ಬರಹದಲ್ಲಿ ಹಲಬದಿಗಳ ಮೂಲೆಗಳು, ಸುತ್ತಳತೆ ಮತ್ತು ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳುವ ಬಗೆಯನ್ನು ತಿಳಿಯೋಣ.

ಬೀಸುಗಾಳಿಗಳು

ತಂಪುಪೆಟ್ಟಿಗೆಯ ಬಾಗಿಲನ್ನು ತೆಗೆದಾಗ ತಣ್ಣನೆ ಗಾಳಿಯು ಕೆಳಗೆ ಸುಳಿದಂತಾಗುತ್ತದೆ. ಬಿಸಿ ನೀರೆರಕೊಂಡು ಆದಮೇಲೆ ಬಚ್ಚಲುಮನೆ ಬಾಗಿಲು ತೆಗೆದಾಗ ಬಿಸಿಗಾಳಿ ಮೇಲೇರುತ್ತಿರುತ್ತಿದ್ದರೆ ತಣ್ಣನೆ ಗಾಳಿ ಕೆಳಗಿನಿಂದ ನುಸುಳುತ್ತಿರುತ್ತದೆ. ಹೀಗೇಕೆ ಎಂದು ಗಮನಿಸಿದ್ದೀರೇ?. ತಂಪಾದ ಗಾಳಿಯು ಹೆಚ್ಚು ಒತ್ತೊಟ್ಟಾಗಿರುವುದರಿಂದ, ಕಾದ ಬಿಸಿಗಾಳಿಗಿಂತ ಹೆಚ್ಚು ತೂಕದ್ದಾಗಿರುತ್ತದೆ. ಬಿಸಿಗಾಳಿಯಲ್ಲಿ ನೀರಾವಿ ಹೆಚ್ಚಿದ್ದೂ ತಂಪು ಗಾಳಿಗಿಂತ ಮಾಲಿಕ್ಯೂಲ್ಗಳು ಕಡಿಮೆ ಒತ್ತೊಟ್ಟಾಗಿರುತ್ತದೆ. ಇದರಿಂದಾಗಿ ತಂಪು ಗಾಳಿಯು ಬಿಸಿಗಾಳಿಗಿಂತ ಹೆಚ್ಚು ತೂಕ ಹೊಂದಿ ಕೆಳಗಿಳಿದರೆ, ಬಿಸಿ ಗಾಳಿಯು ಮೇಲೇರುತ್ತಿರುತ್ತದೆ. ನೀರಾವಿ ಕಡಿಮೆಯಿರುವ ತಂಪು ಗಾಳಿಯು ಒಣದಾಗಿದ್ದು ಹೆಚ್ಚು ತೂಕದಿಂದಾಗಿ ನೆಲಮಟ್ಟದಲ್ಲಿ ಬೀಸಿದರೆ, ನೀರಾವಿ ಹೆಚ್ಚು ತುಂಬಿಕೊಂಡಿರುವ ಹಗುರ ಬಿಸಿಗಾಳಿಯು ಮೇಲೇರಿ ಮಳೆ ಸುರಿಸುತ್ತದೆ. ಈ ತಿಳುವಳಿಕೆಯ ಹಿನ್ನೆಲೆಯಲ್ಲಿ ಗಾಳಿಹೊದಿಕೆಯ ಸುತ್ತೇರ್ಪಾಟು, ಬೀಸುಗಾಳಿಗಳ ಬಗ್ಗೆ ಅರಿಯಬಹುದು.

ನೇಸರದಿಂದ ನೆಲವು ಎಲ್ಲೆಡೆಯೂ ಒಂದೇ ಮಟ್ಟದಲ್ಲಿ ಕಾಯುವುದಿಲ್ಲ. ಹೀಗೆ ಏರುಪೇರಾಗಿ ಕಾದ ನೆಲವೇ ಗಾಳಿಯನ್ನು ಒಂದೆಡೆಯಿಂದ ಮತ್ತೊಂದೆಡೆಗೆ ಸಾಗುವಂತೆ ಮಾಡುತ್ತದೆ. ಬಿಸುಪಿನಿಂದ ಒಂದು ತಾಣದ ಗಾಳಿಹೊದಿಕೆಯು (Atmosphere) ಮತ್ತೊಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಕಾದಾಗ ಒತ್ತಡದ ಬೇರ್ಮೆ ಇಲ್ಲ ಒತ್ತಡದ ಏರಿಳಿತ (Pressure gradient) ಉಂಟಾಗುತ್ತದೆ. ಒತ್ತಡದ ಬೇರ್ಮೆ ಉಂಟಾದಾಗ, ಗಾಳಿಯು ಹೆಚ್ಚು ಒತ್ತಡದಿಂದ ಕಡಿಮೆ ಒತ್ತಡದೆಡೆಗೆ ಸಾಗುತ್ತದೆ. ಹೀಗೆ ಸಾಗಿದ ಗಾಳಿಯನ್ನು ಬೀಸುಗಾಳಿ ಎಂದು ಕರೆಯುತ್ತೇವೆ. ಕಾಣುವುದಕ್ಕು, ಹಿಡಿಯುವುದಕ್ಕು ಕುದರದ ಗಾಳಿಯು ಬೀಸಿದಾಗಿನ ಒತ್ತರದಿಂದ ಅದರ ಇರುವಿಕೆ ತಿಳಿಯುತ್ತದೆ. ಬೀಸುಗಾಳಿಯು ಬೇಸಿಗೆಯಲ್ಲಿ ಬಟ್ಟೆಗಳನ್ನು ಒಣಗಿಸಬಲ್ಲದು ಮತ್ತು ಚಳಿಹೊತ್ತಲ್ಲಿ ಎಲುಬುಗಳನ್ನು ನಡುಗಿಸಬಲ್ಲದು. ಅದು ಹಡಗುಗಳನ್ನು ಕಡಲುಗಳಾಚೆ ಸಾಗಿಸಬಲ್ಲದು ಮತ್ತು ಹೆಮ್ಮರಗಳನ್ನು ನೆಲಕ್ಕುರುಳಿಸಬಲ್ಲದು. ಗಾಳಿಹೊದಿಕೆಯನ್ನು ಒಂದೇ ಮಟ್ಟದಲ್ಲಿ ಇಡಲು, ಕಾವು ಸಾಗಣಿಕೆಗೆ, ಪಸೆ (moisture), ಕೊಳುಕೆ (pollutants), ದುಂಬು (dust)ಗಳಂತುವುನೆಲ್ಲಾ ಇಡಿನೆಲ (globe)ದೊಳು ಹೆಚ್ಚು ಗೆಂಟಿನುದ್ದಕ್ಕೂ ಹೊತ್ತೊಯ್ಯಲು ಬೀಸುಗಾಳಿಯು ಅನುವಾಗಿದೆ.

ಗಾಳಿಹೊದಿಕೆಯಲ್ಲಿನ ಒತ್ತಡದ ಬೇರ್ಮೆಗಳು ಬೀಸುಗಾಳಿಯನ್ನು ಉಂಟುಮಾಡುತ್ತವೆ. ನೆಲನಡುಗೆರೆ ಇರುವ ಎಡೆಯಲ್ಲಿ ನೇಸರವು ನೀರು ಮತ್ತು ನೆಲವನ್ನು ಇಡಿನೆಲದ ಉಳಿದೆಡೆಗಳಿಗಿಂತ ಹೆಚ್ಚು ಬಿಸಿಗೈಯ್ಯುತ್ತದೆ. ನೆಲನಡುಗೆರೆಯ ತಾವೆಲ್ಲ ಬಿಸಿಗೊಂಡ ಗಾಳಿಯು ಮೇಲಕ್ಕೇರಿ ತುದಿಗಳೆಡೆಗೆ ಸಾಗುತ್ತದೆ. ಇದು ಕಡಿಮೆ ಒತ್ತಡದೇರ್ಪಾಟು. ಹಾಗೆಯೇ ತಣಿದ, ಒತ್ತೊಟ್ಟಾದ (denser) ಗಾಳಿಯು ನೆಲದ ಮೇಲ್ಮಯ್ ಮೇಲೆ ಹಾದು ನೆಲನಡುಗೆರೆಯೆಡೆಗೆ, ಅದಾಗಲೇ ಬಿಸಿಗಾಳಿ ತೆರವುಗೊಂಡಿದ್ದ ತಾವನ್ನು ಸೇರಿಕೊಳ್ಳುತ್ತದೆ. ಇದು ಹೆಚ್ಚು ಒತ್ತಡದೇರ್ಪಾಟು. ಆದರೆ ಬೀಸುಗಾಳಿಗಳು ಹೆಚ್ಚು ಒತ್ತಡದ ನೆಲೆಗಳಿಂದ ಕಡಿಮೆ ಒತ್ತಡ ನೆಲೆಗಳೆಡೆಗೆ ಸಾಗುವಾಗ ನೇರವಾಗಿ ಬೀಸುವುದಿಲ್ಲ. ನೆಲದ ತಿರುಗುವಿಕೆಯಿಂದ ಉಂಟಾದ ಕೊರಿಯೋಲಿಸ್ ಆಗುಹವು ಬೀಸುವ ದಾರಿಯನ್ನು ಬಾಗಿದಂತೆ ಮಾಡುತ್ತದೆ. ಅಂದರೆ ಬೀಸುಗಾಳಿಗಳು ಎರಡೂ ಅರೆಗೋಳಗಳಲ್ಲಿ ನೇರಗೆರೆಯಂತೆ ಬಡಗು-ತೆಂಕು ದಿಕ್ಕಿನಲ್ಲಿ ಬೀಸುವುದಿಲ್ಲ. ಬದಲಾಗಿ ಓರೆಯಾಗಿ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಬಡಗು-ಮೂಡಣ ಇಲ್ಲ ತೆಂಕು-ಪಡುವಣ ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಬಡಗು-ಪಡುವಣ ಇಲ್ಲ ತೆಂಕು-ಮೂಡಣದ ದಿಕ್ಕಿನಿಂದ ಬೀಸುತ್ತವೆ. ಬೀಸುಗಾಳಿಗಳನ್ನು ಹೆಸರಿಸುವಾಗ ಅವು ಯಾವ ದಿಕ್ಕಿನಿಂದ ಬೀಸುತ್ತಿವೆಯೋ ಆ ದಿಕ್ಕಿನ ಬೀಸುಗಾಳಿಗಳೆಂದು ಗುರುತಿಸಲಾಗುತ್ತದೆ.

ಕೆಲವೆಡೆ ಬೀಸುಗಾಳಿಗಳು ಒಂದೇ ದಿಕ್ಕಿನಿಂದ ಒಂದೇತೆರನಾಗಿ ಬೀಸುತ್ತಿರುತ್ತವೆ, ಅಂತವುಗಳನ್ನು ವಾಡಿಕೆಯ ಬೀಸುಗಾಳಿಗಳು (Prevailing winds) ಎಂದು ಕರೆಯುತ್ತೇವೆ. ವಾಡಿಕೆಯ ಬೀಸುಗಾಳಿಗಳು ಬಂದು ಸೇರುವ ನೆಲೆಗಳನ್ನು ಕೂಡು/ಒಟ್ಟುಸೇರು ಹರವುಗಳೆಂದು (convergence zones) ಕರೆಯುತ್ತೇವೆ. ಕೊರಿಯೋಲಿಸ್ ಆಗುಹದಿಂದ ಬೀಸುಗಾಳಿಯ ಏರ್ಪಾಡುಗಳು ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಎಡಸುತ್ತು (counter-clockwise) ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಬಳಸುತ್ತು (clockwise) ತಿರುಗುತ್ತವೆ.

ನೆಲವು ಅಯ್ದು ಬೀಸುಗಾಳಿ ಹರವುಗಳನ್ನು ಹೊಂದಿದೆ

  1. ತಗ್ಗಿದ ಗಾಳಿನೆಲೆಗಳು,
  2. ಮಾರು ಗಾಳಿಗಳು,
  3. ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳು,
  4. ಪಡುವಣಗಾಳಿಗಳು
  5. ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು.

ಇವುಗಳ ಜೊತೆಗೆ ಗಾಳಿಹೊದಿಕೆಯ ಸುತ್ತೇರ್ಪಾಟನ್ನು ಮೂರು ಕುಣಿಕೆಗಳಲ್ಲಿ ಹೆಸರಿಸಲಾಗಿದೆ. ಅವು (1) ಹ್ಯಾಡ್ಲಿಸ್ ಗಾಳಿಕುಣಿಕೆ(cell), (2) ಫ್ಯಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆ ಮತ್ತು (3) ತುದಿಯ ಗಾಳಿಕುಣಿಕೆ.

ಗಾಳಿಹೊದಿಕೆಯ ಸುತ್ತೇರ್ಪಾಟಿನ ಕುಣಿಕೆಗಳು (Atmospheric Circulation Cells)

ಇಡಿನೆಲದೊಳು ಈ ಬೀಸುಗಾಳಿ ಕುಣಿಕೆಗಳು 30ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಳಿಗೆ ಒಂದರಂತೆ ಗುರುತಿಸಲಾಗಿದೆ. 0-30ಡಿಗ್ರಿಯ ಕುಣಿಕೆಯನ್ನು ಹ್ಯಾಡ್ಲಿ ಗಾಳಿಕುಣಿಕೆ, 30-60ಡಿಗ್ರಿಯದ್ದು ಫ್ಯಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆ ಮತ್ತು 60-90ಡಿಗ್ರಿಗೆ ತುದಿಯ ಗಾಳಿಕುಣಿಕೆ ಎಂದು ಹೆಸರಿಸಲಾಗಿದೆ.
ಹ್ಯಾಡ್ಲಿ ಗಾಳಿಕುಣಿಕೆ: ಹ್ಯಾಡ್ಲಿಸ್ ಕುಣಿಕೆಯು ಜಾರ್ಜ್ ಹ್ಯಾಡ್ಲಿ ಎಂಬವರ ಹೆಸರಿನಲ್ಲಿ ಕರೆಯಲಾಗಿದ್ದೂ, ಇದು ನೆಲನಡುಗೆರೆಯ ಎರಡೂ ಬದಿಗಳು ಅಂದರೆ ಬಡಗು ಅರೆಗೋಳ ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದ 0-30ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಳವರೆಗೆ ಸುತ್ತುವ ಗಾಳಿಯ ಇಡಿನೆಲ ಮಟ್ಟದ ಕುಣಿಕೆಯಾಗಿದೆ. ನೆಲನಡುಗೆರೆಯ ಹತ್ತಿರದ ಗಾಳಿಯು ಮೇಲಕ್ಕೇರಿ, ಸುಮಾರು 10-15ಕಿಮೀ ಎತ್ತರದಲ್ಲಿ ತುದಿಗಳ ಕಡೆಗೆ ಸಾಗುತ್ತಾ, ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಗಳ (subtropics) ಮೇಲೆ ಕೆಳಗಿಳಿದು ಮತ್ತೇ ನೆಲದ ಮೇಲ್ಮಯ್ಗೆ ಹತ್ತಿರವಾಗಿ ನೆಲನಡುಗೆರೆಯ ಕಡೆಗೆ ಮಾರು ಗಾಳಿಗಳಾಗಿ (trade winds) ಹಿಂದಿರುಗಿದಾಗ ಒಂದು ಕುಣಿಕೆ ಮುಗಿದಂತಾಗುತ್ತದೆ. ಈ ಸುತ್ತುವಿಕೆಯಿಂದ ಮಾರು ಗಾಳಿಗಳು, ಬಿಸಿಲ್ನೆಲೆಯ ಮಳೆಗಳು, ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಯ ಮರಳುಗಾಡುಗಳು, ಹರಿಕೇನ್ ಗಳು ಮತ್ತು ಕಡುಬಿರುಗಾಳಿಗಳು (Jet Streams) ಉಂಟಾಗಿವೆ.

ನೆಲನಡುಗೆರೆಯ ಪಟ್ಟಿ ಹಾಗು ಅದಕ್ಕೆ ಹೊಂದಿಕೊಂಡಿರುವ ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವು ತಾಣಗಳಲ್ಲೆಲ್ಲಾ ಇತರೆಲ್ಲೆಡೆಗಿಂತ ಹೆಚ್ಚಾಗಿ ಕಾದ ಗಾಳಿಯು ತೇಲಿಕೊಂಡು ಮೇಲೇರಿ ದಟ್ಟ ಮೋಡಗಳು ಉಂಟಾಗಿ ಗುಡುಗಿನಿಂದ ದಟ್ಟ ಮಳೆಯನ್ನು ಸುರಿಸುತ್ತದೆ. ಮಳೆಯಿಂದಾಗಿ ನೀರಾವಿಯನ್ನು ಕಳೆದುಕೊಂಡ ಗಾಳಿಯು ಒಣದಾಗಿ ಅಡಿ-ಬಿಸಿಲನೆಲೆಗಳ ಮೇಲೆ ಕೆಳಗಿಳಿಯುತ್ತದೆ. ಇದರಿಂದಾಗಿ ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಗಳಲ್ಲಿ ನೆಲನಡುಗೆರೆಯ ಪಟ್ಟಿಯಲ್ಲಿ ಉಂಟಾಗುವಂತೆ ದಟ್ಟ ಗುಡುಗು ಮಳೆಯಾಗುವುದಿಲ್ಲ. ಆದ್ದರಿಂದಲೇ ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಗಳಲ್ಲಿ ಹೆಚ್ಚು ಮರಳುಗಾಡುಗಳು ಕಂಡುಬರುತ್ತವೆ.
ಫ್ಯಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆ: ಹ್ಯಾಡ್ಲಿ ಮತ್ತು ತುದಿಯ ಗಾಳಿಕುಣಿಕೆಗಳು ಸೇರಿ 30-60ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಳ ನಡುವೆ ಫ್ಯಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆಯನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ. ಹ್ಯಾಡ್ಲಿ ಗಾಳಿಕುಣಿಕೆಯಲ್ಲಿ ಕೆಳಗಿಳಿಯುತ್ತಿರುವ ಗಾಳಿಯ ಒಂದುಪಾಲು ಫ್ಯಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆಯ ಪಾಲಾಗಿ ನೆಲದಮಟ್ಟದಲ್ಲಿ ಪಡುವಣಗಾಳಿಗಳಾಗಿ ಬೀಸುತ್ತವೆ. 60ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಯ ಹತ್ತಿರ ಮೇಲಕ್ಕೇರಿ ನೆಲನಡುಗೆರೆಯ ದಿಕ್ಕಿನೆಡೆಗೆ ಸಾಗುತ್ತದೆ.

Hadley-Farell-Atmospheric-Cell

ತುದಿಯ ಗಾಳಿಕುಣಿಕೆ: ೬೦ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಯಲ್ಲಿ ನೆಲ/ಹೆಗ್ಗಡಲಿಗೆ ತಾಕಿ ಬಿಸಿಗೊಂಡ ಗಾಳಿ ಮೇಲೇರಿ ತುದಿಗಳಿಗೆ ತಲುಪಿದಾಗ ತಣಿದಿರುತ್ತದೆ. ಎತ್ತುಗೆಗೆ ಬಡಗು ತುದಿಗೆ ತಲುಪುವ ಹೊತ್ತಿಗೆ ತಂಪುಗೊಂಡ ಗಾಳಿ ಕೆಳಗಿಳಿದು ನೆಲದಮಟ್ಟದಲ್ಲಿ ತೆಂಕು-ಪಡುವಣ ದಿಕ್ಕಿನಲ್ಲಿ ತುದಿಯ-ಮೂಡಣಗಾಳಿಗಳಾಗಿ ಬೀಸುತ್ತದೆ.

ಬೀಸುಗಾಳಿ ಹರವುಗಳು (Wind Zones)

ಡೋಲ್-ಡ್ರಮ್ಸ್ (ತಗ್ಗಿದಗಾಳಿನೆಲೆಗಳು)

ಹ್ಯಾಡ್ಲಿ ಗಾಳಿಕುಣಿಕೆಯಿಂದಾಗಿ ಮಾರುಗಾಳಿಗಳು ಮತ್ತು ಕಡಿಮೆ ಒತ್ತಡದ ಡೋಲ್-ಡ್ರಮ್ಸ್ ಉಂಟಾಗುತ್ತವೆ. ಎರಡೂ ಅರೆಗೋಳದ ಮಾರುಗಾಳಿಗಳು ಕೂಡುವ ತಾಣವನ್ನು ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವು (ITCZ – intertropical convergence zone) ಎಂದು ಕರೆಯುತ್ತೇವೆ. ಈ ಹರವಿನ ಸುತ್ತಲಿರುವುದೇ ಡೋಲ್-ಡ್ರಮ್ಸ್. ನೆಲನಡುಗೆರೆಯಿಂದ 5ಡಿಗ್ರಿ ಬಡಗು ಮತ್ತು ತೆಂಕಿಗೆ ಹರಡಿದೆ. ಇಲ್ಲಿ ನೆಲವು ಕಡುಕಾದು, ಗಾಳಿಯು ಹಿಗ್ಗುತ್ತಾ ಮೇಲೇರುತ್ತದೆ. ಈ ವಾಡಿಕೆಯ ಗಾಳಿಗಳು ಅಸಳೆಯವಾಗಿದ್ದೂ ಗಾಳಿಪಾಡು (weather) ನಿಂತಗಾಳಿಯಂತೆ ಇರುತ್ತದೆ.

ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವು, ನೆಲನಡುಗೆರೆಯ ಎರಡು ಬದಿಗೂ ಹರಡಿರುತ್ತದೆ. ನೇಸರದಿಂದ ನೆಲನಡುತಾಣವು ಕಾದಂತೆಲ್ಲ ಗಾಳಿಯ ರಾಶಿಯು ಮೇಲಕ್ಕೇರಿ ಬಡಗು ಮತ್ತು ತೆಂಕಿನೆಡೆಗೆ ಸಾಗುತ್ತದೆ. ಹೀಗೆ ಸಾಗಿಬಂದ ಕಡಿಮೆ ಒತ್ತಡದ ಬಿಸಿ ಗಾಳಿಯು 30ಡಿಗ್ರಿ ಬಡಗು ಮತ್ತು ತೆಂಕಿನ ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಯ ಹೆಚ್ಚು ಒತ್ತಡದ ಪಟ್ಟಿಗಳಾದ ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳ ಸುತ್ತ ಕೆಳಗಿಳಿಯುತ್ತದೆ. ಅದರಲ್ಲಿ ಒಂದುಪಾಲು ಗಾಳಿ ರಾಶಿಯು ಮರಳಿ ತಗ್ಗಿದಗಾಳಿನೆಲೆಗಳೆಡೆಗೆ ಸಾಗಿದರೆ, ಇನ್ನೊಂದುಪಾಲು ಎದುರು ದಿಕ್ಕಿನಲ್ಲಿ ಪಡುವಣಗಾಳಿಗಳಾಗಿ ಬೀಸುತ್ತವೆ.

Wind-Zones

ಮಾರು ಗಾಳಿಗಳು (Trade Winds)

ಮಾರು ಗಾಳಿಗಳು ಹೆಚ್ಚು ಬಲವುಳ್ಳ ವಾಡಿಕೆಯ ಗಾಳಿಗಳಾಗಿದ್ದು ಬಿಸಿಲ್ನೆಲೆಗಳ (tropics) ಮೇಲೆ ಬೀಸುತ್ತವೆ. ಕೊರಿಯೋಲಿಸ್ ಬಲವು ನೆಲನಡುಗೆರೆಯಲ್ಲಿ ಇರುವುದೇ ಇಲ್ಲ ಮತ್ತು ಅದು ತುದಿಗಳೆಡೆಗೆ ಸಾಗಿದಂತೆ ಹೆಚ್ಚುತ್ತಾ ಹೋಗುತ್ತದೆ. ಈ ದೂಸರೆಯಿಂದಾಗಿ ಮಾರುಗಾಳಿಗಳು, ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಯ ಹೆಚ್ಚು ಒತ್ತಡದ ನೆಲೆಗಳಿಂದ ಕಡಿಮೆ ಒತ್ತಡದ ನೆಲನಡುಗೆರೆಯೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಬಡಗು-ಮೂಡಣ ಕಡೆಯಿಂದ ತೆಂಕು-ಪಡುವಣ ದಿಕ್ಕಿನಲ್ಲಿ ಹಾಗೆಯೆ ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ತೆಂಕು-ಮೂಡಣ ಕಡೆಯಿಂದ ಬಡಗು-ಪಡುವಣ ದಿಕ್ಕಿನಲ್ಲಿ ನೆಲನಡುಗೆರೆಯೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಮಾರು ಗಾಳಿಗಳು ಮುಂದಾಗಿಯೇ ತಿಳಿಯಬಹುದಾಗಿವೆ. ಅರಸುಕೆ (exploration), ಅರುಹುಕೆ (communication) ಮತ್ತು ಮಾರಾಟದ ಹಿನ್ನಡವಳಿಯಲ್ಲಿ ಮಾರುಗಾಳಿಗಳೂ ಕೂಡ ದೂಸರೆಯಾಗಿವೆ. ಇಂದಿಗೂ ಹಡಗಿನ ಸರಕುಸಾಗಣಿಕೆಗೆ ಮಾರುಗಾಳಿಗಳು ಮತ್ತು ಅವುಗಳಿಂದ ಹರಿಯುವ ಹೆಗ್ಗಡಲ ಒಳಹರಿವುಗಳು ಅನುವಾಗಿವೆ.
ನೆಲದಿಂದ ಬೀಸುವ ಮಾರುಗಾಳಿಗಳು ಕಡಲ (ಕಡಲಿನ ಮಾರುಗಾಳಿಗಳು – maritime trade winds) ಮೇಲಿನವುಗಳಿಗಿಂತ ಹೆಚ್ಚು ಒಣ ಮತ್ತು ಬಿಸಿಯಾಗಿರುತ್ತವೆ, ಇವಗಳನ್ನು ಪೆರ್ನೆಲದ ಮಾರುಗಾಳಿಗಳು (continental trade winds) ಎನ್ನಲಾಗುತ್ತದೆ. ಬಿರುಸಾದ ಮಾರುಗಾಳಿಗಳು ಪಡಲಿಕೆ (precipitation) ಇಲ್ಲದ್ದರಿಂದ ಉಂಟಾದರೆ, ಅಸಳಾದ ಮಾರುಗಾಳಿಗಳು ಒಳನಾಡಿನುದ್ದಕ್ಕೂ ಮಳೆಸುರಿಸಬಲ್ಲವು. ತಕ್ಕುದಾದ ಎತ್ತುಗೆಯೆಂದರೆ ತೆಂಕು-ಮೂಡಣ ಏಶಿಯಾದ ಮಾನ್ಸೂನ್ (southeast Asian monsoon).

ಹಡಗು ಸಾಗಣಿಕೆ ಮತ್ತು ಮಳೆಸುರಿತದ ಹೊರತಾಗಿ ಮಾರುಗಾಳಿಗಳು ಸಾವಿರಾರು ಕಿಲೋಮೀಟರುದ್ದಕ್ಕೂ ದುಂಬು, ಮರಳನ್ನು ಹೊತ್ತೊಯ್ಯೊಬಲ್ಲದು. ಎತ್ತುಗೆಗೆ ಸಹಾರ ಮರಳುಗಾಡಿಂದ ಹೊತ್ತೊಯ್ದ ಮರಳು ದುಮ್ಮಿನ ಗಾಳಿಮಳೆಯು (storm) ಕೆರೀಬಿಯನ್ ಕಡಲಿನಲ್ಲಿರುವ ನಡುಗಡ್ಡೆಗಳು ಮತ್ತು ಫ್ಲೋರಿಡಾ ವರೆಗೂ ಸುಮಾರು 8,047ಕಿಮೀ ಉದ್ದಕ್ಕೂ ಬೀಸುತ್ತವೆ.

ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳು (Horse Latitudes)

ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳು ಪಡುವಣಗಾಳಿಗಳು ಮತ್ತು ಮಾರು ಗಾಳಿಗಳ ನಡುವಣ ಕಿರಿದಾದ ಹರವಿನಲ್ಲಿನ ಒಣ, ಬಿಸಿಯಾದ ಗಾಳಿಪರಿಚೆಗಳಾಗಿವೆ (climates). ಹ್ಯಾಡ್ಲಿ ಮತ್ತು ಫಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆಗಳ ನಡುವಲ್ಲಿ ಈ ಗಾಳಿಪರಿಚೆಗಳು ಏರ್ಪಡುತ್ತವೆ. ಇವು 30-35ಡಿಗ್ರಿ ಬಡಗು ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಹಬ್ಬಿರುತ್ತವೆ. ತೆಂಕು-ಅಮೇರಿಕಾದ ಮಳೆಯಿಲ್ಲದ ಅಟಕಾಮಾದಿಂದ ಹಿಡಿದು ಆಪ್ರಿಕಾದ ಕಲಹರಿ ಬಗೆಯ ಹಲವಾರು ಮರಳುಗಾಡುಗಳು ಈ ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳಲ್ಲಿ ಕಂಡುಬರುತ್ತವೆ. ಇಲ್ಲಿ ವಾಡಿಕೆಯ ಬೀಸುಗಾಳಿಗಳು ಹೆಚ್ಚಾಗಿ ಹಗುರವಾಗಿರುತ್ತವೆ. ಒಂದುವೇಳೆ ಬಿರುಸಾಗಿ ಬೀಸಿದರೂ ಚೂರು ಹೊತ್ತಿಗೆಲ್ಲಾ ತಗ್ಗುತ್ತವೆ. ಆದ್ದರಿಂದ ಇಲ್ಲಿ ಹೆಚ್ಚುಸಲ ಬೀಸುಗಾಳಿಯೇ ಇಲ್ಲವೆಂಬಂತೆ ಅಲುಗಾಡದ ತಾಣವಿದ್ದಂತೆ ಇರುತ್ತದೆ. ವಲಸೇನೆಲಸು (colonial) ನಾಳುಗಳಲ್ಲಿ ನ್ಯೂ-ಜಿಲ್ಯಾಂಡಿನ ಹಡಗಾಳುಗಳು ಕುದುರೆಗಳನ್ನು ವೆಸ್ಟ್-ಇಂಡೀಸ್ಗೆ ಸಾಗಿಸುತ್ತಿದ್ದಾಗ ಗಾಳಿಯೂ ಅಲುಗಾಡದ ಈ ತಾಣಗಳಲ್ಲಿ ನಾಳುಗಟ್ಟಲೆ ಸಿಕ್ಕಿಕೊಂಡು, ಕುಡಿಯಲು ನೀರೂ ಇಲ್ಲದಂತಾಗಿ ಸತ್ತ ಕುದುರೆಗಳನ್ನು ಅಲ್ಲಿಯೇ ಕಡಲಿಗೆ ಬಿಸಾಡಿ ಹೋಗುತ್ತಿದ್ದರಂತೆ. ಈ ದೂಸರೆಯಿಂದಾಗಿಯೇ ಕುದುರೆ ಅಡ್ಡಗೆರೆಗಳು ಎಂಬ ಹೆಸರು ಬಂತೆಂದು ಹೇಳಲಾಗಿದೆ.

trade-winds

ಪಡುವಣಗಾಳಿಗಳು (Westerlies)

ಪಡುವಣಗಾಳಿಗಳು ಪಡುವಣದಿಂದ ನಟ್ಟಡ್ಡಗೆರೆಗಳ (mid latitudes) ತಾಣಗಳೆಡೆಗೆ ಬೀಸುವ ವಾಡಿಕೆಯ ಗಾಳಿಗಳಾಗಿವೆ. ಅಡಿ-ಬಿಸಿಲ್ನೆಲೆಗಳ ಹೆಚ್ಚು ಒತ್ತಡದ ನೆಲೆಗಳಿಂದ ನಡುತರ ಕಡಿಮೆ ಒತ್ತಡದ ನೆಲೆಗಳೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಇವು ಫಾರೆಲ್ ಗಾಳಿಕುಣಿಕೆಯಿಂದಾಗಿ ಉಂಟಾಗುವ ನೆಲಮಟ್ಟದ ಬೀಸುಗಾಳಿಗಳು. ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು ಮತ್ತು ಹೆಚ್ಚು ಒತ್ತಡದ ಕುದುರೆ ಅಡ್ಡಗೆರೆ ತಾಣಗಳ ಬೀಸುಗಾಳಿಗಳು, ಎರಡು ಬದಿಗಳಿಂದ ಕೂಡಿ ಪಡುವಣಗಾಳಿಗಳನ್ನು ಉಂಟುಮಾಡುತ್ತವೆ. ಪಡುವಣಗಾಳಿಗಳು ಚಳಿಗಾಲದಲ್ಲಿ ಹಾಗು ತುದಿಗಳಮೇಲೆ ಕಡಿಮೆ ಒತ್ತಡವಿದ್ದ ಹೊತ್ತಲ್ಲಿ ಹೆಚ್ಚು ಬಿರುಸಾಗಿರುತ್ತವೆ ಮತ್ತು ಬೇಸಿಗೆಯಲ್ಲಿ ಹಾಗು ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು ಬಿರುಸಾಗಿದ್ದಾಗ ಪಡುವಣಗಾಳಿಗಳು ಅಳವುಗುಂದುತ್ತವೆ.

ತೆಂಕು ಅರೆಗೋಳದ 40, 50 ಮತ್ತು 60ಡಿಗ್ರಿ ಅಡ್ಡಗೆರೆಗಳ ನಡುವಿನ ಬೀಸುಗಾಳಿಗಳ ಹರವನ್ನು ಸಾಲಾಗಿ “ಬೊಬ್ಬಿರಿವ ನಲವತ್ತುಗಳು – (Roaring Forties)”, “ರೊಚ್ಚಿನ ಅಯ್ವತ್ತುಗಳು – (Furious Fifties)” ಮತ್ತು “ಕಿರುಚುವ ಅರವತ್ತುಗಳು – (Shrieking Sixties)” ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಏಕೆಂದರೆ ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಹೆಗ್ಗಡಲು ಹೆಚ್ಚಾಗಿ ಹಬ್ಬಿರುವುದರಿಂದ ಇಲ್ಲಿನ ಪಡುವಣಗಾಳಿಗಳು ಕಡುಬಿರುಸಾಗಿ ಬೀಸುತ್ತವೆ. ಈ ತಾಣಗಳಲ್ಲೆಲ್ಲ ಬಹಳ ಕಡಿಮೆ ಗಟ್ಟಿನೆಲಗಳು (Land mass) ಕಾಣಸಿಗುವುದರಿಂದ ಇಲ್ಲಿ ಬೀಸುಗಾಳಿಗೆ ಹೆಚ್ಚು ತಡೆಯಿಲ್ಲದಂತಾಗುತ್ತದೆ. ತೆಂಕು ಅಮೆರಿಕಾ ಮತ್ತು ಆಸ್ಟ್ರೇಲಿಯಾಗಳ ತುತ್ತತುದಿ ಹಾಗು ನ್ಯೂಜಿಲ್ಯಾಂಡಿನ ನಡುಗಡ್ಡೆಗಳೊಂದೇ (island) ಬೊಬ್ಬಿರಿವ ನಲವತ್ತುಗಳು ಹಾದುಹೋಗುವ ಗಟ್ಟಿನೆಲಗಳು. ಅರಸುಗೆಯ (exploration) ನಾಳುಗಳಲ್ಲಿ ಹಡಗಾಳುಗಳಿಗೆ ಬೊಬ್ಬಿರಿವ ನಲವತ್ತುಗಳು ಬಹಳ ಮುಕ್ಯವಾಗಿದ್ದವು. ಯುರೋಪ್ ಹಾಗು ಪಡುವಣ ಏಶಿಯಾದ ಅರಸುಗರು ಮತ್ತು ಮಾರಾಳಿಗಳು ತೆಂಕು-ಮೂಡಣದ ಸಾಂಬಾರು ಮಾರುಕಟ್ಟೆಗಳಿಗೆ ಮತ್ತು ಆಸ್ಟ್ರೇಲಿಯಾಗೆ ಸೇರಲು ಈ ಬೊಬ್ಬಿರಿವ ನಲವತ್ತುಗಳು ಎಂಬ ಪಡುವಣಗಾಳಿಗಳನ್ನು ಬಳಸಿ ಹೋಗುತ್ತಿದ್ದರು.

ಹೆಗ್ಗಡಲ ಒಳಹರಿವುಗಳ (Oceanic Currents) ಮೇಲೆ ಅದರಲ್ಲೂ ಹೆಚ್ಚಾಗಿ ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ ಪಡುವಣಗಾಳಿಗಳು ಹೆಚ್ಚು ಪ್ರಬಾವ ಬೀರಿವೆ. ಇಡೀ ನೆಲದಲ್ಲೆಲ್ಲಾ ದೊಡ್ಡದಾದ ಅಂಟಾರ್ಟಿಕ್ ತುದಿಸುತ್ತುವ ಒಳಹರಿವು (Antarctic Circumpolar Current-ACC), ಪಡುವಣಗಾಳಿಗಳ ಪ್ರಬಾವದಿಂದ ಪಡುವಣ-ಮೂಡಣ ದಿಕ್ಕಿನಲ್ಲಿ ಪೆರ್ನೆಲವನ್ನು (continent) ಸುತ್ತುತ್ತದೆ. ಹೀಗೆ ಸುತ್ತುತ್ತಾ ಎಣಿಸಲಾಗದಶ್ಟು ತಂಪಾದ, ಹೆಚ್ಚು ಪೊರೆತಗಳ (nutrients) ನೀರನ್ನು ಸಾಗಿಸುವುದಲ್ಲದೆ ಒಳ್ಳೆಯ ಕಡಲಬಾಳಿನ ಹೊಂದಿಕೆಯೇರ್ಪಾಟುಗಳನ್ನು (marine ecosystems) ಮತ್ತು ಉಣಿಸುಬಲೆಗಳನ್ನು (food webs) ಉಂಟುಮಾಡುತ್ತದೆ.

ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು (Polar Easterlies)

ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು ಒಣ ಹಾಗು ತಂಪಾದ ವಾಡಿಕೆಯ ಗಾಳಿಗಳಾಗಿದ್ದು ಮೂಡಣದ ಕಡೆಯಿಂದ ಬೀಸುತ್ತವೆ. ಇವು ಬಡಗು-ತೆಂಕು ತುದಿಗಳ (poles) ಎತ್ತರದ ಹಾಗು ಹೆಚ್ಚು ಒತ್ತಡದ ನೆಲೆಗಳಿಂದ ನಡುತರ ಕಡಿಮೆ ಒತ್ತಡದ ಅಡಿ-ತುದಿಯ (sub-polar) ನೆಲೆಗಳೆಡೆಗೆ ಬೀಸುತ್ತವೆ. ಇವು ತಂಡ್ರಾ ಮತ್ತು ಮಂಜು ಹೊದ್ದ ನೆಲೆಗಳಿಂದ ಬೀಸುವುದರಿಂದ ಕಡುತಂಪಾಗಿರುತ್ತವೆ. ತುದಿಯ ಮೂಡಣಗಾಳಿಗಳು ಬಡಗು ತುದಿಗಿಂತ ಹೆಚ್ಚು ತೆಂಕಲ್ಲಿ ಕಂಡುಬರುತ್ತವೆ.

ಮುಂದಿನ ಬಾಗದಲ್ಲಿ ಬಿಸಿಲ್ನೆಲೆಗಳ ಕೂಡು ಹರವು ಮತ್ತು ಅದರ ಕದಲಿಕೆಯಿಂದ ನೆಲದ ಗಾಳಿಪಾಡಿನ ಮೇಲೆ ಉಂಟಾಗುವ ಆಗುಹಗಳ ಬಗ್ಗೆ ತಿಳಿಯೋಣ.

‘ಕೊರಿಯೋಲಿಸ್’ ಎಂಬ ಬಲ

ಕೊರಿಯೋಲಿಸ್ (Coriolis) ಎಂಬ ವಿಜ್ಞಾನದ ಆಗುಹವನ್ನು ಹೀಗೆ ಬಣ್ಣಿಸಬಹುದು.

ಒಂದು ತಿರುಗುತ್ತಿರುವ ನೆಲೆಗಟ್ಟಿಗೆ ನಂಟಾಗಿ ಸಾಗುತ್ತಿರುವ ವಸ್ತುವೊಂದರ ಮೇಲೆ ಉಂಟಾಗುವ
ನಿಲ್ಮೆಯ ಬಲವಿದು (inertial force).

ನೆಲೆಗಟ್ಟು(Reference frame) ಬಲಸುತ್ತು ತಿರುಗುತ್ತಿದ್ದರೆ, ಸಾಗುತ್ತಿರುವ ವಸ್ತುವಿನ ಎಡಕ್ಕೆ ಬಲ ಉಂಟಾಗುತ್ತದೆ. ನೆಲೆಗಟ್ಟು ಎಡಸುತ್ತು ತಿರುಗುತ್ತಿದ್ದರೆ ಸಾಗುತ್ತಿರುವ ವಸ್ತುವಿನ ಬಲಕ್ಕೆ ಬಲ
ಉಂಟಾಗುತ್ತದೆ.

ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ಕಪ್ಪುಚುಕ್ಕೆಯಲ್ಲಿ ತೋರಿಸಲಾಗಿರುವ ವಸ್ತು ನೇರವಾದ ಗೆರೆಯಲ್ಲಿ ಸಾಗಿದರೂ, ಅದನ್ನು ನೋಡುವವನಿಗೆ (ಕೇಸರಿ ಚುಕ್ಕೆಯಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ) ಆ ವಸ್ತು ಓರೆಗೆರೆಯಲ್ಲಿ ಸಾಗುತ್ತಿರುವಂತೆ ಕಾಣಿಸುತ್ತದೆ. ನೋಡುಗನು ನಿಂತ ನೆಲೆಗಟ್ಟು ತಿರುಗುತ್ತಿರುವುದೇ ಇದಕ್ಕೆ ಕಾರಣ. ಹೀಗೆ ತಿರುಗುತ್ತಿರುವ ನೆಲೆಗಟ್ಟು ಉಂಟುಮಾಡುವ ಪರಿಣಾಮವೇ ಕೊರಿಯೋಲಿಸ್.

Corioliskraftanimation

ಕೊರಿಯೋಲಿಸ್ ಆಗುಹವುನ್ನು ಗಸ್ಪಾರ್ಡ್-ಗುಸ್ತಾವ್ ದು ಕೊರಿಯೋಲಿಸ್ ( Gaspard-Gustave de Coriolis) ಎಂಬ ಎಣಿಕೆಯರಿಗನು ಅರಿತು ಬಿಡಿಸಿ ಹೇಳಿದ್ದರಿಂದ ಅವನ ಹೆಸರನಲ್ಲಿ ಕರೆಯಲಾಗಿದೆ.

ನೆಲವು ಒಂದು ತಿರುಗುವ ನೆಲೆಗಟ್ಟಾಗಿದ್ದು ಅದಕ್ಕೆ ನಂಟಾಗಿ ಗಾಳಿಯು ಬೀಸಿದಾಗಲೂ ಕೊರಿಯೋಲಿಸ್ ಆಗುಹ ಉಂಟಾಗುತ್ತದೆ.

ಬೀಸುಗಾಳಿಯು ಹೆಚ್ಚು ಒತ್ತಡದ ನೆಲೆಯಿಂದ ಕಡಿಮೆ ಒತ್ತಡದ ನೆಲೆಯೆಡಿಗೆ ಬೀಸುತ್ತದೆ. ಆದರೆ ಬೀಸುಗಾಳಿಯು ನೇರಗೆರೆಯಲ್ಲಿ ಸಾಗಿದಂತೆ ಕಾಣುವುದಿಲ್ಲ. ಕೊರಿಯೋಲಿಸ್ ಆಗುಹದಿಂದ ಬೀಸುಗಾಳಿಯು ಒಂದು ದಿಕ್ಕಿನೆಡೆಗೆ ನೇರವಾಗಿ ಸಾಗದೆ ಬಾಗಿದಂತಾಗುತ್ತದೆ.

ನೆಲದ ನಡುಗೆರೆಯು (Equator) ಹೆಚ್ಚು ಅಗಲವಾಗಿರುವುದರಿಂದ ನೆಲವು ಅಲ್ಲಿ, ತುದಿಗಳಿಗಿಂತ ಹೆಚ್ಚು ಬಿರುಸಾಗಿ ತಿರುಗುತ್ತದೆ. ನೆಲನಡುಗೆರೆಯ ಮೇಲಿನ ಒಂದು ಚುಕ್ಕೆಯು ನೆಲೆದ ಬೇರೆಡೆ ಇರುವ ಇನ್ನಾವುದೇ ಚುಕ್ಕೆಗಿಂತ ಒಂದು ದಿನದಲ್ಲಿ ಹೆಚ್ಚು ದೂರವನ್ನು ಸಾಗಿರುತ್ತದೆ. ಚುಕ್ಕೆಯುನ್ನು ನೆಲನಡುಗೆರೆಯಿಂದ ತುದಿಗಳೆಡೆಗೆ ಜರುಗಿಸಿದಂತೆಲ್ಲ ಚುಕ್ಕೆಯ ತಿರುಗುವಿಕೆಯ ಬಿರುಸು ಕಡಿಮೆಯಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಬಡಗಣ ತುದಿಯೊ ಇಲ್ಲ ತೆಂಕಣ ತುದಿಯ ಮೇಲಿನ ಚುಕ್ಕೆಯನ್ನು ನೆಲನಡುಗೆರೆಯ ಕಡೆಗೆ ಜರುಗಿಸಿದಂತೆಲ್ಲ ಅಲ್ಲಿ ಅದರ ತಿರುಗುವಿಕೆಯ ಬಿರುಸು ಹೆಚ್ಚುತ್ತಾ ಹೋಗುತ್ತದೆ.

ತೋರಿಕೆಗೆ ಹೀಗೆಂದುಕೊಳ್ಳೋಣ, ನೀವು ಈಗ ನೆಲದ ಬಡಗಣ ತುದಿಯಮೇಲೆ ನಿಂತಿದ್ದೀರಿ. ನೀವು ಒಂದು ಚೆಂಡನ್ನು ತೆಂಕಣದ ಕಡೆಗೆ ಬಲು ದೂರದಲ್ಲಿ ನಿಂತ ಗೆಳೆಯನೆಡೆಗೆ ಎಸೆದರೆ ಅದು ಅವನಿರುವಿಕೆಯಿಂದ ಬಲಕ್ಕೆ ಹೋದಂತೆ ಕಾಣಿಸುತ್ತದೆ. ಏಕೆಂದರೆ ನಿಮ್ಮ ಗೆಳೆಯ ನೆಲನಡುಗೆರೆಗೆ ನಿಮಗಿಂತ ಹತ್ತಿರದಲ್ಲಿದ್ದಾನೆ ಮತ್ತು ನಿಮಗಿಂತ ಹೆಚ್ಚು ಬಿರುಸಾಗಿ ಪಡುವಲಿನಿಂದ ಮೂಡಲ ಕಡೆಗೆ ನೆಲಕ್ಕಂಟಿಕೊಂಡೇ ಸಾಗಿರುತ್ತಾನೆ. ಏಕೆಂದರೆ ನೆಲವು ಪಡುವಲಿನಿಂದ ಮೂಡಲ ಕಡೆಗೆ ತಿರುಗುತ್ತಿರುತ್ತದೆ. ಆದ್ದರಿಂದಲೇ ನೀವೆಸೆದ ಚೆಂಡು ನೇರವಾಗಿ ಸಾಗಿ ನಿಮ್ಮ ಗೆಳೆಯ ನಿಂತಲ್ಲಿಗೆ ಹೋದರೂ ನಿಮ್ಮ ಗೆಳೆಯ ಮೂಡಣದ ಕಡೆಗೆ ಹೆಚ್ಚು ಬಿರುಸಾಗಿ ಸಾಗಿದ್ದರಿಂದ, ಚೆಂಡು ಬಲಕ್ಕೆ ಬಾಗಿದಂತೆ ಕಾಣುತ್ತದೆ.

ಇನ್ನು ಸುಳುವಾಗಿ ತಿಳಿಯಬೇಕೆಂದರೆ ಈ ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು ನೋಡಿ. ಇದು ಕುದುರೆ ಗೊಂಬೆಗಳ ಮೇಲೆ ಕುಳಿತು ತಿರುಗುವ ಆಟ. ತಿರುಗುವ ತಟ್ಟೆಯಮೇಲೆ ಅರಿಶಿಣ ಅಂಗಿಯ ತೊಟ್ಟ ಮಗುವು ತನ್ನೆದುರಿಗಿನ ತಿಳಿನೀಲಿ ಬಣ್ಣದಂಗಿಯ ಪೋರನಿಗೆ ಚೆಂಡು ನೇರವಾಗಿ ಎಸೆದಾಗ ಅದು ಎಡಕ್ಕೆ ಹೋದಂತೆ ಕಾಣಿಸುತ್ತದೆ ಅಲ್ಲವೆ. ಇಲ್ಲಿ ತಿರುಗುವ ತಟ್ಟೆಯು ಬಲಸುತ್ತು ತಿರುಗುತ್ತಿದೆ.

imageಮೇಲ್ನೋಟಕ್ಕೆ ಹೀಗೆ ಬಾಗಿದಂತೆ ಕಾಣುವ ಆಗುಹವನ್ನು ಕೊರಿಯೋಲಿಸ್ ಆಗುಹ ಎಂದು ಕರೆಯುತ್ತೇವೆ. ಗಾಳಿಯು ಒಂದು ಚೆಂಡಿನಂತೆ. ಅದು ಬೀಸುವಾಗ ನೆಲದ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ(north hemisphere) ಬಲಕ್ಕೆ ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದಲ್ಲಿ(south hemisphere) ಎಡಕ್ಕೆ ಬಾಗಿದಂತೆ ಕಾಣುತ್ತದೆ. ಅಂದರೆ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಬೀಸುಗಾಳಿಯು ಹೆಚ್ಚು ಒತ್ತಡ ನೆಲೆಗಳಿಂದ ಕಡಿಮೆ ಒತ್ತಡದ ನೆಲೆಗಳೆಡೆಗೆ ಬಲಕ್ಕೆ ಸಾಗುತ್ತದೆ. ಆದ್ದರಿಂದಲೇ ಬಡಗು ಅರೆಗೋಳದಲ್ಲಿ ಉಂಟಾಗುವ ಸುಂಟರಗಾಳಿಗಳು ಬಲಸುತ್ತಿನವು ಮತ್ತು ತೆಂಕು ಅರೆಗೋಳದವು ಎಡಸುತ್ತಿನವು ಆಗಿರುತ್ತವೆ.
image (1)ಬಿರುಸಾಗಿ ಓಡುವ ವಿಮಾನ, ಏರುಗಣಿಗಳಂತವು (Rocket) ಕೊರಿಯೋಲಿಸ್ ಆಗುಹಕ್ಕೆ ಒಳಗಾಗುತ್ತವೆ. ಓಡಿಸುಗರು ಹಾರಾಟದ ಹಂಚಿಕೆಯನ್ನು ಹೆಣೆಯುವಾಗ ನೆಲದ ತಿರುಗುವಿಕೆಯನ್ನು ಎಣಿಕೆಗೆ ತೆಗೆದುಕೊಳ್ಳಬೇಕಾಗುತ್ತದೆ. ಉದಾಹರಣೆಗೆ ನೀವು ಚೆನ್ನೈನ ಬಾನಿನಲ್ಲಿ ನಿಂತು ಕೆಳಗೆ ವಿಮಾನದ ಹಾರುವಿಕೆಯನ್ನು ನೋಡುತ್ತಿರುವಿರಿ. ಚೆನ್ನೈಯಿಂದ (ಉದ್ದದೂರ 80°16′ಮೂಡಣಕ್ಕೆ-80°16′E Longitude) ಲಕನೌ (ಉದ್ದದೂರ 80°55′ಮೂಡಣಕ್ಕೆ-80°55′E Longitude) ಕಡೆಗೆ ತೆರಳುತ್ತಿರುವ ವಿಮಾನ ಹಾರುವುದನ್ನು ನೋಡುತ್ತಿದ್ದೀರಿ. ಒಂದುವೇಳೆ ನೆಲವು ತಿರುಗದೇ ಇದ್ದಿದ್ದರೆ, ಕೊರಿಯೋಲಿಸ್ ಆಗುಹವಿರುತ್ತಿರಲಿಲ್ಲ.

ಆಗ ಓಡಿಸುಗನು ನೇರಗೆರೆಯಂತೆ ಬಡಗಿನ ಕಡೆಗೆ ಹಾರಿಸಿದರೆ ಸಾಕಾಗುತ್ತಿತ್ತು ಮತ್ತು ಬಾನಿನಲ್ಲಿ ನೋಡುತ್ತಿರುವ ನಿಮಗೆ ವಿಮಾನ ಸಾಗಿದ ಹಾದಿ ನೇರಗೆರೆಯಂತೆ ಕಾಣುತಿತ್ತು. ಆದರೆ ನೆಲದ ತಿರುಗುವಿಕೆಯಿಂದ ಕೊರಿಯೋಲಿಸ್ ಉಂಟಾಗಿ ಲಕನೌ ಮೂಡಲಕ್ಕೆ ಸಾಗಿರುತ್ತದೆ ಮತ್ತು ಇದನ್ನು ಎಣಿಕೆಗೆ ತೆಗೆದುಕೊಳ್ಳದೆ ನೇರ ಸಾಗಿ ಬಂದರೆ, ವಿಮಾನ ಲಕನೌ ಬಿಟ್ಟು ಬೇರಾವುದೋ ಊರನ್ನು ಮುಟ್ಟಿರುತ್ತದೆ. ಅದಕ್ಕಾಗಿ ಓಡಿಸುಗನು ಹಾರಾಟದ ನಡುವಲ್ಲಿ ಆಗಾಗ ನೆಲದ ತಿರುಗುವಿಕೆಯನ್ನು ಎಣಿಕೆಗೆ ತಗೊಂಡು ಸಾಗುವ ಹಾದಿಯನ್ನು ಸರಿಮಾಡಿಕೊಳ್ಳುತ್ತಾ ಓಡಿಸಬೇಕಾಗುತ್ತದೆ. ಕೊರಿಯೋಲಿಸ್ ಆಗುಹವನ್ನು ಎಣಿಕೆಗೆ ತಗೊಂಡು ಲಕನೌ ಕಡೆಗೆ ಸಾಗಿದ ಹಾದಿಯು ಬಾನಿನಲ್ಲಿ ಗಮನಿಸುತ್ತಿರುವ ನಿಮಗೆ, ಬಲಕ್ಕೆ ಬಾಗುತ್ತಾ ಹೋದಂತೆ ಕಾಣಿಸುತ್ತದೆ.

ಕೊರಿಯೋಲಿಸ್ ಆಗುಹವನ್ನು ಅರಿಯುವುದರಿಂದ ನೆಲದ ಮೇಲಿನ ಬೀಸುಗಾಳಿಗಳು, ಹೆಗ್ಗಡಲ ಒಳ ಹರಿವುಗಳು ಮತ್ತು ಅವುಗಳಿಂದ ನೆಲದಮೇಲೆ ಉಂಟಾಗುವ ಏರುಪೇರುಗಳನ್ನು ತಿಳಿಯಲು ಅನುವಾಗುತ್ತದೆ. ಮುಂದಿನ ಬಾಗದಲ್ಲಿ ಈ ಕುರಿತು ಹೆಚ್ಚು ತಿಳಿಯೋಣ.

ಅಲ್ಜಿಬ್ರಾ ಏಕೆ ಕಲಿಯಬೇಕು?

ಎಣಿಕೆಯರಿಮೆ (Mathematics) ಅಥವಾ ಗಣಿತವನ್ನು ಒಂದನೇ ತರಗತಿಯಿಂದ ಕಲಿಯುತ್ತೇವೆ, ಅದರಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆ (Algebra) ಎಂದರೇನು ಮತ್ತು ಅದನ್ನು ಕಲಿಯುವ ಬಗೆಯನ್ನು ಏಳನೇ ತರಗತಿಯಲ್ಲಿ ಕಲಿಯುತ್ತೇವೆ, ಹೀಗೆ ಮುಂದುವರೆದು ಹತ್ತನೇ ತರಗತಿಯವರೆಗೆ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಗಣಿತದ ಒಂದು ಭಾಗವಾಗಿ ಕಲಿಯುತ್ತೇವೆ. ಇದು ಶಾಲೆಯ ಕಲಿಕೆಯ ಬಗ್ಗೆಯಾಯ್ತು, ಇನ್ನು ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಮೇಲು ಹಂತದ ಕಲಿಕೆಯಲ್ಲಿ ಮತ್ತು ಹಲವಾರು ಅರಿಮೆಯ ಕವಲುಗಳಲ್ಲಿ (Fields of science) ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಲಾಗಿದೆ.

ಬರಿಗೆಯೆಣಿಕೆ ಎಂದರೇನು ಮತ್ತು ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಏಕೆ ಕಲಿಯಬೇಕು ?

ಬರಿಗೆಯೆಣಿಕೆ ಎಂಬುವುದು ಎಣಿಕೆಯರಿಮೆ ಅಥವಾ ಗಣಿತದ ಒಂದು ಭಾಗವಾಗಿದೆ, ಯಾವುದೇ ಸರಿಹೊಂದಿಕೆಯಲ್ಲಿ (Equation)  ಬರಿಗೆಗಳು (Letters) ಮತ್ತು ಹಲವು ಗುರುತುಗಳನ್ನು (Symbols) ಬಳಸಿಕೊಂಡು ಅಂಕೆ ಮತ್ತು ಬೆಲೆಯನ್ನು (numbers and quantities/values) ಕಂಡುಕೊಳ್ಳಲಾಗುವುದು.

ಇನ್ನು ಸುಲಭವಾಗಿ ಹೇಳಬೇಕೆಂದರೆ,

ಬರಿಗೆಯೆಣಿಕೆ ಎಂಬುವುದು ಬರಿಗೆಗಳು ಮತ್ತು ಗುರುತುಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಗಣಿತದ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಬಿಡಿಸುವುದು.

ಇಲ್ಲಿ ಯಾವುದೇ ಬರಿಗೆಗಳನ್ನು (Letters/ ಅಕ್ಷರ) ಬಳಸಿಕೊಳ್ಳಬಹುದಾಗಿದೆ, ಉದಾಹರೆಣೆಗೆ x,y,z,a,b,c,d,α,β, , , ಇಲ್ಲಿ ಗುರುತುಗಳೆಂದರೆ ಕೂಡು (+), ಕಳೆ (-), ಭಾಗಿಸು (/), ಗುಣಿಸು (*, x), ಸರಿ (=) ಹಾಗು ಇತರೆ ಚಿಹ್ನೆಗಳು. ಮುಂದಿನ ಉದಾಹರಣೆಗಳಲ್ಲಿ ಈ ಬರಿಗೆಗಳು ಮತ್ತು ಗುರುತುಗಳನ್ನು ಹೇಗೆ ಬಳಸಿಕೊಳ್ಳಲಾಗಿದೆ ಎಂಬುವುದನ್ನು ತಿಳಿಯೋಣ.

ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಏಕೆ ಕಲಿಯಬೇಕು ಎಂಬುವುದನ್ನು ಮೊದಲು ತಿಳಿಯೋಣ ಬನ್ನಿ.

ಬರಿಗೆಯೆಣಿಕೆ ಎಂಬುವುದು ದಿನದ ಬದುಕಿನ ಹಲವು ಲೆಕ್ಕಾಚಾರವನ್ನು ಬಿಡಿಸಲು ನೆರವಾಗುತ್ತದೆ:

ನಾವುಗಳು ಬದುಕಿನಲ್ಲಿ ಒಂದಲ್ಲಾ ಒಂದು ರೀತಿಯಲ್ಲಿ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡುತ್ತಾ ಇರುತ್ತೇವೆ, ಈ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಸುಲಭವಾಗಿಸಿದರೆ ನಮಗೆ ಒಂದಿಷ್ಟು ತಲೆಬಿಸಿ ತಪ್ಪುತ್ತದೆ ಅಲ್ಲವೇ? 🙂  ಈ ನಿಟ್ಟಿನಲ್ಲಿಕೆಳಗಿನ ತುಂಬಾ ಸುಲಭವಾದ ಉದಾಹರಣೆಗಳನ್ನು ನೋಡೋಣ.

ಉದಾಹರಣೆ 1: ನೀವು ಒಂದು ವಾರದಲ್ಲಿ ಶನಿವಾರ 2 ಲೀಟರ್ ಹಾಲು ಕೊಳ್ಳುತ್ತೀರಿ, ಭಾನುವಾರ 3 ಲೀಟರ್ ಮತ್ತು ಉಳಿದ ಐದು ದಿನವೂ 1 ಲೀಟರ್ ಹಾಲು ಕೊಳ್ಳುತ್ತೀರಿ. ಒಂದು ಲೀಟರ್ ಹಾಲಿನ ಬೆಲೆ 30 ರೂಪಾಯಿಗಳು ಆಗಿರಲಿ, ಹಾಗಾದರೆ ಒಂಬತ್ತು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಹಾಲಿನ ಮೊತ್ತವೆಷ್ಟು?.

Image1 ALG

ಮೊದಲನೇ ವಾರದಲ್ಲಿ ಕೊಂಡ ಹಾಲು = ಶನಿವಾರ ಕೊಂಡ ಹಾಲು + ಭಾನುವಾರ ಕೊಂಡ ಹಾಲು + ಉಳಿದ ಐದು ದಿನಗಳು ಕೊಂಡ ಹಾಲು = 2 + 3 + 5 x 1 = 2 + 3 + 5 = 10 ಲೀಟರ್ ಗಳು.

ಎರಡು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಹಾಲು = ಎರಡು ಶನಿವಾರ ಕೊಂಡ ಹಾಲು + ಎರಡು  ಭಾನುವಾರ ಕೊಂಡ ಹಾಲು + ಐದು ದಿನಗಳಂತೆ ಎರಡು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಹಾಲು = 2 x 2 + 2 x 3 + 2 x 5 x 1 = 4 +6 + 10 = 20 ಲೀಟರ್ ಗಳು.

ಹೀಗೆ ಹಲವು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಒಟ್ಟು ಹಾಲು = 2n+3n + 5n x 1 = 10n ಎಂದು ಬರೆಯಬಹುದು.

ಇಲ್ಲಿ n ಎಂಬ ಬರಿಗೆಯು (Letter/Alphabet) ಮಾರ್ಪುಕವಾಗಿದೆ (Variable), ಅಂದರೆ ಅದು ಒಂದೇ ಬೆಲೆಯಾಗಿರದೇ, ಮಾರ್ಪಾಟು ಹೊಂದುವಂತಹ ಬೆಲೆಯಾಗಿದೆ. ನಮಗೆ ಬೇಕಾದ ವಾರಗಳನ್ನು n ಗೆ ಅಳವಡಿಸಿಕೊಳ್ಳಬಹುದು.

ಮೇಲಿನ ಉದಾಹರಣೆಯಲ್ಲಿ10 ಎಂಬುವುದು ಒಡಬೆಲೆಯಾಗಿದೆ (Coefficient).

ಒಂಬತ್ತು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಹಾಲನ್ನು n = 9 ಎಂದು ತೆಗೆದುಕೊಂಡು, 10n = 10 x 9 = 90 ಲೀಟರ್ ಗಳು ಎಂದು ಕಂಡುಕೊಳ್ಳಬಹುದು.

∴ ಒಂಬತ್ತು ವಾರಗಳಲ್ಲಿ ಕೊಂಡ ಒಟ್ಟು ಹಾಲಿನ ಬೆಲೆ = 90 x 30 = 2700 ರೂಪಾಯಿಗಳು.

 ಉದಾಹರಣೆ 2: ಕೆಳಗಿನ ಚಿತ್ರಲ್ಲಿರುವಂತೆ X ಬರಿಗೆಯನ್ನು (Letter) ತೋರಿಸಲು ನಮಗೆ 4 ಬೆಂಕಿಕಡ್ಡಿಗಳು ಬೇಕಾಗುತ್ತವೆ.

Image2 ALG

ಅದೇ ರೀತಿ XXನ್ನು ತೋರಿಸಲು 4 + 4 = 8 ಬೆಂಕಿಕಡ್ಡಿಗಳು ಬೇಕಾಗುತ್ತವೆ ಮತ್ತು XXXನ್ನು ತೋರಿಸಲು 4 + 4 + 4 = 12  ಬೆಂಕಿಕಡ್ಡಿಗಳು ಬೇಕಾಗುತ್ತವೆ, ಹೀಗೆ ಒಂದಿಷ್ಟು X ಬರಿಗೆಗಳನ್ನು ತೋರಿಸಲು 4 + 4 + 4 + 4 …..+ 4 = 4n  ಬೆಂಕಿಕಡ್ಡಿಗಳು ಬೇಕಾಗುತ್ತವೆ ಎಂದು ಬರೆಯಬಹುದು.

ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ XXXXXXXರಲ್ಲಿ ಏಳು X ಬರಿಗೆಗಳಿವೆ, ಹೀಗಾಗಿ XXXXXXX ನ್ನು ತೋರಿಸಲು 4n ಬರಿಗೆಯೆಣಿಕೆ ಸರಿಹೊಂದಿಕೆಯನ್ನು (Algebraic Equation) ಬಳಸಿಕೊಂಡು ನಮಗೆ 4 x 7 = 28 ಬೆಂಕಿಕಡ್ಡಿಗಳು ಬೇಕಾಗುತ್ತವೆ ಎಂದು ಹೇಳಬಹುದು.

Image3 ALG

4n ರಲ್ಲಿ 4 ಎಂಬುದು ಒಂದು ಬರಿಗೆಯನ್ನು ಮಾಡಲು ಬೇಕಾದ ಬೆಂಕಿಕಡ್ಡಿಗಳು, “n ಬರಿಗೆ (Letter) ಎಂಬುದು ಎಷ್ಟು ಸಲ ನಾವು X ಅನ್ನು ಬಳಸಿಕೊಳ್ಳುತ್ತೇವೆ ಎಂಬುದು, 4n ಎಂಬುದು ಕೊಟ್ಟಿರುವ X ಬರಿಗೆಗಳಿಗೆ ಬೇಕಾದ ಒಟ್ಟು ಬೆಂಕಿಕಡ್ಡಿಗಳು.

-> 4 ಬೆಂಕಿಕಡ್ಡಿಗಳು    -> 4n = 4 x 7 = 28 ಬೆಂಕಿಕಡ್ಡಿಗಳು

ಸೂಚನೆ: 4n  ಸರಿಹೊಂದಿಕೆಯು(equation) ಒಂದೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಯಾಗಿದೆ (Linear equation) ಮುಂದೆ ಈ ಬಗೆಯನ್ನು ತಿಳಿದುಕೊಳ್ಳೋಣ.

ನಮ್ಮ ಸುತ್ತಮುತ್ತಲ ವಿಜ್ಞಾನವನ್ನು ಅರಿಯಲು:

ನಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನ ವಿಜ್ಞಾನವನ್ನು ತಿಳಿಯುವುದಕ್ಕೂ ಈ ಬರಿಗೆಯೆಣಿಕೆಗೂ ಏನಪ್ಪಾ ನಂಟು ಅಂದ್ಕೊಂಡ್ಬಿಟ್ರಾ!?

ಬನ್ನಿ ಕೆಳಗಿನ ಉದಾಹರಣೆಯೊಂದಿಗೆ ತಿಳಿಯೋಣ!

ಉದಾಹರಣೆ 3: ನೀವು 2 ಮೀಟರ್ ಎತ್ತರವಿದ್ದೀರಿ ಎಂದುಕೊಳ್ಳಿ ಹಾಗು ನೀವು ಒಂದು ಕಲ್ಲನ್ನು 14 m/s ವೇಗದಲ್ಲಿ ಎಸೆಯುತ್ತೀರ, ಆ ಕಲ್ಲು ನೆಲಕ್ಕೆ ಬೀಳಲು ಎಷ್ಟು ಹೊತ್ತು ತೆಗೆದುಕೊಳ್ಳುತ್ತದೆ?

ಭೌತಶಾಸ್ತ್ರದಿಂದ ತಿಳಿದುಬರುವುದೇನೆಂದರೆ ನಮ್ಮ ನೆಲದ ರಾಶಿಸೆಳೆತವು g =9.8 m/s2 ರಷ್ಟು ಇರುತ್ತದೆ. ಯಾವುದೇ ಸಮಯದಲ್ಲಿ ಎಸೆದ ವಸ್ತುವು ತಲುಪುವ ಎತ್ತರವನ್ನು h = h1 + ut 1/2(gt2) ಎಂದು ಬರೆಯಬಹುದಾಗಿದೆ. ನಾವು ತೆಗೆದುಕೊಂಡ ಉದಾಹರಣೆಯಲ್ಲಿ h1 = ನಿಮ್ಮ ಎತ್ತರ = 2 m, u = ಎಸೆದ ಮೊದಲ ವೇಗ (Initial velocity) = 14 m/s, ಕಲ್ಲು ನೆಲಕ್ಕೆ ಬೀಳುವಾಗ ಎತ್ತರ h = 0 ಆಗಿರುತ್ತದೆ.

ಆದ್ದರಿಂದ ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆ (Equation) h = h1 + ut 1/2(gt2) ಯನ್ನು 0 = 2 + 14t 1/2(9.8 t2 ) ಎಂದು ಬರೆಯಬಹುದು

2 + 14t -1/2(9.8 t2 ) = 2 + 14t -4.9 t2  =  0 ಈ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಿಡಿಸಿದಾಗ ನಮಗೆ t= 3.058 seconds ಎಂದಾಗುತ್ತದೆ. ಆದ್ದರಿಂದ ಎಸೆದ ಕಲ್ಲು ನೆಲವನ್ನು ತಲುಪಲು 3.058 ಸೆಕೆಂಡ್‍ಗಳನ್ನು ತೆಗೆದುಕೊಂಡಿತು!

ಸೂಚನೆ: 2 + 14t -4.9 t2  ಸರಿಹೊಂದಿಕೆಯು(equation) ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಯಾಗಿದೆ (Quadratic equation) ಮುಂದೆ ಈ ಬಗೆಯನ್ನು ತಿಳಿದುಕೊಳ್ಳೋಣ ಹಾಗು ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಿಡಿಸುವ ಬಗೆಯನ್ನು ಮುಂದಿನ ಬರಹಗಳಲ್ಲಿ ತಿಳಿದುಕೊಳ್ಳೋಣ.

 ಗಣಿತದ ಮೇಲು ಹಂತದ ಕಲಿಕೆಯನ್ನು (Higher Education) ಚೆನ್ನಾಗಿ ತಿಳಿಯಲು:

ನಾವು ಯಾವುದೇ ಮೇಲು ಹಂತದ ಕಲಿಕೆಯನ್ನು ಚೆನ್ನಾಗಿ ಮಾಡಲು ಮೊದಲಹಂತದ ಅರಿವು ಬೇಕಾಗುತ್ತದೆ. ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಮೊದಲ ಹಂತದಲ್ಲೇ ಚೆನ್ನಾಗಿ ತಿಳಿದರೆ ನಂತರದ ಎಣಿಕೆಯರಿಮೆಯ ಕಲಿಕೆಯು ಸುಲಭವಾಗುತ್ತದೆ. ಏಕೆಂದರೆ ಎಣಿಕೆಯರಿಮೆ ಅಥವಾ ಗಣಿತದಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಹೆಚ್ಚಾಗಿ ಬಳಸಿಕೊಳ್ಳಲಾಗುತ್ತದೆ. ಗೆರೆಯರಿಮೆ (Geometry) ಮತ್ತು ಅಂಕೆಯರಿಮೆಯಲ್ಲಿ (Arithmetic) ಕೂಡ ಹೆಚ್ಚಾಗಿ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಉದಾಹರೆಣೆಗೆ 1 ರಿಂದ n ವರೆಗೆ ಎಣಿಯನ್ನು(ಅಂಕೆ) ಸುಲಭವಾಗಿ ಕೂಡಲು S =  (n2+n)/2 ಎಂಬ ಬರಿಗೆಯೆಣಿಕೆ ಸರಿಹೊಂದಿಕೆಯನ್ನು(Algebraic Equation) ಬಳಸಿಕೊಳ್ಳುತ್ತೇವೆ.

ಇಲ್ಲಿ n ಎಂಬುವುದು ಮಾರ್ಪುಕವಾಗಿದೆ (Variable), ಅಂದರೆ ನಮಗೆ ಬೇಕಾದ ಅಂಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹುದು, ನಾವು 1 ರಿಂದ 100 ರ ವರೆಗೆ ಅಂಕೆಗಳನ್ನು ಕೂಡೋಣ, ಇಲ್ಲಿ S ಎಂಬುವುದು ಮೊತ್ತವಾಗಿದೆ

S = (n2+n)/2  = (1002 +100)/2 = (10000+100)/2 = (10100)/2 = 5050 ಆಗಿದೆ.

ಗಣಿತದ ಹಲವಾರು ಅರಿಮೆಯ ಕವಲುಗಳ ಅಧ್ಯಯನ ಮಾಡಲು:

ಯಾವುದೇ ಅರಿಮೆಯ ಅರಕೆಗಳು(ಸಂಶೋಧನೆಗಳು) ಹೊಸತನ್ನು ಹುಟ್ಟುಹಾಕುತ್ತವೆ, ಹೆಚ್ಚಿನ ಅರಿಮೆಯ ಕವಲುಗಳು ಮತ್ತು ಎಣಿಕೆಯರಿಮೆಯ ಅರಕೆಯಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆ ಬಳಕೆಯಾಗುತ್ತದೆ. ಉದಾಹರಣೆಗೆ ಭೂಮಿಯ ಮತ್ತು ಅದರ  ಸುತ್ತ ತಿರುಗುತ್ತಿರುವ ಒಂದು ವಸ್ತುವಿನ ಮೇಲಿನ ಬಲ ಕಂಡುಹಿಡಿಯಲು ಎಣಿಕೆಯರಿಮೆಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ. ಬಲವನ್ನು ಕಂಡುಹಿಡಿಯಲು ಹೀಗೆ ಬರಿಗೆಯೆಣಿಕೆ ಸರಿಹೊಂದಿಕೆಯನ್ನು (Algebraic Equation) ಬಳಸಲಾಗುತ್ತದೆ.

ಬಲ (Force) F = GMm1/(R+h)2 

M = ನೆಲದ ರಾಶಿ

 m2 = ವಸ್ತುವಿನ ರಾಶಿ

G = ನೆಲೆಬೆಲೆ (Constant)

R = ನೆಲದ ದುಂಡಿ (Radius of Earth)

h = ನೆಲದ ಮೇಲ್ಮಯ್ಯಿಂದ ಅದರ ಸುತ್ತ ತಿರುಗುತ್ತಿರುವ ವಸ್ತುವಿನ ನಡುವಿರುವ ದೂರ.

 ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಗುರುತಿಸುವ ಅಂಶಗಳು:

 1. ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯನ್ನು ಗುರುತಿಸುವುದು (Algebraic Expression):

 Image4 ALG

ಮೇಲಿನ ಒಂದು ಸರಿಹೊಂದಿಕೆ(equation) 3x2 2xy + 6  ನ್ನು ನೋಡೋಣ ಮತ್ತು ಅವುಗಳ ಏರ್ಪಾಡುಗಳನ್ನು ಕೆಳಗಿನಂತೆ ಎಳೆ ಎಳೆಯಾಗಿ ತಿಳಿಯೋಣ.

ಮಾರ್ಪುಕ (Variables): ಯಾವುದೇ ಸರಿಹೊಂದಿಕೆಯಲ್ಲಿ (equation) ಮಾರ್ಪಡುವ ಅಥವಾ ಬದಲಾಗುವ ಬೆಲೆಯನ್ನು ಹೊಂದಿರುವ ಬರಿಗೆಗೆ (Letters) ಮಾರ್ಪುಕ ಎಂದು ಕರೆಯುವರು.

ಕೊಟ್ಟಿರುವ  ಸರಿಹೊಂದಿಕೆ  3x2 2xy + 6  ಯಲ್ಲಿ x ಮತ್ತು y ಗಳು ಮಾರ್ಪುಕಗಳಾಗಿವೆ. ಮಾರ್ಪುಕವೆನ್ನುವುದು ತಿಳಿಯದ ಬೆಲೆ (Unknown Value) ಅಥವಾ ನಾವು ಕಂಡುಹಿಡಿಯುವ ಬೆಲೆಯಾಗಿರುತ್ತದೆ. ಮೊದಲಿಗೆ ಬೆಂಕಿಕಡ್ಡಿಯ ಉದಾಹರಣೆಗಳನ್ನು ಕೊಟ್ಟಿದ್ದೇವಲ್ಲವೇ, ಅಲ್ಲಿ ಕೊಟ್ಟಿರುವ 4n ಅಲ್ಲಿ n ಎಂಬುವುದು ಮಾರ್ಪುಕವಾಗಿದೆ.

ಒಡಬೆಲೆ (Coefficient): ಯಾವುದೇ ಮಾರ್ಪುಕಗಳ ಒಟ್ಟಿಗೆ ಇರುವ ಬೆಲೆಯನ್ನು ಒಡಬೆಲೆ ಎಂದು ಕರೆಯಬಹುದು.

ಕೊಟ್ಟಿರುವ  ಸರಿಹೊಂದಿಕೆ 3x2 2xy + 6  ಯಲ್ಲಿ x2   ಮಾರ್ಪುಕದ ಒಡನೆ ಇರುವ ಬೆಲೆ 3  ಆಗಿದೆ ಮತ್ತು xy ಮಾರ್ಪುಕಗಳ ಒಡನೆ ಇರುವ ಬೆಲೆ 2 ಆಗಿದೆ. ಒಡಬೆಲೆಯು ಇಡಿಯಂಕೆ (whole number) ಅಥವಾ ಪಾಲುಗಳು (fractions) ಆಗಬಹುದು. ಉದಾಹರೆಣೆಗೆ 1.5x2 – (2/3)xy + 8 , ಇಲ್ಲಿ ಒಡಬೆಲೆಗಳು 1.5  ಮತ್ತು 2/3 ಆಗಿವೆ.

ಬರಿಗೆಯೆಣಿಕೆ ಪದ (Algebraic Term): ಯಾವುದೇ ಒಡಬೆಲೆ(Coefficient) ಮತ್ತು ಮಾರ್ಪುಕದ(Variables) ಜೊತೆಯನ್ನು ಬರಿಗೆಯೆಣಿಕೆ ಪದ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 3x2 – 2xy + 6  ಯಲ್ಲಿ 3x2  ಮತ್ತು 2xy ಎಂಬುದು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳಾಗಿವೆ.

 ನೆಲೆಬೆಲೆ (Constant) :  ಯಾವುದೇ ಮಾರ್ಪುಕಗಳಿಲ್ಲದ (Without Variables) ಮತ್ತು ಬದಲಾಗದ ನೆಲೆಸಿರುವ ಬೆಲೆಯನ್ನು (Constant Value) ನೆಲೆಬೆಲೆ ಎಂದು ಕರೆಯಬಹುದು.

ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 3x2 – 2xy + 6  ಯಲ್ಲಿ 6  ಎಂಬುವುದು ನೆಲೆಬೆಲೆಯಾಗಿದೆ. ನೆಲೆಬೆಲೆಯು ಇಡಿಯಂಕೆ (whole number) ಅಥವಾ ಪಾಲುಗಳು (fractions) ಆಗಬಹುದು. ಉದಾಹರೆಣೆಗೆ 6x2 – 3.33xy + 7.8  ಇಲ್ಲಿ ನೆಲೆಬೆಲೆ 7.8 ಆಗಿವೆ. ನೆಲೆಬೆಲೆಯನ್ನು ಬರಿಗೆಯೆಣಿಕೆ ನೆಲೆಬೆಲೆಪದ (Algebraic Constant Term) ಎಂದೂ ಕರೆಯಬಹುದು.

ಎಣಿಕೆಬಳಕ (Mathematical Operator): ಯಾವುದೇ ಬರಿಗೆಯೆಣಿಕೆ ಪದಗಳನ್ನು (Algebraic Terms) ಕೂಡಲು, ಕಳೆಯಲು, ಪಾಲುಮಾಡಲು(ಭಾಗಿಸು), ಪೆಚ್ಚಿಸಲು(ಗುಣಿಸು) ಎಣಿಕೆಬಳಕಗಳಾದ (Mathematical Operators) –, +, x, ÷ ಅನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ, 3x2 – 2xy + 6  ಯಲ್ಲಿ – ಮತ್ತು + ಎಣಿಕೆಬಳಕಗಳನ್ನು ಬಳಸಿರುವುದನ್ನು ನೋಡಬಹುದು.

 ಏರ್ಮಡಿ (Power/Exponent): ಯಾವುದೇ ಮಾರ್ಪುಕದ ತಲೆಯ ಬಲ ಬದಿಯ ಬೆಲೆಯು (Right top Value) ಏರ್ಮಡಿ ಆಗಿದೆ, ಇಲ್ಲಿ ಏರ್ಮಡಿಯು ಮಾರ್ಪುಕವನ್ನು ಹಲಮಡಿಸುತ್ತದೆ, ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 3x2 – 2xy + 6  ಯಲ್ಲಿ ಮೊದಲ ಬರಿಗೆಯೆಣಿಕೆ ಪದ (Algebraic Term) 3x2 ದಲ್ಲಿರುವ ಮಾರ್ಪುಕದ ತಲೆಯೆಣಿ 2 ಆಗಿದೆ. ಇಲ್ಲಿ x2  ನ್ನು (x) ಗುಣಿಸು (x)  ಎಂದು ಬರೆಯಬಹುದು.

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Algebraic Expression):

ಸರಿಹೊಂದಿಕೆಯ (equation) ಎಲ್ಲಾ ಬರಿಗೆಯೆಣಿಕೆ ಪದಗಳು (Algebraic Terms), ನೆಲೆಬೆಲೆಗಳು (Constants)  ಮತ್ತು ಎಣಿಕೆಬಳಕಗಳನ್ನು (Operators) ಒಟ್ಟಾಗಿ ಸೇರಿಸಿದರೆ ಅದು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗುತ್ತದೆ.

ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 3x2 – 2xy + 6  ಯಲ್ಲಿ 3x2  ಮತ್ತು 2xy ಎಂಬುದು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳಾಗಿವೆ, – ಮತ್ತು + ಎಣಿಕೆಬಳಕಗಳಾಗಿವೆ ಹಾಗು 6  ನೆಲೆಬೆಲೆಯಾಗಿದೆ, ಇವೆಲ್ಲವನ್ನು ಒಟ್ಟಾಗಿ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ ಎನ್ನಬಹುದು.

ಹೀಗಾಗಿ 3x2 2xy + 6  ಎಂಬುದು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ.

ಇನ್ನು ಸುಳುವಾಗಿ ಹೇಳಬೇಕೆಂದರೆ,

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ = ಬರಿಗೆಯೆಣಿಕೆ ಪದ1 (- ಅಥವಾ +)ಬರಿಗೆಯೆಣಿಕೆ ಪದ2 (- ಅಥವಾ +) …… (- ಅಥವಾ +) ನೆಲೆಬೆಲೆಗಳು.

ಪಟ್ಟುಕ (Factors): ಒಂದು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದದ ಪಟ್ಟನ್ನು ಹೆಚ್ಚಿಸುವ ಅಂಶಗಳನ್ನು ಪಟ್ಟುಕ ಎಂದು ಕರೆಯಬಹುದು. ಮೇಲೆ ಹೇಳಿದ ಮಾರ್ಪುಕಗಳು (Variables) ಮತ್ತು ಒಡಬೆಲೆಗಳು(Coefficients) ಪಟ್ಟುಕಗಳಾಗಿವೆ.

ಉದಾಹರೆಣೆಗೆ ಕೊಟ್ಟಿರುವ ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 3x2 – 2xy + 6  ಯಲ್ಲಿ 3x2  ನ ಪಟ್ಟುಕಗಳು 3, x, x ಮತ್ತು 2xy ನ  ಪಟ್ಟುಕಗಳು 2,x,y ಆಗಿವೆ. ನೆಲೆಬೆಲೆಯನ್ನು ಕೂಡ ಪಟ್ಟುಕಗಳಾಗಿ ಬರೆಯಬಹುದು, ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯ ನೆಲೆಬೆಲೆಯಾದ 6 ನ್ನು 2, 3 ಎಂದು ಪಟ್ಟುಕಗಳನ್ನಾಗಿ ಬರೆಯಬಹುದು.

ಉದಾಹರಣೆ1:  ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Algebraic Expression) 5x2 + 7xy – 10 ನ್ನು ಚಿತ್ರದಲ್ಲಿ ಬರೆದು ಅದರ ಅಡಕಗಳನ್ನು(ಅಂಶಗಳನ್ನು) ಗುರುತಿಸಿ.

5x2 + 7xy – 10 ಸರಿಹೊಂದಿಕೆಯನ್ನು ಕೆಳಕಂಡಂತೆ ಬಿಡಿಸಿ ಗುರುತಿಸೋಣ.

Image5 ALG

 1. ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯ ಬಗೆಗಳು (Types of algebraic Expression)

ಕೆಳಕಂಡಂತೆ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯನ್ನು ಗುರುತಿಸಬಹುದು.

ಒಂಟಿ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Monomial Algebraic Expressions).

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಲ್ಲಿ ಒಂದು ಪದವನ್ನು(Single Term) ಹೊಂದಿದ್ದರೆ ಅದು ಒಂಟಿ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗುತ್ತದೆ.

ಉದಾಹರಣೆ 1: ಒಂದು ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 4y2  ನ್ನುತೆಗೆದುಕೊಳ್ಳೋಣ, ಮೇಲೆ ಬರಿಗೆಯೆಣಿಕೆ ಪದ (Algebraic Term) ಎಂದರೇನು ಅಂತ ತಿಳಿದಿದ್ದೇವೆ, 4y2  ನ್ನು ನೋಡಿದಾಗ ಅದು ಒಂದು ಅಥವಾ ಒಂಟಿ (Mononomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ.

ಉದಾಹರಣೆ 2: ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಎಲ್ಲಾ ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳು ಒಂದು ಅಥವಾ ಒಂಟಿ (Mononomial) ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಕಂತೆಯಾಗಿವೆ.

5m4n, 2ax/3y, k5, 10ab3

ಎರಡು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Binomial Algebraic Expressions):

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಲ್ಲಿ ಎರಡು ಪದಗಳನ್ನು ಹೊಂದಿದ್ದರೆ ಅದು ಎರಡು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗುತ್ತದೆ.

ಉದಾಹರಣೆ 1: ಒಂದು ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 5y2 + 2x ನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ, 5y2 + 2x ನ್ನು ನೋಡಿದಾಗ ಅದರಲ್ಲಿ ಎರಡು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳು 5y2  ಮತ್ತು  2x ಕಂಡುಬರುತ್ತವೆ, ಹಾಗಾಗಿ ಇದು ಎರಡು (Binomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ.

ಮೂರು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Trinomial Algebraic Expressions):

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಲ್ಲಿ ಎರಡು ಪದಗಳನ್ನು ಹೊಂದಿದ್ದರೆ ಅದು ಮೂರು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗುತ್ತದೆ.

ಉದಾಹರಣೆ 1: ಒಂದು ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 6y3 + 2xy + 1.5x ನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ, 6y3 + 2xy + 1.5x ನ್ನು ನೋಡಿದಾಗ ಅದರಲ್ಲಿ ಮೂರು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳು 6y3 , 2xy  ಮತ್ತು 1.5x ಕಂಡುಬರುತ್ತವೆ, ಹಾಗಾಗಿ ಇದು ಮೂರು (Trinomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ.

ಹಲವು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆ (Polynomial Algebraic Expressions):

ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಲ್ಲಿ ಹಲವು ಪದಗಳನ್ನು ಹೊಂದಿದ್ದರೆ ಅದು ಹಲವು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗುತ್ತದೆ, ಇಲ್ಲಿ ಹಲವು ಎಂಬುವುದು ಒಂಟಿ (Monomial), ಎರಡು (Binomial), ಮೂರು (Trinomial) ಹಾಗು ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಬರಿಗೆಯೆಣಿಕೆ ಪದಗಳನ್ನು ಹೊಂದಿದೆ ಎಂದರ್ಥ.

ಉದಾಹರಣೆ 1: ಒಂದು ಸರಿಹೊಂದಿಕೆ (ಸಮೀಕರಣ) 5x3 + 6xy + 3y + 4.5x ನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ, 5x3 + 6xy + 3y + 4.5x ನ್ನು ನೋಡಿದಾಗ ಅದರಲ್ಲಿ ನಾಲ್ಕು ಬರಿಗೆಯೆಣಿಕೆಯ ಪದಗಳು 5x3, 6xy, 3y   ಮತ್ತು 4.5x ಕಂಡುಬರುತ್ತವೆ, ಹಾಗಾಗಿ ಇದು ಹಲವು ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ(Polynomial Algebraic Equation).

ಉದಾಹರಣೆ2: ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಎಲ್ಲಾ ಬರಿಗೆಯೆಣಿಕೆಯ (Algebraic Terms) ಪದಗಳು ಹಲವು ಬರಿಗೆಯೆಣಿಕೆ ಪದಗಳಾಗಿವೆ (Polynomial Algebraic Expressions).

4y2  –> ಒಂಟಿ (Monomial) ಮತ್ತು ಹಲವು (Polynomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ ಕೂಡ.

5y2 + 2x –> ಎರಡು (Binomial) ಮತ್ತು ಹಲವು (Polynomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ ಕೂಡ.

6y3 + 2xy + 1.5x  –> ಮೂರು (Trinomial) ಮತ್ತು ಹಲವು (Polynomial) ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯಾಗಿದೆ ಕೂಡ.

ಬರಿಗೆಯೆಣಿಕೆ ಸರಿಹೊಂದಿಕೆಯ ಬಗೆಗಳು (Types of algebraic equations):

ಬರಿಗೆಯೆಣಿಕೆಯ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಹಲವಾರು ಬಗೆಗಳನ್ನಾಗಿ ಗುರುತಿಸಬಹುದು, ಅವುಗಳನ್ನೆಲ್ಲಾ ಸೇರಿಸಿ ಉದಾಹರಣೆಗಳೊಂದಿಗೆ ಕೆಳಗೆ ಪಟ್ಟಿಯೊಂದನ್ನು ನೀಡಲಾಗಿದೆ.

ಮಟ್ಟ (Degree): ಯಾವುದೇ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಅದರ ಹಿರಿದಾದ ಏರ್ಮಡಿಯೊಂದಿಗೆ (Highest Exponent or Power)  ಅಳೆಯುತ್ತೇವೆ, ಈ ಅಳವನ್ನು ಮಟ್ಟ ಅಥವಾ ಸರಿಹೊಂದಿಕೆಯ ಮಟ್ಟ (Degree of an equation) ಎಂದು ಕರೆಯುತ್ತಾರೆ.

ಕೆಳಗಿನ ಪಟ್ಟಿಯಲ್ಲಿರುವ ಉದಾಹರಣೆಗಳಲ್ಲಿ ಮಟ್ಟವನ್ನು ಗುರುತಿಸುವ ಬಗೆಯನ್ನು ನೋಡಬಹದು.

ಯಾವುದೇ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಹಲವೇರ್ಮಡಿ(Polynomial) ಎಂದು ಕರೆಯಬೇಕಾದಲ್ಲಿ ಅದರ ಏರ್ಮಡಿಯ(Exponent) ಮಟ್ಟ 0, 1, 2,3 ಅಥವಾ ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಇಡಿಯಂಕೆ (whole number) ಆಗಿರಲೇಬೇಕು , ಏರ್ಮಡಿಯು ಸೊನ್ನೆಗಿಂತ ಕಮ್ಮಿ ಇದ್ದರೆ (Negative Number) ಅದು ಹಲವೇರ್ಮಡಿ ಎಂದೆನಿಸಿಕೊಳ್ಳುವುದಿಲ್ಲ. ಉದಾಹರಣೆಗಳೊಂದಿಗೆ ಬರಿಗೆಯೆಣಿಕೆಯ ಹಲವು ಬಗೆಗಳನ್ನು ನೋಡೋಣ ಈ ಕೆಳಕಂಡ ಪಟ್ಟಿಯಲ್ಲಿ ತಿಳಿಯೋಣ.

1. ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ (Polynomial Equation):

ಸರಿಹೊಂದಿಕೆಯ ಬಗೆ (Types of Equations) ಗುರುತಿಸುವಿಕೆ ಮಟ್ಟ (Degree) ಉದಾಹರಣೆ ಮತ್ತು ಹುರುಳು
1. ಹಲವೇರ್ಮಡಿ  ಸರಿಹೊಂದಿಕೆ
(Polynomial Equation)
P(x) = 0, ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಎಲ್ಲಾ ಸರಿಹೊಂದಿಕೆಗಳು. ಹಲಮಟ್ಟ
(Any Degree)
ಇಲ್ಲಿ ಹಲವೇರ್ಮಡಿ ಎಂದರೆ ಯಾವುದೇ ಏರ್ಮಡಿಯನ್ನು (Exponent) ಹೊಂದಿದೆ ಎಂದರ್ಥ, ಕೆಳಗಿನ ಉದಾಹರಣೆಗಳನ್ನು ನೋಡಿ.
1.1 ಒಂದೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ
(Linear Equations)
ax + b = 0, ಇಲ್ಲಿ a ≠ 0 1 2x + 3 = 0, ಇಲ್ಲಿ xನ ಹಿರಿದಾದ ಏರ್ಮಡಿ (Highest exponent) 1 ಆಗಿದೆ
1.2 ಎರಡೇರ್ಮಡಿ
(Quadratic Equations)
ax2 + bx + c = 0, ಇಲ್ಲಿ a ≠ 0, ಇಲ್ಲಿ a ≠ 0 2 x2 + 3x – 6 = 0, ಇಲ್ಲಿ xನ ಹಿರಿದಾದ ಏರ್ಮಡಿ (Highest exponent) 2 ಆಗಿದೆ
1.3 ಮೂರೇರ್ಮಡಿ
(Cubic Equations)
ax3 + bx2 + cx + d = 0, ಇಲ್ಲಿ a ≠ 0 3 4X3 + 5x2 – 7x +8 = 0, ಇಲ್ಲಿ xನ ಹಿರಿದಾದ ಏರ್ಮಡಿ (Highest exponent) 3 ಆಗಿದೆ
1.4 ನಾಲ್ಕೇರ್ಮಡಿ
(Quartic Equations)
ax4 + bx3 + cx2 + dx + e = 0, ಇಲ್ಲಿ a ≠ 0 4 7X4 – 3x3 + 4x2 – 2x +9 = 0, ಇಲ್ಲಿ xನ ಹಿರಿದಾದ ಏರ್ಮಡಿ (Highest exponent)
4 ಆಗಿದೆ
1.5 ಸರಿ-ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ

(Biquadratic Equations)

ax4 + bx2 + c = 0, ಇಲ್ಲಿ a ≠ 0, t = x2 ಎಂದು ಹೊಂದಿಸಿ
ಬರೆದಾಗ at2 + bt + c ಎಂದಾಗುತ್ತದೆ, ಇಲ್ಲಿ ನಮಗೆ ಎರಡೇರ್ಮಡಿ(Quadratic Equations) ಸರಿಹೊಂದಿಕೆ ಸಿಕ್ಕಿತು.
2 5x4 + 3x2 +7 = 0, ಇಲ್ಲಿ xನ ಏರ್ಮಡಿಗಳು 4 ಮತ್ತು 2 ಆಗಿದೆ, ಇಲ್ಲಿ ಯಾವುದೇ ಬೆಸವೆಣಿಕೆ ಏರ್ಮಡಿ (Odd number exponent) ಕಂಡುಬರುವದಿಲ್ಲ, ಇದನ್ನು ಚಿಕ್ಕದಾಗಿಸಿ ಬರೆದಾಗ  5t2 + 3t + 7 ನಲ್ಲಿ “t” ಯ ಹಿರಿದಾದ ಏರ್ಮಡಿ (Highest exponent) 2 ಆಗಿದೆ.

 

2. ಸುಳುವಾಗಿಸಬಲ್ಲ ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ (Rational Polynomial Equation):

ಸರಿಹೊಂದಿಕೆಯ ಬಗೆ (Types of Equations) ಗುರುತಿಸುವಿಕೆ ಮಟ್ಟ

(Degree)

ಉದಾಹರಣೆ ಮತ್ತು ಹುರುಳು
2. ಸುಳುವಾಗಿಸಬಲ್ಲ ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ (Rational Polynomial Equation) P(x)/Q(x) = 0, ಇಲ್ಲಿ P(x) ಮತ್ತು Q(x) ಹಲವೇರ್ಮಡಿ
ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ (Polynomial Equation)
ಹಲಮಟ್ಟ
(Any Degree)
6x3/(1+ x2 ) + 2x/(3+ X4) = 0 ಈ ರೀತಿಯ  ಸರಿಹೊಂದಿಕೆಯನ್ನು ಸುಳುವಾಗಿಸಿ ಬರೆಯಬಹುದಾಗಿದೆ,
ಸುಳುವಾಗಿಸಿದ ನಂತರ ಇವುಗಳು ಯಾವುದೇ ಏರ್ಮಡಿಗಳನ್ನು ಕೂಡ ಹೊಂದಿರಬಹುದು. ಇಲ್ಲಿ 6x3/(1+ x2 ) ಮತ್ತು 2x/(3+ X4) ಹಲವೇರ್ಮಡಿಯ ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ (Polynomial Equation).

3. ಸುಳುವಲ್ಲದ ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ (Irrational Polynomial Equation):

ಸರಿಹೊಂದಿಕೆಯ ಬಗೆ (Types of Equations) ಗುರುತಿಸುವಿಕೆ ಮಟ್ಟ (Degree) ಉದಾಹರಣೆ ಮತ್ತು ಹುರುಳು
3. ಸುಳುವಲ್ಲದ ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ
(Irrational Polynomial Equation)
p(x)/ (Q(x))1/n = 0, ಇಲ್ಲಿ P(x) ಮತ್ತು Q(x) ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ (Polynomial Equation), n ಎಂಬುದು ಹಲಮಡಿ ಬೇರಾಗಿದೆ(nth root). ಹಲಮಟ್ಟ
(Any Degree)
8x3/(1+ x2 ) + √(2x/ (9+ X8)) = 0,ಈ ರೀತಿಯ  ಸರಿಹೊಂದಿಕೆಯನ್ನು ಅಷ್ಟು ಸುಳುವಾಗಿ ಬರೆಯಲು
ಬರುವುದಿಲ್ಲ ಹಾಗು ಇವುಗಳು ಯಾವುದೇ ಏರ್ಮಡಿಗಳನ್ನು ಕೂಡ ಹೊಂದಿರಬಹುದು. ಇಲ್ಲಿ 8x3/(1+ x2 )
ಮತ್ತು √(2x/ (9+ X8))  ಹಲವೇರ್ಮಡಿಯ ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ (Polynomial Equation).

4. ಬರಿಗೆಯೆಣಿಕೆಮೀರಿದ ಸರಿಹೊಂದಿಕೆಗಳು (Transcendental Equations):

ಸರಿಹೊಂದಿಕೆಯ ಬಗೆ (Types of Equations) ಗುರುತಿಸುವಿಕೆ ಮಟ್ಟ (Degree) ಉದಾಹರಣೆ ಮತ್ತು ಹುರುಳು
4. ಬರಿಗೆಯೆಣಿಕೆಮೀರಿದ ಸರಿಹೊಂದಿಕೆಗಳು
( Transcendental Equations)
P(x) ಮತ್ತು Q(x) à ಹಲವೇರ್ಮಡಿಯ ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ
(Polynomial Equation) 1.ಏರ್ಮಡಿ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯ ಸರಿಹೊಂದಿಕೆ(Equation of exponential algebraic expressions):P(x)Q(x
2.ಇಳಿಮಡಿ(inverse exponentiation) ಅಥವಾ ಲಾಗರಿದಮಿಕ್ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯ ಸರಿಹೊಂದಿಕೆ(Equations of logarithmic Algebraic Expressions): log(P(x)) 3. ಮುಕ್ಕೋನದರಿಮೆ ಸರಿಹೊಂದಿಕೆ(Equation of Trigonometric algebraic expressions):Cos(P(x)), Sin(P(x)), tan(P(x))
ಹಲಮಟ್ಟ
(Any Degree)
1.ಏರ್ಮಡಿ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯ ಸರಿಹೊಂದಿಕೆ: (2+x)(1+x)
2.ಇಳಿಮಡಿ(inverse exponentiation)ಅಥವಾ ಲಾಗರಿದಮಿಕ್ ಬರಿಗೆಯೆಣಿಕೆ ಪದಕಂತೆಯ ಸರಿಹೊಂದಿಕೆ: log(3+x)
3.ಮುಕ್ಕೋನದರಿಮೆ ಸರಿಹೊಂದಿಕೆ: Cos(1+x), Sin(3+x), tan(4+x) ಮೇಲಿನ ಉದಾಹರಣೆಯಲ್ಲಿ 1+x, 2+x, 3+x, 4+x  ಗಳು ಒಂದೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳಾಗಿವೆ, ಉದಾಹರೆಣೆಗೆ ಯಾವುದೇ ಹಲವೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳಬಹುದು.

 ಉದಾಹರಣೆ1: ಮೇಲೆ ತಿಳಿಸಿರುವ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಗುರುತಿಸುವ ಎಲ್ಲಾ ಅಂಶಗಳನ್ನು ಗಮನದಲ್ಲಿಟ್ಟುಕೊಂಡು ಕೆಳಗೆ ಪಟ್ಟಿಯೊಂದನ್ನು ಉದಾಹರಣೆಯಾಗಿ ನೀಡಲಾಗಿದೆ.

Image7 Algebraic Expressions Examples Saved from PPT format PNG

ಬರಿಗೆಯೆಣಿಕೆ ಬಳಕೆಯ ಬಗೆಗಳು:

 ಕಲಿಕೆಯೇರ್ಪಾಡನ್ನು ಗಮನದಲ್ಲಿಟ್ಟುಕೊಂಡು ಬರಿಗೆಯೆಣಿಕೆ ಅಥವಾ ಬೀಜಗಣಿತವನ್ನು ಎರಡು ಭಾಗಗಳನ್ನಾಗಿ ಮಾಡಬಹುದು.

1. ಮೊದಲ ಹಂತದ ಬರಿಗೆಯೆಣಿಕೆ ಅಥವಾ ಸುಳುವಾದ ಬರಿಗೆಯೆಣಿಕೆ (Elementary Algebra)

ಸುಮಾರು ಏಳನೇ ತರಗತಿಯಿಂದ ಹತ್ತನೇ ತರಗತಿಯವರೆಗೆ ಶಾಲಾ ಮಕ್ಕಳಿಗೆ ಕಲಿಸಬಹುದಾದ ಬರಿಗೆಯೆಣಿಕೆ.

2. ಸುಳುವಲ್ಲದ ಬರಿಗೆಯೆಣಿಕೆ ಅಥವಾ ಮೇಲು ಹಂತದ ಬರಿಗೆಯೆಣಿಕೆ (Higher Level Algebra)

ಮೇಲು ಹಂತದ ಕಲಿಕೆಯಲ್ಲಿ ಕಲಿಯಬಹುದಾದ ಮತ್ತು ಹಲವು ಅರಿಮೆಗಳಲ್ಲಿ (Field of science) ಬಳಸಬಹುದಾದ ಬರಿಗೆಯೆಣಿಕೆ. ಎಣಿಕೆಯರಿಮೆ ಅಥವಾ ಗಣಿತದ ಹಲವು ಕವಲುಗಳಾದ ಗೆರೆಯರಿಮೆ (Geometry), ಅಂಕೆಯರಿಮೆ(Arithmetic), ಮಾರ್ಪಡುವಿಕೆ (Differentiation), ಕೂಡಿಕೆ (Integration), ಒಗ್ಗೂಡಿಕೆಯರಿಮೆ (Combinatorics), ಹಿಡಿತದ ಕಟ್ಟಳೆ (Control theory) ಹಾಗು ಇನ್ನಿತರ ಕವಲುಗಳಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಅರಿಮೆಯ ಕವಲುಗಳಾದ(Field of science) ಬಿಡಿ ಕಟ್ಟಲೆ (Quantum theory), ಬಿಡಿ ಕದಲರಿಮೆ(Quantum mechanics), ಕಾವರಿಮೆ (Thermodynamics), ಹೋಲು ಕಟ್ಟಲೆ (Relativity) ಹಾಗು ಇನ್ನಿತರ ಅರಿಮೆಯ ಕವಲುಗಳಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಗಣಿತದ ಬಳಕೆಯ ಮೇಲೆ ಬರಿಗೆಯೆಣಿಕೆ ಅಥವಾ ಬೀಜಗಣಿತವನ್ನು ಹಲವು ಬಗೆಗಳನ್ನಾಗಿ ಗುರುತಿಸಬಹುದು, ಉದಾಹರಣೆಗೆ ಕೆಳಕಂಡ ಬಗೆಗಳನ್ನು ನೋಡಬಹುದು.

1. ಸುಳುವಾದ ಬರಿಗೆಯೆಣಿಕೆ (Elementary Algebra):

ಶಾಲೆಗಳಲ್ಲಿ ಗಣಿತವನ್ನು ತಿಳಿಸುವ ಸಲುವಾಗಿ ಸುಳುವಾದ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

2. ಆಯವಿಲ್ಲದ ಬರಿಗೆಯೆಣಿಕೆ (Abstract algebra):

ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಗುಂಪರಿಮೆ (group theory), ಉಂಗುರ (Rings) , ನೆರಕೆ (Sets), ಅಣಿಮಣೆ(Matrix) ಮತ್ತು ಹಲವಾರು ಎಣಿಕೆಯರಿಮೆಯ ಬಗೆಗಳಲ್ಲಿ (Fields of mathematics) ಬಳಸಲಾಗುತ್ತದೆ.

3. ಒಮ್ಮಟ್ಟವಾದ ಬರಿಗೆಯೆಣಿಕೆ (Linear Algebra):

ಈ ಬಗೆಯ ಬರಿಗೆಯೆಣಿಕೆಯನ್ನು ಒಂದೆರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆ (Linear equation), ಅಣಿಮಣೆ (Matrix) ಮತ್ತು ತೂಗೆಡೆಗಳ (Vectors) ಕಲೆತವನ್ನು (Calculation) ಮಾಡಲು ಬಳಸಲಾಗುತ್ತದೆ.

4. ಕಂಪ್ಯೂಟರ್ ಬರಿಗೆಯೆಣಿಕೆ (Computer Algebra):

ಕಂಪ್ಯೂಟರ್ ತಂತ್ರಜ್ಞಾನದಲ್ಲಿಎಸಗುಬಗೆ (Algorithms) ಮತ್ತು ಹಮ್ಮುಗಾರಿಕೆಗಳಲ್ಲಿ (Programming)  ಬಳಸುವ ಬರಿಗೆಯೆಣಿಕೆಯ ಬಗೆಯನ್ನು ಕಂಪ್ಯೂಟರ್ ಬರಿಗೆಯೆಣಿಕೆ ಎಂದು ಹೇಳಬಹದು.

5) ಬರಿಗೆಯೆಣಿಕೆ ಗೆರೆಯರಿಮೆ (Algebraic Geometry):

ಬರಿಗೆಯೆಣಿಕೆ ಗೆರೆಯರಿಮೆಯು ಹಲವು ಬಗೆಯ ಆಕೃತಿಗಳನ್ನು ಅರಕೆಮಾಡಲು, ಗೆರೆಯರಿಮೆಯ ಸುಳುವಲ್ಲದ ತೊಡಕುಗಳನ್ನು (Complex Geometric problems) ಬಗೆಹರಿಸಲು ಬಳಸುವ ಬರಿಗೆಯೆಣಿಕೆಯ ಬಗೆಯಾಗಿದೆ

6). ನಂಟಿನ ಬರಿಗೆಯೆಣಿಕೆ (Relational Algebra):

ನಂಟಿನ ಬರಿಗೆಯೆಣಿಕೆ ಹೆಚ್ಚಾಗಿ ನಂಟಿನ ನೆರೆತಿಳಿಹದ (Relational Database) ಬಗ್ಗೆ ತಿಳಿಯಲು ಬಳಸಲಾಗುವ ಬಗೆಯಾಗಿದೆ.

ಇಲ್ಲಿ ಗುಂಪುಕಟ್ಟಳೆ (Group theory), ನೆರಕೆ(Sets), ನಂಟರಿಮೆ(Relation), ಕೇಳ್ವಿ ಎಣ್ಣುಕನುಡಿ (Query Language) ಗಳನ್ನು ಈ ಬಗೆಯ ಬರಿಗೆಯೆಣಿಕೆಯಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ.

ಬರಿಗೆಯೆಣಿಕೆಯ ಹಳಮೆ:

  • ಬ್ಯಾಬಿಲೋನಿಯನ್ನರು (Babylonians) ಬರಿಗೆಯಣಿಕೆಯ ಕಲೆತವನ್ನು(Calculation) ಮಾಡುತ್ತಿದ್ದರು, ಇದಕ್ಕೆ ಕುರುಹಾಗಿ 1800 B.C ಹೊತ್ತಿನ ಬರಿಗೆಯೆಣಿಕೆಯ ಬಳಕೆಮಾಡಿದ ಸ್ಟ್ರಾಸ್ಬರ್ಗ್ ಟ್ಯಾಬ್ಲೆಟ್ (Strassburg tablet Inscription) ಮತ್ತು ಲಿಂಪ್ಟನ್322 (Plimpton 322) ಎಂಬ ಮಣ್ಣುಗಟ್ಟಿ ಬರಹ (Clay Tablet Inscription) ಸಿಕ್ಕಿರುತ್ತದೆ.

Image8 ALG

  • ಬರ್ಲಿನ್ ಪ್ಯಾಪಿರಸ್ 6619 (ಈಗಿನ ಹೆಸರು) ಎಂಬ ಈಜಿಪ್ಟಿನ ನಡು ಅರಸೊತ್ತಿಗೆಯ(Middle Kingdom: 2055 B.C-1650 B.C) ಬರಹವು ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳ (Quadratic Equation) ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತದೆ.
  • 800 B.C ಹೊತ್ತಿನ ಎಣಿಕೆಯರಿಗ ಬೌದಾಯನನ ಸುಲಭ ಸೂತ್ರವು ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳ (Quadratic Equation) ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತದೆ.
  • 300 B.C ಹೊತ್ತಿನ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗ ಯೂಕ್ಲಿಡ್ ನ ಯೂಕ್ಲಿಡ್ ಅಡಕದಲ್ಲಿ (Euclids Elemets) ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳನ್ನು (Quadratic Equation) ಬಗೆಹರಿಸುವ ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತದೆ.
  • 100 B.C ಜಿಯುಜಾಂಗ್ ಸುವಾನ್ಶು (Jiuzhang suanshu) ಎಂಬ ಚೀನಿಯರ ಬರಹವು ಒಂದೇರ್ಮಡಿ (Linear), ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳ(Quadratic Equation) ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತದೆ.
  • 100 A.D ಹೊತ್ತಿನ ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾದ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗ(Mathematician) ಹೆರೋ(Hero/Heron) ಕಳೆತದೆಣಿಯ ಎರಡೇರ್ಮಡಿ ಸೆಲೆಯ (Square root of negative number) ಬಗ್ಗೆ ಅರಕೆ ಮಾಡಿದ್ದನು.
  • 200 A.D ಹೊತ್ತಿನ ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾದ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗ ಡಯೋಪಾಂಟಸ್ (Diophantus) ಬರಿಗೆಯೆಣಿಕೆ ಸರಿಹೊಂದಿಕೆ (Algebraic Equation) ಮತ್ತು ಎಣಿಕಟ್ಟಳೆ (Number Theory) ಬಗ್ಗೆ ತನ್ನ ಪುಸ್ತಕ ಅರಿತ್ಮೆಟಿಕಾದಲ್ಲಿ (Arithmetica) ತಿಳಿಸಿದ್ದನು.
  • 500 A.D ಹೊತ್ತಿನ ಉಜ್ಜಯಿನಿಯ ಎಣಿಕೆಯರಿಗ ಬ್ರಹ್ಮಗುಪ್ತನು ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳನ್ನು (Quadratic Equation) ಬಗೆಹರಿಸುವ ಬಗ್ಗೆ ತಿಳಿಸಿದ್ದನು.
  • 800 A.D ಹೊತ್ತಿನ ಪರ್ಶಿಯಾದ ಎಣಿಕೆಯರಿಗ ಅಲ್- ಕ್ವಾರಿಜ್ಮಿ (Al-Khwarizmi) ಒಂದೇರ್ಮಡಿ (Linear), ಎರಡೇರ್ಮಡಿ ಸರಿಹೊಂದಿಕೆಗಳನ್ನು (Quadratic Equation) ಬಗೆಹರಿಸುವ ಬಗ್ಗೆ ತಿಳಿಸುತ್ತಾನೆ. ಅಷ್ಟೇ ಅಲ್ಲದೆ ಬರಿಗೆಯೆಣಿಕೆಯ ಹಲವಾರು ಇಟ್ಟಳ/ರಚನೆ (Fundamental of algebraic structure) ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತಾನೆ. ಅವನನ್ನು ಬರಿಗೆಯೆಣಿಕೆಯರಿಮೆಯ ತಂದೆ (Father of Algebra) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

Image9 ALG (1)

  • ನಿಮಗೆ ಗೊತ್ತೇ?, ಅಲ್ಜಿಬ್ರಾ (Algebra) ಎಂಬ ಪದವನ್ನು ಅಲ್- ಕ್ವಾರಿಜ್ಮಿ ಯ ಎಣಿಕೆಯರಿಮೆ ಪುಸ್ತಕ ಅಲ್-ಕಿತಾಬ್ ಅಲ್-ಜಬರ್ ವಾ-ಅಲ್- ಮುಕಾಬಲ (Al-Kitab al-Jabr wa-l-Muqabala)ದಿಂದ ಪಡೆದುಕೊಳ್ಳಲಾಗಿದೆ!. ಅಲ್ಜಿಬ್ರಾಕ್ಕೆ ಮೊದಲಿಗಿದ್ದ ಹೆಸರು ಅಲ್-ಜಾಬ್ರ್ (Al-Jabr), ನಂತರದಲ್ಲಿ ಯೂರೋಪಿನ ಎಣಿಕೆಯರಿಗರು ಅಲ್ಜಿಬ್ರಾ ಎಂದು ಕರೆದರು. ‘ತುಂಡಾದ ತುಣುಕುಗಳನ್ನು ಮರು ಸೇರಿಸುವುದು’ ಎಂಬುವುದು ಅಲ್-ಜಾಬ್ರ್ ಪದದ ಹುರುಳು.
  • 1000 A.D ಹೊತ್ತಿನ ಪರ್ಶಿಯಾದ ಎಣಿಕೆಯರಿಗ ಅಬು ಸಹಲ್ ಅಲ್-ಕುಹಿ (Abū Sahl al-Qūhī) ಹಲವೇರ್ಮಡಿಯ ಸರಿಹೊಂದಿಕೆಯನ್ನು (Polynomial Equation) ಬಗೆಹರಿಸುವ ಬಗೆಯನ್ನು ತಿಳಿಸುತ್ತಾನೆ.
  • 1200 A.D ಹೊತ್ತಿನ ಕರ್ನಾಟಕದ ವಿಜಯಪುರದ ಎಣಿಕೆಯರಿಗ ಭಾಸ್ಕರಾಚಾರ್ಯನು ತನ್ನ ಪುಸ್ತಕ ಬೀಜಗಣಿತದಲ್ಲಿ ಎರಡು ರೀತಿಯ ಎರಡೇರ್ಮಡಿ ಸೆಲೆಯನ್ನು (Two types of square root) ಕಂಡುಹಿಡಿಯುವ ಬಗೆಯನ್ನು ತಿಳಿಸುತ್ತಾನೆ.
  • 1200 A.D ಹೊತ್ತಿನ ಇಟಲಿಯ ಎಣಿಕೆಯರಿಗ ಲಿಯೊನಾರ್ಡೊ ಪಿಬೊನಾಕಿ (Leonardo Fibonacci) ಹಲವಾರು ಬರಿಗೆಯೆಣಿಕೆಯ ಸರಿಹೊಂದಿಕೆಗಳನ್ನು ತನ್ನದೇಯಾದ ರೀತಿಯಲ್ಲಿ ತಿಳಿಸುತ್ತಾನೆ.
  • 1540-1603 A.D ಹೊತ್ತಿನ ಪ್ರಾನ್ಸಿನ ಎಣಿಕೆಯರಿಗ ಪ್ರಾನ್ಸಿಸ್ಕಸ್ ವಿಯೆಸ್ಟಾ (Franciscus Vieta) ಎರ್ಮಡಿಗಳನ್ನು (Exponent) ಗುರುತಿಸಲು ಹಲವಾರು ಗುರುತುಗಳನ್ನು (Symbols) ಬಳಸುತ್ತಾನೆ.
  • 1596 -1650 A.D ಹೊತ್ತಿನ ಪ್ರಾನ್ಸಿನ ಎಣಿಕೆಯರಿಗ ರೇನ್ ಡೆಸ್ಕಾರ್ಟೆಸ್ (René Descartes) ಅರಿವುಮೀರಿದೆಣಿಯ (Imaginary Number i = √-1) ಬಗ್ಗೆ ಮೊದಲಬಾರಿಗೆ ದೊಡ್ಡಮಟ್ಟದ ಹಲವು ಅರಕೆಗಳನ್ನು ಮಾಡುತ್ತಾನೆ.
  • 1777-1855 A.D ಹೊತ್ತಿನ ಜರ್ಮನಿಯ ಎಣಿಕೆಯರಿಗ ಕಾರ್ಲ್ ಪ್ರೀಡ್ರಿಚ್ ಗಾಸ್ (Carl Friedrich Gauss) ಬರಿಗೆಯೆಣಿಕೆಯ ಅಡಿಪಾಯದ ಕಟ್ಟಳೆ (Fundamental theorem of algebra)ಯ ಬಗ್ಗೆ ಅರಕೆಮಾಡುತ್ತಾನೆ.
  • 20 ನೂರರ ಹೊತ್ತಿನಲ್ಲಿ ಬರಿಗೆಯೆಣಿಕೆಯ ಮೇಲೆ ಹಲವಾರು ಅರಕೆಗಳಾಗಿವೆ ಮತ್ತು ನಡೆಯುತ್ತಲೇ ಇವೆ!.

(ಸೆಲೆಗಳು: study.comtutorvista.comvitutor.commath-only-math.combyjus.comen.wikipedia.org, 8. 7th standard Mathematics text book, Karnataka state syllabus, tutorial.math.lamar.edumath.stackexchange.com)

 

 

ಗೀಳು-ತುಡಿತದ ಬೇನೆ

ನಮ್ಮ ದಿನನಿತ್ಯದ ಬದುಕಿನಲ್ಲಿ ನಾವು ಒಂದಲ್ಲ ಒಂದು ಸಲ ತಲ್ಲಣಕ್ಕೆ ಒಳಗಾಗುತ್ತೇವೆ. ಅದರ ಅನುಬವ ನಮ್ಮೆಲ್ಲರಿಗೂ ಆಗಿಯೇ ಇರುತ್ತದೆ. ಆದರೆ ಆ ತಲ್ಲಣದ ಯೋಚನೆಗಳು ಎಲ್ಲೆ ಮೀರಿ ನಮ್ಮಲ್ಲಿ ಗೂಡುಕಟ್ಟಿಕೊಂಡಿದ್ದರೆ, ಆ ಯೋಚನೆಗಳು ಸ್ವಲ್ಪ ಹೊತ್ತು ಮನಸ್ಸಿನಲ್ಲಿ ಇದ್ದು ಮೆಲ್ಲಗೆ ಕರಗಿ ಹೋಗದೆ ಹೆಚ್ಚು ಹೊತ್ತು ಮನುಶ್ಯ ಅದೇ ಗುಂಗಿನಲ್ಲಿ ಇದ್ದರೆ ಆ ತಲ್ಲಣ ಸಾದಾರಣವಾದುದಲ್ಲ ಎಂದು ಒಪ್ಪಲೇಬೇಕಾಗುತ್ತದೆ. ಅಂತಹ ಮನಸ್ಸಿನ ಪಾಡನ್ನು ಒಂದು ಬೇನೆ ಎಂದೇ ತೀರ್ಮಾನಿಸಬೇಕಾಗುತ್ತದೆ. ಈ ಬೇನೆ ಹಲವು ಬಗೆಗಳಲ್ಲಿ ಕಂಡುಬರುತ್ತವೆ. ಹಾಗಾಗಿ ಇವೆಲ್ಲ ಬೇನೆಗಳನ್ನು ತಲ್ಲಣದ ನಂಟಿನ ಬೇನೆಗಳು (Anxiety disorders) ಎಂಬ ಗುರುತಿನಡಿಯಲ್ಲಿ ಗುಂಪಿಸಬಹುದು.

anxiety_disorder

ಈ ತಲ್ಲಣ ಅನ್ನುವಂತಹದ್ದು ನಮಗೆಲ್ಲರಿಗೂ ಆಗುವಂತಹದ್ದು. ಹಾಗಿದ್ದಲ್ಲಿ ಈ ತಲ್ಲಣ ಎಶ್ಟರಮಟ್ಟಿಗೆ ಹೆಚ್ಚಿದ್ದಲ್ಲಿ ಅದನ್ನು ಬೇನೆ ಎಂದು ಗುರುತಿಸಬಹುದು ಎಂಬ ಪ್ರಶ್ನೆ ನಮ್ಮಲ್ಲಿ ಮೂಡುತ್ತದೆ. ಸಾಮಾನ್ಯವಾದ ತಲ್ಲಣ ಇಲ್ಲವೇ ಬೇನೆಯ ಕುರುಹುಗಳಿರುವ ತಲ್ಲಣ ಎಂದು ನಿಕ್ಕಿಯಾಗಿ ಬೇರ್ಪಡಿಸುವುದು ಹೇಗೆ ? ಇದು ಸ್ವಲ್ಪ ಕಶ್ಟವೇ.

ಸಾಮಾನ್ಯ ನಡವಳಿಕೆ ಮತ್ತು ಬೇನೆಯ ನಡುವೆ ತೆಳುವಾದ ಗೆರೆಯಿದೆ ಎನ್ನಬಹುದು. ಇಶ್ಟಕ್ಕೂ ಸಾಮಾನ್ಯ ನಡವಳಿಕೆ ಎನ್ನುವುದನ್ನು ಇಂತಹದ್ದೇ ಎಂದು ಗೊತ್ತುಪಡಿಸುವುದು ಸುಲಬವಲ್ಲ. ಇದಕ್ಕೆ ಒಂದು ಉದಾಹರಣೆ ಕೊಡಬಹುದು…

ಒಬ್ಬ ಹುಡುಗಿ ಮನೆ ಮುಂದೆ ರಂಗೋಲಿ ಹಾಕುತ್ತಿದ್ದಾಳೆ ಎಂದುಕೊಳ್ಳೋಣ. ರಂಗೋಲಿಯಲ್ಲಿ ಏನೋ ಸಣ್ಣ ತಪ್ಪಾಗಿರುವುದನ್ನು ಆಕೆ ಅದನ್ನು ಬಿಡಿಸಿದ ಮೇಲೆ ಗಮನಿಸುತ್ತಾಳೆ. ಆದರೆ ಆ ತಪ್ಪನ್ನು ಮನಸ್ಸಿಗೆ ಹಚ್ಚಿಕೊಳ್ಳದೆ ಮುಂದಿನ ಸಲ ಚೆನ್ನಾಗಿ ಬಿಡಿಸೋಣ ಬಿಡು ಎಂದು ಆ ಹುಡುಗಿ ಅಂದುಕೊಳ್ಳಬಹುದು. ಇನ್ನೊಬ್ಬ ಹುಡುಗಿಗೆ ಅಂತಹ ತಪ್ಪು ಎಸಗಿದೆನಲ್ಲಾ ಎಂದು ಮನಸ್ಸಿನಲ್ಲಿ ಕೊಂಚ ಹೊತ್ತು ಕಿರಿಕಿರಿಯಾಗಬಹುದು. ಮೂರನೆಯ ಹುಡುಗಿಗೆ ಆಗಿರುವ ತಪ್ಪನ್ನು ಸರಿಪಡಿಸಲೇಬೇಕು ಎಂದೆನ್ನಿಸಿ ನೀರಿನಿಂದ ರಂಗೋಲಿಯನ್ನು ತೊಳೆದು, ಮತ್ತೆ ಬಿಡಿಸಲು ಮುಂದಾಗಬಹುದು. ಮತ್ತೊಬ್ಬ ಹುಡುಗಿಗೆ ಮನಸ್ಸಿನಲ್ಲಿ ಕಸಿವಿಸಿ ಹೆಚ್ಚಾಗಿ ರಂಗೋಲಿಯಲ್ಲಿನ ತಪ್ಪುಗಳನ್ನು ಮತ್ತೆ ಮತ್ತೆ ಸರಿಪಡಿಸಲು ಪ್ರಯತ್ನಿಸಿ ಆ ಕೆಲಸದಲ್ಲೇ ಹೆಚ್ಚು ಹೊತ್ತು ತೊಡಗಿಸಿಕೊಳ್ಳುವಂತಾಗಬಹುದು. ಈಗ ಈ ಹುಡುಗಿಯರಲ್ಲಿ ಸರಿಯಾದ ನಡವಳಿಕೆ ಮತ್ತು ತಪ್ಪಾದ ನಡವಳಿಕೆ ಎಂದು ಬೊಟ್ಟು ಮಾಡುವುದು ಹೇಗೆ ?

ನಮ್ಮ ಅನಿಸಿಕೆಗಳು ಮತ್ತು ನಡವಳಿಕೆಗಳನ್ನು ತಪ್ಪು-ಸರಿ ಎಂದು ಗುಂಪಿಸುವುದಕ್ಕಿಂತ ಅವುಗಳಿಂದಾಗುವ ತೊಡಕಿನ ಅಂಶದ ಮೇಲೆ ಮಾನಸಿಕ ಬೇನೆಯರಿಮೆ ಒತ್ತು ನೀಡುತ್ತದೆ. ಮೇಲೆ ಕೊಟ್ಟ ಉದಾಹರಣೆಯ ಹಾಗೆ ನಮ್ಮ ಮನಸ್ಸಿನಲ್ಲಿ ತಲ್ಲಣ, ಕಸಿವಿಸಿ ಇವು ಹೆಚ್ಚಾಗಿ, ದಿನನಿತ್ಯದ ಕೆಲಸಗಳನ್ನು ಮಾಡಲು ತೊಂದರೆಯೆನಿಸುತ್ತಿದ್ದರೆ, ದಿನದಲ್ಲಿ ಕೆಲ ನಿಮಿಶ ಇಲ್ಲವೇ ಗಂಟೆಗಳ ಹೊತ್ತು ಅದೇ ವಿಶಯ ಮನಸ್ಸಿನಲ್ಲಿ ಸುಳಿದಾಡುತ್ತ ಒದ್ದಾಡುವಂತಾದರೆ ಅದನ್ನು ಬೇನೆ ಎಂದು ಗುರುತಿಸಬಹುದು.

ಗೀಳು – ತುಡಿತದ ಬೇನೆ

ನಮ್ಮ ಮಯ್ಯಿ ಹಾಗೂ ಮನಸ್ಸುಗಳನ್ನು ಕಾಡುವ ಬೇನೆಗಳು ಹಲವಾರಿವೆ. ಮಯ್ಯ ಮೇಲಾಗುವ ಬೇನೆಗಳು ಕಣ್ಣಿಗೆ ಕಾಣುತ್ತವೆ, ಆದರೆ ನಮ್ಮ ಮನಸ್ಸು, ನಮ್ಮ ಬಗೆತಗಳಲ್ಲಿ ಆಗುವ ಒತ್ತಡ, ಹೊಯ್ದಾಟ ಮತ್ತು ಅದರಿಂದುಂಟಾಗುವ ಬೇನೆಗಳು ಸುಲಬಕ್ಕೆ ನಮಗೆ ಕಾಣಸಿಗವು. ನಮ್ಮ ಮನಸ್ಸನ್ನು ಕಾಡುವ ಬೇನೆಗಳಲ್ಲಿ ತಲ್ಲಣದ ನಂಟಿನ ಬೇನೆಗಳಲ್ಲೊಂದಾದ  ಗೀಳು-ತುಡಿತದ ಬೇನೆ (Obsessive-Compulsive Disorder) ಒಂದು ಮುಕ್ಯವಾದ ಬೇನೆಯಾಗಿರುತ್ತದೆ.

ಏನಿದು ಗೀಳು-ತುಡಿತದ ಬೇನೆ ? 

ಈ ಬೇನೆಯ ಹೆಸರಿನಲ್ಲೇ ಇದರ ವಿಶೇಶತೆ ಎದ್ದು ಕಾಣಿಸುತ್ತದೆ. ಈ ಬೇನೆ ಇರುವವರನ್ನು ಎರಡು ಬಗೆಯ ತೊಂದರೆಗಳು ಗೋಳಾಡಿಸುತ್ತವೆ. ಮೊದಲನೆಯದಾಗಿ ಗೀಳು – ಅಂದರೆ ಮತ್ತೆ ಮತ್ತೆ ಎಡೆಬಿಡದೆ ಮರುಕಳಿಸುವ ಯೋಚನೆಗಳು, ಮನಸ್ಸಿನಲ್ಲೇ ಮೂಡಿಸಿಕೊಳ್ಳುವ ನೋಟಗಳು ಮತ್ತು ಇದರಿಂದ ಉಂಟಾಗುವ ಕಳವಳ.

ಈ ಗೀಳಿನ ಬಾವನೆಗಳು ಹಲವು ಬಗೆಯವಾಗಿರುತ್ತವೆ. ಉದಾಹರಣೆಗೆ, 1) ರೋಗಿಗೆ ಸುಮ್ಮನೆ ತಂತಾನೇ ಮಯ್ಯಿ ಕೊಳಕಾಗುತ್ತದೆ, ಸೋಂಕು ತಗಲುತ್ತದೆ ಅನ್ನುವ ದಿಗಿಲು ಉಂಟಾಗುವುದು. 2) ಹೆಣ್ಣು-ಗಂಡಿನ ಕೂಡುವಿಕೆ, ದರ್ಮ ಮುಂತಾದ ವಿಶಯಗಳಲ್ಲಿ ಬೇಕಿಲ್ಲದ ಮಡಿವಂತಿಕೆ ಅತವಾ ಇದರ ಕುರಿತಾಗಿ ತನ್ನ ಮನಸ್ಸಿನಲ್ಲಿ ತಾನೇ ಹಾಕಿಕೊಳ್ಳುವ ಕಟ್ಟುಪಾಡುಗಳು 3) ತನ್ನ ಇಲ್ಲವೇ ಬೇರೆಯವರ ಬಗ್ಗೆ ಸಿಟ್ಟಿನಿಂದ ಕೂಡಿದ ಆಲೋಚನೆಗಳು.

ಎರಡನೆಯದಾಗಿ ತುಡಿತ– ಅಂದರೆ ಮನಸ್ಸಿನಲ್ಲಿ ಬರುತ್ತಿರುವ ಗೀಳಿನ ಯೋಚನೆಗಳ ಕಾರಣದಿಂದ ಉಂಟಾಗುವ, ಏನನ್ನೋ ಮಾಡಲೇಬೇಕು ಎನ್ನುವ ತುಡಿತ. ಈ ತುಡಿತಗಳ ಬೇರು ಇರುವದು ಗೀಳಿನ ಆಲೋಚನೆಗಳಲ್ಲಿ ಎಂದಾಯಿತು. ಈ ತುಡಿತಗಳೂ ಹಲ ಬಗೆಯವು.

ಉದಾಹರಣೆಗೆ, 1) ಮತ್ತೆ ಮತ್ತೆ ಏನನ್ನಾದರೂ ಚೊಕ್ಕಗೊಳಿಸುವುದು, ಇಲ್ಲವೇ ಮತ್ತೆ ಮತ್ತೆ ಕಯ್ತೊಳೆದುಕೊಳ್ಳುವುದು. 2) ವಸ್ತುಗಳನ್ನು ಒಂದು ತನಗೆ ಹಿಡಿಸಿದ ರೀತಿಯಲ್ಲಿಯೇ ಓರಣವಾಗಿಕೊಳ್ಳುವ ಹಂಬಲ ಮತ್ತು ಆ ಪ್ರಕಾರದಲ್ಲಿಯೇ ಜೋಡಿಸಿಟ್ಟುಕೊಳ್ಳುವುದು. 3) ಒಮ್ಮೆ ಮಾಡಿದ ಕೆಲಸ ಸರಿಯಾಗಿ ನಡೆದಿದೆಯೋ ಇಲ್ಲವೋ ಎಂದು ಮತ್ತೆ ಮತ್ತೆ ಗಮನಿಸುವುದು, ಒರೆಹಚ್ಚುವುದು – ಉದಾಹರಣೆಗೆ, ಬಾಗಿಲ ಚಿಲಕ ಹಾಕಿದ್ದೇನೋ ಇಲ್ಲವೋ ಎಂದು ತಿರುಗಿ ತಿರುಗಿ ಕಾತರಿಪಡಿಸಿಕೊಳ್ಳುವುದು.

ಈ ಎಲ್ಲಾ ಯೋಚನೆಗಳು ನಮ್ಮೆಲ್ಲರಲ್ಲಿಯೂ ಇರುತ್ತವಾದರೂ, ಗೀಳು-ತುಡಿತದ ಬೇನೆ ಇರುವವರಲ್ಲಿ ಇದು ಎಲ್ಲೆ ಮೀರಿರುತ್ತದೆ. ತಮ್ಮಲ್ಲಿ ಉಂಟಾಗುವ ಈ ಗೀಳು ಬಾವನೆಗಳನ್ನು, ಹಾಗೂ ಆ ಗೀಳಿನಿಂದ ಮೂಡುವ ನಡವಳಿಕೆಗಳನ್ನು ರೋಗಿಗಳು ತಮ್ಮ ಹಿಡಿತದಲ್ಲಿಟ್ಟುಕೊಳ್ಳಲಾರರು. ಈ ಗೀಳು ಅವರಲ್ಲಿ ತನ್ನಶ್ಟಕ್ಕೆ ತಾನೇ ಹೊರಹೊಮ್ಮುತ್ತಿರುತ್ತದೆ. ದಿನಕ್ಕೆ ಒಂದಶ್ಟು ಹೊತ್ತು ಅವರು ಈ ಬೇನೆಯಿಂದ ತೊಂದರೆಪಡಬೇಕಾಗುತ್ತದೆ.

ಕಾರಣಗಳು

ಸುಮಾರು 300 ವರ್ಶಗಳಿಂದ ಗೀಳು-ತುಡಿತದ ಬೇನೆಯ ಲಕ್ಶಣಗಳು ನಮಗೆ ತಿಳಿದಿವೆ. ಈ ಬೇನೆಯ ಒಂದು ಕುರುಹಾದ ದೇವರನ್ನು ಹೀಗಳೆಯುವ ಯೋಚನೆಗಳನ್ನು 17ನೆಯ ಶತಮಾನದ ಯೂರೋಪಿನಲ್ಲಿ ಸೈತಾನನ ಕಾಟ ಎಂದು ನಂಬಿದ್ದರು. ಈ ಬೇನೆಯ ಮುಕ್ಯ ಲಕ್ಶಣಗಳಾದ ಅನುಮಾನ ಮತ್ತು ತೀರ್ಮಾನ ತೆಗೆದುಕೊಳ್ಳುವ ವಿಶಯದಲ್ಲಿನ ಹಿಂಜರಿತವನ್ನು ಪ್ರೆಂಚ್ ಅರಿಗರು ಗುರುತಿಸಿದ್ದರು. ಅನುಮಾನದ ಹುಚ್ಚುತನ ಅಂತಲೇ ಅವರು ಇದನ್ನು ಕರೆದಿದ್ದರು.

ಆಸ್ಟ್ರಿಯನ್ ಅರಿಗ ಸಿಗ್ಮಂಡ್ ಪ್ರಾಯ್ಡ್ ನ ಮನಸ್ಸಿನ ಬಗೆಯರಿಕೆ ಚಳಕಗಳು (Psychoanalysis techniques) 20ನೆಯ ಶತಮಾನದಲ್ಲಿ ಹೆಚ್ಚು ಮಂದಿಮೆಚ್ಚುಗೆ ಗಳಿಸಿದ್ದವು. ಪ್ರಾಯ್ಡ್ ನ ಮನಸ್ಸಿನ ಬಗೆಯರಿಕೆ ಸಿದ್ದಾಂತಗಳ ಪ್ರಕಾರ, ನಮ್ಮ ಬೆಳವಣಿಗೆಯ ಹಂತದಲ್ಲಿನ ಬಗೆಹರಿಯದ ಮಾನಸಿಕ ತೊಳಲಾಟಗಳಿಗೆ ಪ್ರತಿಕ್ರಿಯೆಯಾಗಿ ಈ ಗೀಳು ಮತ್ತು ತುಡಿತಗಳು ಹೊರಹೊಮ್ಮುತ್ತವೆ. ಈ ಸಿದ್ದಾಂತ ರೋಗಿಯ ಗೀಳಿನ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುತ್ತದೆಯಾದರೂ, ಈ ಬೇನೆಯ ತಳಮಟ್ಟದ ಕಾರಣಗಳ ಬಗ್ಗೆ ಬೆಳಕು ಚೆಲ್ಲುವುದಿಲ್ಲ. ಮನಸ್ಸಿನ ಬಗೆಯರಿಕೆ ಸಿದ್ಧಾಂತಗಳು ಇಪ್ಪತ್ತನೆಯ ಶತಮಾನದ ಕೊನೆಯಲ್ಲಿ ತೂಕ ಕಳೆದುಕೊಂಡವು.

ಸೆರೋಟೋನಿನ್ ನಮ್ಮ ಮಿದುಳಿನಲ್ಲಿ ಒಂದು ನರಸೂಲುಗೂಡಿನಿಂದ ಮತ್ತೊಂದಕ್ಕೆ ಸನ್ನೆಗಳನ್ನು ಸಾಗಿಸುವ ನರಸನ್ನೆಒಯ್ಯುಕ (Neurotransmitter). ನಮ್ಮ ಮಯ್ಯಲ್ಲಿ ನಿದ್ದೆ, ಹಸಿವು, ಮುಂತಾದವು ಸರಿಯಾಗಿ ನಡೆಯುವಲ್ಲಿ ಸೆರೋಟೋನಿನ್ ಪಾತ್ರ ಮುಕ್ಯವಾದುದು. ಮಿದುಳಿನಲ್ಲಿ ಸೆರೋಟೋನಿನ್ ಮಟ್ಟ ಏರುಪೇರಾಗುವುದಕ್ಕೂ ಗೀಳು-ತುಡಿತದ ಬೇನೆಗೂ ನಂಟಿರುವುದನ್ನು ಅರಿಗರು ಕಂಡುಕೊಂಡಿದ್ದಾರೆ. ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಇನ್ನೂ ಹೆಚ್ಚಿನ ಅರಕೆಗಳು ನಡೆಯಬೇಕಿವೆ, ನಡೆಯುತ್ತಲಿವೆ. ಈ ಬೇನೆ ಒಂದು ತಲೆಮಾರಿನಿಂದ ಇನ್ನೊಂದು ತಲೆಮಾರಿಗೆ ಪೀಳಿಗಳ ಮೂಲಕ ಹರಡುವ ಸಾದ್ಯತೆಗಳಿವೆ. hSERT ಎನ್ನುವ ಪೀಳಿಯ (Gene) ಮಾರ್ಪಾಟು ಈ ಬೇನೆಗೆ ಕಾರಣವಾಗಬಲ್ಲುದಾಗಿದ್ದು, ಹುಟ್ಟುವ ಮಕ್ಕಳಿಗೆ ಈ ಪೀಳಿ ಸಾಗಿಸಲ್ಪಡುತ್ತದೆ.

ನಮ್ಮ ಸುತ್ತಲಿನ ಪರಿಸರ, ನಮ್ಮ ಸುತ್ತಲಿನ ಆಗುಹೋಗುಗಳು ಮತ್ತು ಅನುಬವಗಳಿಂದ ನಾವು ನಮ್ಮಲ್ಲಿ ಅನಿಸಿಕೆಗಳು ಹಾಗೂ ತಿಳುವಳಿಕೆಗಳನ್ನು ರೂಪಿಸಿಕೊಳ್ಳುವ ಬಗೆ(Cognition) , ಪೀಳಿಯ ನಂಟಿನ ಕಾರಣಗಳು, ಇವೆಲ್ಲವೂ ಗೀಳು-ತುಡಿತದ ಬೇನೆಯ ಹುಟ್ಟು ಮತ್ತು ಬೆಳವಣಿಗೆಗೆ ಕಾರಣವಾಗಬಲ್ಲವು.

ಚಿಕಿತ್ಸೆ 

ಮಾನಸಿಕ ವೈದ್ಯರು (Psychiatrist) ನೀಡುವ ಮದ್ದಿನ ಜೊತೆಗೆ, ನುರಿತ ಮಾನಸಿಕ ತಜ್ನರು (Psychologist) ನೀಡುವ ಚಿಕಿತ್ಸೆಗಳೂ ಈ ಬೇನೆಯನ್ನು ಇಡಿಯಾಗಿ ಹೋಗಲಾಡಿಸದಿದ್ದರೂ ಒಂದು ಮಟ್ಟಿಗೆ ಹತೋಟಿಯಲ್ಲಿಡಲು ನೆರವಾಗುತ್ತವೆ.

ಅರಿವಣಿಗೊಳ್ಳಿಕೆ-ನಡೆವಳಿಕೆಯ ಚಿಕಿತ್ಸೆ (Cognitive behavioral therapy)  ಮತ್ತು ಮಯ್ಯೊಡ್ಡಿಕೆ/ಪ್ರತಿಕ್ರಿಯೆ ತಡೆಗಟ್ಟುವಿಕೆ (Exposure/ Response prevention) ಚಿಕಿತ್ಸೆಯ ವಿದಾನಗಳನ್ನು ಮಾನಸಿಕ ತಜ್ನರು ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಬಳಸುತ್ತಾರೆ. ಈ ಎರಡೂ ಚಿಕಿತ್ಸೆಯ ವಿದಾನಗಳು ಬೇನೆಯನ್ನು ಹತೋಟಿಯಲ್ಲಿಡುವಲ್ಲಿ ತಜ್ನರ ನಂಬಿಕೆಯನ್ನು ಗಳಿಸಿವೆ. ಇವುಗಳ ಬಗ್ಗೆ ಮುಂದಿನ ಬರಹಗಳಲ್ಲಿ ಹೆಚ್ಚಾಗಿ ತಿಳಿದುಕೊಳ್ಳೋಣ.

(ಚಿತ್ರ ಸೆಲೆ: https://www.quora.com)

 (ಈ ಬರಹವನ್ನು ಹೊಸಬರಹದಲ್ಲಿ ಬರೆಯಲಾಗಿದೆ)

ನಾಲ್ಬದಿಗಳು (Quadrilaterals) ಭಾಗ-2

ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ನಾಲ್ಬದಿಗಳು ಎಂದರೇನು, ಅವುಗಳ ಹಲವು ಬಗೆಗಗಳು ಮತ್ತು ಅವುಗಳ ಹಿರಿಮೆಗಳನ್ನು ತಿಳಿದುಕೊಂಡೆವು. ಹೀಗೆ ಮುಂದುವರೆದು ಈ ಬರಹದಲ್ಲಿ ನಾಲ್ಬದಿಯ ಸುತ್ತಳತೆ (Perimeter), ನಾಲ್ಬದಿಯ ಹರವು (Area), ನಾಲ್ಬದಿಯ ಮೂಲೆಗಳನ್ನು(Angles) ಕಂಡುಕೊಳ್ಳುವ ಬಗೆಯನ್ನು ತಿಳಿಯೋಣ ಹಾಗು ನಾಲ್ಬದಿಯ ಹಳಮೆಯನ್ನು (History of Quadrilaterals) ತಿಳಿಯೋಣ ಬನ್ನಿ.

ನಾಲ್ಬದಿಯ ನಾಲ್ಬದಿಯ ಸುತ್ತಳತೆ, ಮೂಲೆ, ಹರವುಗಳನ್ನು ತಿಳಿಯಲು ಈ ಕೆಳಗಿನ ಗುರುತುಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳಲಾಗಿದೆ.

Picture21. ನಾಲ್ಬದಿಯ ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯುವ ಬಗೆ (Perimeter of the Quadrilaterals):

ಯಾವುದೇ ನಾಲ್ಬದಿಯ ಸುತ್ತಳತೆಯನ್ನು ಸುಲಭವಾಗಿ ಕಂಡುಹಿಡಿಯಬಹುದು, ಯಾವುದೇ ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ನಾಲ್ಕು ಬದಿಗಳ ಒಟ್ಟು ಉದ್ದವು ಅದರ ಸುತ್ತಳತೆಯಾಗಿರುತ್ತದೆ.

Image1 QuP2

ಮೇಲಿನ ಒಂದು ನಾಲ್ಬದಿಯನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ, ಆದರ ಬದಿಗಳು AD, DC, CB ಮತ್ತು BA ಆಗಿವೆ ಹಾಗು ಅದರ ಸುತ್ತಳತೆ P ಆಗಿರಲಿ.

ಸುತ್ತಳತೆ P = ಬದಿ1 + ಬದಿ2 + ಬದಿ3 + ಬದಿ4 = AD + DC + CB + BA

 

ಉದಾಹರಣೆ 1 :  ಕೆಳಗಿನ ADCB ಗಾಳಿಪಟವನ್ನು (Kite) ತೆಗೆದ್ದುಕೊಳ್ಳೋಣ, ಅದರ ಬದಿಗಳು AD = 2cm, DC = 4cm, CB = 4cm ಮತ್ತು BA = 2cm ಆಗಿವೆ ಹಾಗು ಅದರ ಸುತ್ತಳತೆ P ಆಗಿರಲಿ.

Image2 QuP2ಸುತ್ತಳತೆ P = ಬದಿ1 + ಬದಿ2 + ಬದಿ3 + ಬದಿ4 = AD + DC + CB + BA = 2 + 4 + 4 + 2 = 12cm

ಗಾಳಿಪಟ ADCB ಸುತ್ತಳತೆ P = 12cm

 ಉದಾಹರಣೆ 2 : ಹರಳಾಕೃತಿ (Rombus) ADCB ತೆಗೆದುಕೊಳ್ಳೋಣ ಅದರ ಒಂದು ಬದಿ AB = 3cm ಆಗಿದೆ, ಹಾಗಾದರೆ ಅದರ ಸುತ್ತಳತೆಯೆಷ್ಟು?

Image3 QuP2ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ನಾವುಗಳು ತಿಳಿದಿರುವಂತೆ ಹರಳಾಕೃತಿಯ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಳತೆಯನ್ನು ಹೊಂದಿರುತ್ತವೆ,

AD = DC = CB = BA = 3cm.

ಸುತ್ತಳತೆ P = ಬದಿ1 + ಬದಿ2 + ಬದಿ3 + ಬದಿ4 = AD + DC + CB + BA = 3 + 3 + 3 + 3 = 12cm.

ಹರಳಾಕೃತಿ ADCB ಸುತ್ತಳತೆ P = 12cm.

 ಉದಾಹರಣೆ 3: ಕೆಳಗಿನ ಒಂದು ತಗಲು ನಾಲ್ಬದಿ (Tangential quadrilateral) ABCDಯನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ, ಅದರ ಬದಿಗಳು DA = 7cm, CD = 4.5cm, BC = 2.5cm ಆದಾಗ ಅದರ ಬದಿ AB ಯ ಉದ್ದವೆಷ್ಟು?

Image4 QuP2ಒಂದು ದುಂಡುಕದ (Circle) ಮೇಲಿನ ಎಲ್ಲಾ ನಾಲ್ಕು ತಗಲುಗೆರೆಗಳು (Tangent lines) ಒಂದು ನಾಲ್ಬದಿಯಾಗಿ ಮಾರ್ಪಟ್ಟಾಗ ಅದು ತಗಲು ನಾಲ್ಬದಿಯಾಗಿರುತ್ತದೆ. ನಾಲ್ಬದಿಯ ಎದುರು ಬದಿಗಳ ಮೊತ್ತವು ಇನ್ನೊಂದು ಎದುರು ಬದಿಗಳ ಮೊತ್ತಕ್ಕೆ ಸರಿಯಾಗಿರುತ್ತದೆ.

ಎದುರು ಬದಿಗಳ ಮೊತ್ತ AD + BC = DC + AB.

ತಗಲು ನಾಲ್ಬದಿ (Tangential quadrilateral) ABCD  ಬದಿಗಳು DA = 7cm, CD = 4.5cm, BC = 2.5cm.

7 +  2.5 =  4.5 +AB

9.5 = 4.5 + AB

AB = 9.5 – 4.5 = 5cm

ತಗಲು ನಾಲ್ಬದಿ ABCD ಯಲ್ಲಿ  AB ಬದಿಯ ಉದ್ದ 5cm ಆಗಿದೆ.

 2. ನಾಲ್ಬದಿಯ ಮೂಲೆಗಳನ್ನು ಕಂಡುಹಿಡಿಯುವ ಬಗೆ.

ಹೇಳಿಕೆ:ಯಾವುದೇ ಸುಳುವಾದ ನಾಲ್ಬದಿಯ ಒಳಮೂಲೆಗಳ ಮೊತ್ತವು 360° ಆಗಿರುತ್ತದೆ”.

ತೋರಿಸಿಕೆ (Proofs):

Image5 QuP2ABCD ಎಂಬ ಒಂದು ನಾಲ್ಬದಿಯನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ ಮತ್ತು ಅದಕ್ಕೆ AC ಎಂಬ ಒಂದು ನಡುಗೆರೆಯನ್ನು (Bisector Line) ಎಳೆಯೋಣ

ನಡುಗೆರೆಯನ್ನು ಎಳೆದಾಗ ಉಂಟಾಗುವ ಮೂಲೆಗಳನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಿಕೊಳ್ಳೋಣ .

1 + 2 = A …… (i)

3 + 4 = C …… (ii)

ನಡುಗೆರೆಯನ್ನು ಎಳೆದಾಗ ನಮಗೆ ABC  ಮತ್ತು ACD ಎಂಬ ಎರಡು ಮೂರ್ಬದಿಗಳು (Triangles) ಸಿಗುತ್ತದೆ.

ನಮಗೆ ತಿಳಿದಿರುವಂತೆ ಯಾವುದೇ ಮೂರ್ಬದಿ ಒಳಮೂಲೆಯ ಮೊತ್ತವು 180° ಆಗಿರುತ್ತದೆ.  

ABC ಯಲ್ಲಿ

2 + 4 + B = 180°

ACD ಯಲ್ಲಿ

1 + 3 + D = 180°

ABC ಮತ್ತು ACD ಗಳ ಎಲ್ಲಾ ಮೂಲೆಗಳನ್ನು ಕೂಡಿದಾಗ 2 + 4 + B + 1 + 3 + D = 360°  ಆಗುತ್ತದೆ.

(1 + 2) + B + (3 + 4) + D = 360°

A + B + C + D = 360°  [(i) ಮತ್ತು (ii) ಅನ್ನು ಬಳಸಿಕೊಂಡು ]

ಯಾವುದೇ ಸುಳುವಾದ ನಾಲ್ಬದಿಯ (Simple Quadrilateral) ಒಳಮೂಲೆಗಳ ಮೊತ್ತವು 360° ಆಗಿರುತ್ತದೆ.

 ಉದಾಹರಣೆ 1: ಕೆಳಗಡೆ WZYX ಎಂಬ ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯಲ್ಲಿ  (Cyclic quadrilateral) ಮೂಲೆ WXY  = 106° ಮತ್ತು ಮೂಲೆ XYZ  = 87° ಆದಾಗ ಅದರ ಉಳಿದೆರಡು ಮೂಲೆಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ ಮತ್ತು ನಾಲ್ಬದಿಯ ಎಲ್ಲ್ಲಾ ಮೂಲೆಗಳ ಮೊತ್ತವು 360° ಆಗಿದೆ ಎಂದು ತೋರಿಸಿ.

Image6 QuP2ಒಂದು ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ತುದಿಗಳು (Vertices) ದುಂಡುಕದ ಮಯ್ಯನ್ನು (Circumference) ತಗಲಿದಾಗ ಅದು ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿ ಎಂದು ಕರೆಸಿಕೊಳ್ಳುತ್ತದೆ ಹಾಗು ಯಾವುದೇ ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯ ಎದುರು ಮೂಲೆಗಳ ಮೊತ್ತ 180° ಆಗಿರುತ್ತದೆ.

WXY + YZW= XYZ+ ZWX= 180°

106° + YZW = 87° + ZWX = 180°

 YZW = 180° – 106° = 74° 

ZWX = 180° – 87° = 93° 

ನಾಲ್ಬದಿಯ ಉಳಿದೆರಡು ಮೂಲೆಗಳು  YZW = 74° ಮತ್ತು ZWX = 93° ಆಗಿವೆ.

ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ಮೂಲೆಗಳನ್ನು ಸೇರಿಸಿದಾಗ WXY + YZW + XYZ+ ZWX = 106° + 74° +87° +93°  = 360° 

ಅಲ್ಲಿಗೆ ನಾವು ನಾಲ್ಬದಿಯ ಒಳಮೂಲೆಗಳ ಮೊತ್ತವು 360° ಆಗಿರುತ್ತದೆ ಎಂದು ತೋರಿಸಿದಂತಾಯ್ತು.

 ಉದಾಹರಣೆ 2: BADC ಎಂಬ ಸಾಟಿಬದಿ ನಾಲ್ಬದಿಯ (Parallelogram) ಒಂದು ಮೂಲೆ ABC = 120°  ಆದಾಗ ಅದರ ಎಲ್ಲಾ ಮೂಲೆಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Image7 QuP2ಯಾವುದೇ ಸಾಟಿಬದಿ ನಾಲ್ಬದಿಯ ಎದುರು ಮೂಲೆಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಾಗಿರುತ್ತವೆ.

ABC = CDA ಮತ್ತು DAB = BCD

ಇಲ್ಲಿ ABC =120°  ಆಗಿರುವುದರಿಂದ CDA = ABC =120°  ಆಗಿರುತ್ತದೆ.

ನಾವುಗಳು ಮೇಲೆ ತಿಳಿದಿರುವಂತೆ ಯಾವುದೇ ನಾಲ್ಬದಿಯ ಒಳಮೂಲೆಗಳ ಮೊತ್ತವು 360° ಆಗಿರುತ್ತದೆ.

 ABC + CDA + DAB + BCD =360°

120°  + 120°  + DAB + BCD =360°

DAB + BCD = 360° – 120° -120° = 120°

ಮೇಲೆ ತಿಳಿದಿರುವಂತೆ  DAB = BCD ಆಗಿದೆ.

DAB+ DAB = 120° = 2 x DAB = 120°

DAB = 120°/2 = 60 ° ಮತ್ತು  BCD = DAB = 60°

BADC ಎಂಬ ಸಾಟಿಬದಿ ನಾಲ್ಬದಿಯ ಮೂಲೆಗಳು ABC  = 120° , CDA = 120° , DAB = 60° , BCD = 60°   ಆಗಿವೆ.

 3. ನಾಲ್ಬದಿಯ ಹರವನ್ನು ಕಂಡುಹಿಡಿಯುವ ಬಗೆ (Area of Quadrilateral)

ನಾವು ಹಿಂದೆ ಚೌಕ ಎಂಬ ಬರಹದಲ್ಲಿ ಚೌಕದ ಹರವಿನ ಬಗ್ಗೆ ತಿಳಿದಿದ್ದೆವು, ಚೌಕದ ಎಲ್ಲಾ ಬದಿಗಳು ಸರಿಯಾಗಿರುವುದರಿಂದ ಅದರ ಹರವನ್ನು ಬದಿ x ಬದಿ ಎಂದು ಸುಲಭವಾಗಿ ಬರೆಯಬಹುದು, ಹಾಗೆಯೇ ಆಯತದ ಹರವನ್ನು ಉದ್ದ x ಅಗಲ ಎಂದು ಸುಲಭವಾಗಿ ಕಂಡುಕೊಳ್ಳಬಹುದು. ನಾಲ್ಬದಿಯಲ್ಲಿ ಹಲವಾರು ಬಗೆಗಳಿವೆ ಎಂದು ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ತಿಳಿದಿದ್ದೇವೆ. ನಾಲ್ಬದಿಯ ಬದಿಗಳು ಬೇರೆ ಬೇರೆ ಅಳತೆ ಮತ್ತು ಮೂಲೆಗಳನ್ನು ಹೊಂದಿದ್ದಾಗ ಚೌಕ ಮತ್ತು ಆಯತದಂತೆ ಅಷ್ಟು ಸುಲಭವಾಗಿ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳಲಾಗದು. ಹಾಗಾಗಿ ಎಲ್ಲಾ ನಾಲ್ಬದಿಗಳಿಗೆ ಸರಿಹೋಗುವಂತೆ ಕೆಳಗಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು (Equation) ಅನ್ನು ಬರೆಯಬಹುದು.

Image8 QuP2ನಾಲ್ಬದಿ (Quadrilateral): ABCD

ಮೂಲೆಗೆರೆಗಳು (Diagonals): p,q

ಬದಿಗಳು: AD = d, DC = c, CB = b, BA = a

ಅರೆಸುತ್ತಳತೆ (Semi-Perimeter) s = 1/2 x (a + b + c + d ). 

ಮೂಲೆಗೆರೆಗಳು ಉಂಟುಮಾಡುವ ಮೂಲೆ: θ

ನಾಲ್ಬದಿಯಲ್ಲಿ ಹಲವಾರು ಬಗೆಗಳಿವೆ, ಅವುಗಳ ಬದಿಗಳು, ಮೂಲೆಗೆರೆಗಳು ಮತ್ತು ಮೂಲೆಗಳು ಬೇರೆ ಬೇರೆಯಾಗಿರುವುದರಿಂದ ಆಯಾ ನಾಲ್ಬದಿಗೆ ತಕ್ಕಂತೆ ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು (Equation) ಸರಳವಾಗಿಸಿ ಕೆಳಕಂಡಂತೆ ಬರೆಯಬಹುದು ಹಾಗು ಅವುಗಳನ್ನು ನಾಲ್ಬದಿಯ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳಲು ಬಳಸೋಣ.

tableಉದಾಹರಣೆ 1: ABCD ಸಾಟಿ ಇಬ್ಬದಿಯ ನಾಲ್ಬದಿಯಲ್ಲಿ (Trapezoid) ಸಾಟಿಬದಿಗಳು (Parallel sides) b1 = 10cm, b2 = 8cm ಆಗಿವೆ ಮತ್ತು ಅದರ ಎತ್ತರ h = 5cm ಆದಾಗ ಅದರ ಹರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

 Image10 QuP2

ಸಾಟಿ ಬದಿಗಳು (Parallel side) b1 = 10cm, b2 = 8cm , ಎತ್ತರ h = 5cm

ಸಾಟಿಇಬ್ಬದಿಯ ನಾಲ್ಬದಿಯ ಹರವು A = 1/2  x ಎತ್ತರ x (ಸಾಟಿಬದಿ1 + ಸಾಟಿಬದಿ2) = 1/2  x h x (b1 + b2)

A = 1/2  x 5 x (10 + 8) = 1/2  x 5 x (18) = 90/2 = 45 cm2

  ABCD ಸಾಟಿಇಬ್ಬದಿಯ ನಾಲ್ಬದಿಯ ಹರವು 45 cmಆಗಿದೆ.

ಉದಾಹರಣೆ 2: ಚಿತ್ರದಲ್ಲಿ ಕೊಟ್ಟಿರುವ ಕಟ್ಟಡವು ಸಾಟಿಬದಿ ನಾಲ್ಬದಿಯಾಗಿದೆ (Parallelogram), ಅದರ ಒಂದು ಗೋಡೆಯ (wall) ಸಾಟಿಬದಿಯ ಬುಡವು (Parallel base) 25m  ಆಗಿದೆ ಮತ್ತು ಎತ್ತರ 15m ಆದಾಗ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿರುವ ಗೋಡೆಯ ಹರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

 

Image11 QuP2ಚಿತ್ರದಲ್ಲಿ ಕೊಟ್ಟಿರುವ ಕಟ್ಟಡದ ಸಾಟಿಬದಿ ನಾಲ್ಬದಿಯಾಗಿರುವ ಗೋಡೆಯನ್ನು ABCD ಎಂದು ಗುರುತಿಸಿಕೊಳ್ಳೋಣ,

ಸಾಟಿಬದಿಯ ಬುಡ BC = AD = 25m, ಎತ್ತರ = 15m.

ಸಾಟಿಬದಿಯ ನಾಲ್ಬದಿಯ ಹರವು A = ಬುಡ x ಎತ್ತರ = b x h.

A = 25 x 15 = 375 m2

ಚಿತ್ರದಲ್ಲಿ ಕೊಟ್ಟಿರುವ ಕಟ್ಟಡದ ಸಾಟಿಬದಿ ನಾಲ್ಬದಿಯಾಗಿರುವ ಗೋಡೆ ABCD ಹರವು 375 m2 ಆಗಿದೆ.

ಉದಾಹರಣೆ 3: ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿದಂತೆ ಗಾಳಿಪಟದ ಎದುರು ತುದಿಗಳ ನಡುವಿನ ಉದ್ದಗಳು AC = 2 ft ಮತ್ತು BD = 1.5 ft ಆಗಿವೆ, ಬಾನಂಗಳದಲ್ಲಿ ಹಾರುತ್ತಿರುವ ಈ ಅಂದವಾದ ಬಣ್ಣ ಬಣ್ಣದ ಗಾಳಿಪಟದ ಹರವನ್ನು ಕಂಡುಹಿಡಿಯೋಣ.

Image12 QuP2ಗಾಳಿಪಟವನ್ನು ABCD ಎಂದು ಗುರುತಿಸಿಕೊಳ್ಳೋಣ.

ಗಾಳಿಪಟದ ಎದುರು ತುದಿಗಳ ನಡುವಿನ ಉದ್ದಗಳು AC = d1 =2 ft ಮತ್ತು BD = d2 =1.5 ft ಅದರ ಮೂಲೆಗೆರೆಗಳಾಗಿವೆ (Diagonals).

ಗಾಳಿಪಟದ ಹರವು A = 1/2 x ಮೂಲೆಗೆರೆ1 x ಮೂಲೆಗೆರೆ2 = 1/2 x d1 x d2

A = 1/2 x d1 x d2 = 1/2 x 2 x 1.5 = 1.5 ft2

ಚಿತ್ರದಲ್ಲಿ ಕೊಟ್ಟಿರುವ ಅಂದವಾದ ಬಣ್ಣ ಬಣ್ಣದ ಗಾಳಿಪಟ ABCD ಹರವು 1.5 ftಆಗಿದೆ.

 ಉದಾಹರಣೆ 4:  ABCD ಎಂಬ ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯ (Cyclic Quadrilateral) ಬದಿಗಳು AB = 3.5cm, BC = 3cm, CD = 2.5cm, DA = 1.5cm ಆಗಿವೆ, ಇದರ ಹರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Image13 QuP2ಒಂದು ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ತುದಿಗಳು (Vertices) ದುಂಡುಕದ ಮಯ್ಯನ್ನು (Circumference) ತಗಲಿದಾಗ ಅದು ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿ ಎಂದು ಕರೆಸಿಕೊಳ್ಳುತ್ತದೆ.

ಕೊಟ್ಟಿರುವ ಚಿತ್ರದಲ್ಲಿ AB = a = 3.5cm, BC = b = 3cm, CD = c = 2.5cm, DA = d = 1.5cm ಆಗಿವೆ.

ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯ ಹರವು A = (s − a)(s − b)(s − c)(s − d)

ಇಲ್ಲಿ s ಎಂಬುದು ನಾಲ್ಬದಿಯ ಅರೆಸುತ್ತಳತೆಯಾಗಿದೆ (Semi-Perimeter), ಹಾಗು s = 1/2 x (a + b + c + d)

s = 1/2 x (3.5 + 3 + 2.5 + 1.5) = 10.5/2 = 5.25cm

A = ( s−a)(s−b)(s−c)(s−d) = (5.25 – 3.5)(5.25 − 3)(5.25 – 2.5)(5.25 – 1.5) = (1.75)(2.25)(2.75)(3.75)

A = 40.60546875 = 6.37225 cm 2

 ∴ ABCD ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯ ಹರವು 6.37225 cm 2 ಆಗಿದೆ.

 ನಾಲ್ಬದಿಯ ಹಳಮೆ

  • ಸುಮಾರು 300 B.C ಹೊತ್ತಿನ ಗ್ರೀಕಿನ ಹೆಸರಾಂತ ಎಣಿಕೆಯರಿಗ (Mathematician) ಯೂಕ್ಲಿಡ್ ನ ಎಣಿಕೆಯರಿಮೆಯ ಹೊತ್ತಗೆ ಯೂಕ್ಲಿಡ್ ಅಡಕದಲ್ಲಿ (Euclid’s Elements) ನಾಲ್ಬದಿಗಳ ಹಲವಾರು ವಿಷಯಗಳ ಬಗ್ಗೆ ತಿಳಿಸಿಕೊಡುತ್ತದೆ.

Image14 QuP2(ಯೂಕ್ಲಿಡ್)

  • ಬ್ಯಾಬಿಲೋನಿಯನ್ನರು (Babylonians) ಹಲವು ಬಗೆಯ ನಾಲ್ಬದಿಗಳ ಹರವನ್ನು (Area of Quadrilatreal) ಕಂಡುಹಿಡಿಯುತ್ತಿದ್ದರು.
  • ಈಜಿಪ್ಟಿನ ಪೆರೋ (Pharaoh) ಅರಸರು ಸುಮಾರು 2700 BC ಇಂದ 500 BC ಗಳವರೆಗೆ ಪಿರಮಿಡ್ಡುಗಳನ್ನು ಕಟ್ಟಲು ನಾಲ್ಬದಿಯಾಕಾರದ ಬುಡವನ್ನು (Quadrilateral Base) ಬಳಸುತ್ತಿದ್ದರು,Image15 QuP2
  • ಉಜ್ಜಯಿನಿಯ ಎಣಿಕೆಯರಿಗ ಬ್ರಹ್ಮಗುಪ್ತನು (~500 A.D) ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯ ಹರವಿನ ( Area of Cyclic Quadrilateral) ಬಗ್ಗೆ ಅರಕೆಮಾಡಿದ್ದನು.
  • ಪೈತಾಗೋರಸ್ (500 B.C) ಒಬ್ಬ ಗ್ರೀಕಿನ ಎಣಿಕೆಯರಿಗ. ಅವನು ತನ್ನ ಸರಿಮೂಲೆ ಮೂರ್ಬದಿಯ (Right Angle Triangle) ಕಟ್ಟಲೆಯನ್ನು ಒರೆಹಚ್ಚಲು ಚೌಕಗಳನ್ನು ಬಳಸಿಕೊಂಡಿದ್ದ.

 ಚಟುವಟಿಕೆ:

ನೀವು ದಿನಾಲೂ ಕಾಣುವ ನಾಲ್ಬದಿಯಾಕರಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ ಮತ್ತು ಅವುಗಳು ನಾಲ್ಬದಿಯ ಯಾವ ಬಗೆಗಳಾಗಿವೆ ಎಂದು ಹೆಸರಿಸಿರಿ. ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ಹಲವಾರು ನಾಲ್ಬದಿಯ ಬಗೆಗಳನ್ನು ಕೊಡಲಾಗಿದೆ, ಅವುಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹುದು.

  (ಸೆಲೆಗಳು: socratic.org, thefamouspeople.com, cgm.cs.mcgill.ca, mathsisfun.com, wikipedia.org, geom.uiuc.edu, staff.argyll.epsb.ca)

ನಾಲ್ಬದಿಗಳು (Quadrilaterals) – ಭಾಗ 1

ನಾವು ದಿನಾಲೂ ಒಂದಲ್ಲ ಒಂದು ರೀತಿಯಲ್ಲಿ ನಾಲ್ಬದಿ ಆಕಾರದ ವಸ್ತುಗಳನ್ನು ನೋಡುತ್ತಿರುತ್ತೇವೆ (Quadrilateral shaped objects), ಅವುಗಳೆಂದರೆ ನಾಲ್ಬದಿಯಾಕಾರದ ಕಟ್ಟಡಗಳು, ಆಟದ ಸಾಮಾನುಗಳು, ನಾಲ್ಬದಿಯಾಕಾರದ ಮೇಜುಗಳು, ಕಪಾಟುಗಳು, ಗಾಳಿಪಟಗಳು, ಟ್ರಾಫಿಕ್ ಗುರುತುಗಳು. ಮರೆತು ಬಿಡಬೇಡಿ, ನಾಲ್ಬದಿಯಾಕಾರದ ಚಾಕಲೇಟುಗಳೂ ಕೂಡ ಇವೆ!.

Image1 Qu

ಈ ಬರಹದಲ್ಲಿ ಬಗೆ ಬಗೆಯಾದ ನಾಲ್ಬದಿ ಆಕಾರಗಳನ್ನು ಮತ್ತು ಅವುಗಳ ಹಿರಿಮೆಗಳನ್ನು ತಿಳಿಯೋಣ ಬನ್ನಿ.

  • ನಾಲ್ಬದಿ ಎನ್ನುವುದು ಕೇವಲ ನಾಲ್ಕು ಗೆರೆಗಳಿಂದ ಏರ್ಪಟ್ಟ ಸಮತಟ್ಟಾದ (planar) ಮುಚ್ಚಿದ ಆಕೃತಿಯಾಗಿದೆ (Closed Shape).
  • ನಾಲ್ಬದಿಯು ಅದರ ಬದಿಗಳು ಹಾಗು ಮೂಲೆಗಳ ಅಳತೆಗೆ ತಕ್ಕಂತೆ ಅದರ ಆಕಾರ ಬೇರೆ ಬೇರೆಯಾಗಿರುತ್ತವೆ.
  • ನಾಲ್ಬದಿಯು ನಾಲ್ಕು ಬದಿಗಳು (Sides), ನಾಲ್ಕು ತುದಿಗಳು (Vertices) ಮತ್ತು ನಾಲ್ಕು ಮೂಲೆಗಳನ್ನು (Angles) ಹೊಂದಿರುತ್ತದೆ.

ನಾಲ್ಬದಿಯ ಮುಖ್ಯ ಭಾಗಗಳು.

  • ಬದಿ(Side):  ನಾಲ್ಬದಿ ಆಕೃತಿಯನ್ನು ಉಂಟುಮಾಡುವ ಗೆರೆಗಳನ್ನು ಬದಿಗಳು ಎಂದು ಕರೆಯುತ್ತಾರೆ.
  • ತುದಿ(Vertex): ನಾಲ್ಬದಿಯ ಎರಡು ಬದಿಗಳು ಸೇರುವೆಡೆಯನ್ನು ತುದಿ ಎಂದು ಕರೆಯುತ್ತಾರೆ.
  • ಮೂಲೆಗೆರೆ(Diagonal): ನಾಲ್ಬದಿಯ ಒಂದು ಮೂಲೆಯಿಂದ ಅದರ ಎದುರು ಮೂಲೆಗೆ ಎಳೆದ ಗೆರೆಯೇ ಮೂಲೆಗೆರೆ.
  • ಸುತ್ತಳತೆ(Perimeter): ನಾಲ್ಬದಿಯ ನಾಲ್ಕು ಬದಿಗಳ ಒಟ್ಟು ಉದ್ದವನ್ನು ಸುತ್ತಳತೆ ಎಂದು ಕರೆಯುತ್ತಾರೆ.
  • ಮೂಲೆ(Angle): ನಾಲ್ಬದಿಯ ಎರಡು ಜೋಡಿ ಗೆರೆಗಳು ಒಂದಕ್ಕೊಂದು ಸೇರಿ ಉಂಟುಮಾಡುವ ಎಡೆಯನ್ನು ಮೂಲೆ ಇಲ್ಲವೇ ಕೋನ ಎಂದು ಕರೆಯುತ್ತಾರೆ.
  • ನಡು(Centre or Centroid): ಎರಡು ಮೂಲೆಗೆರೆಗಳು ಸೇರುವ ಚುಕ್ಕೆಯನ್ನು ನಡು ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಇದು ನಾಲ್ಬದಿಯ ನಡುವಿನ ಭಾಗವಾಗಿದೆ.

ನಾಲ್ಬದಿಯ ಭಾಗಗಳನ್ನು ಗುರುತಿಸಲು ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ.

Image2 Qu

ನಾಲ್ಬದಿಯ ಬಗೆಗಳು.

ನಾಲ್ಬದಿಗಳ ಬೇರೆ ಬೇರೆ ಬಗೆಗಳನ್ನು ಅವುಗಳ ಬದಿ, ಮೂಲೆ ಮತ್ತು ಮೂಲೆಗೆರೆಗಳ ಮಾರ್ಪಾಟುಗಳ ಮೇಲೆ ಬೇರ್ಪಡಿಸಲಾಗಿದೆ. ಹಲವು ನಾಲ್ಬದಿಗಳ ಬಗೆಗಳನ್ನು ಮತ್ತು ಒಳ ಬಗೆಗಳನ್ನು ಕೆಳಗೆ ತಿಳಿಯೋಣ.

ನಾಲ್ಬದಿಯ ಏರ್ಪಾಟುಗಳನ್ನು ತಿಳಿಯಲು ಈ ಕೆಳಗಿನ ಗುರುತುಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳಲಾಗಿದೆ.

ಗುರುತು  ಹುರುಳು
  = ಸರಿಯಾಗಿದೆ (Equal to )
  ≠ ಸರಿಯಾಗಿಲ್ಲ (Not equal to)
  || ಸಾಟಿಯಾಗಿದೆ (Parallel to )
  ∦ ಸಾಟಿಯಾಗಿಲ್ಲ (Not parallel to)
  ∠ ಮೂಲೆ (Angle)
   ° ಮೂಲೆಯಳತೆ (Angle measurement)

 I. ಸುಳುವಾದ ನಾಲ್ಬದಿಗಳು (Simple Quadrilaterals)

ನಾಲ್ಬದಿಯನ್ನು ಸುಳುವಾಗಿ (Simple) ಜೋಡಿಸಿದಂತೆ ಕಂಡುಬಂದರೆ ಅದು ಸುಳುವಾದ ನಾಲ್ಬದಿಯಾಗಿರುತ್ತದೆ.

ಉದಾಹರಣೆಗೆ ಕೆಳಗಿನ ಸಾಟಿಬದಿಯ ನಾಲ್ಬದಿಯನ್ನು (Parallelogram) ನೋಡಬಹುದು, ಇಲ್ಲಿ ಒಂದಕ್ಕೊಂದು ಬದಿಗಳನ್ನು ಯಾವುದೇ ಅಡೆತಡೆ ಇಲ್ಲದೆ ಸುಲಭವಾಗಿ ಜೋಡಿಸಲಾಗಿದೆ.

 Image7 Qu

 ಸುಳುವಾದ ನಾಲ್ಬದಿಗಳನ್ನು ಮತ್ತೆ ಎರಡು ಬಗೆಗಳನ್ನಾಗಿ ಮಾಡಬಹುದು, ಅವುಗಳೆಂದರೆ ಉಬ್ಬು ನಾಲ್ಬದಿಗಳು (Convex Quadrilateralsಮತ್ತು ತಗ್ಗು ನಾಲ್ಬದಿಗಳು (Concave Quadrilaterals).

 A. ಉಬ್ಬು ನಾಲ್ಬದಿಗಳು (Convex Quadrilaterals)

ನಾಲ್ಬದಿಯ ಯಾವುದೇ ಒಂದು ಒಳ ಮೂಲೆಯೂ 180° ಗಿಂತ ಕಡಿಮೆಯಿದ್ದರೆ ಅದು ಉಬ್ಬು ನಾಲ್ಬದಿಯಾಗಿರುತ್ತದೆ. ಕೆಳಗಿನ ಉಬ್ಬು ನಾಲ್ಬದಿಗಳನ್ನು ನೋಡಿದಾಗ ಅವುಗಳ ಯಾವುದೇ ಮೂಲೆಯು 180° ಗಿಂತ ಕಡಿಮೆಯಿದೆ.

1. ಸಾಟಿಯಿರದ ನಾಲ್ಬದಿ (trapezium or Irregular quadrilateral)

Image4 Qu

ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ಎದುರು ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಿಲ್ಲದಿದ್ದರೆ (Non-Parallel) ಅದನ್ನು ಸಾಟಿಯಿರದ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಯುವವರು ಹಾಗು ಇದರ ಇನ್ನೊಂದು ವಿಶೇಷತೆ ಎಂದರೆ ಇದರ ಎಲ್ಲಾ ಬದಿಗಳು ಬೇರೆ ಬೇರೆ ಅಳತೆಯನ್ನು (Un-equal lengths) ಹೊಂದಿವೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ:  AB BC CD DA, AD BC, AB CD

 2. ಸಾಟಿಇಬ್ಬದಿಯ ನಾಲ್ಬದಿ (trapezoid (US) or Trapezium(UK))

Image5 Qu

ನಾಲ್ಬದಿಯ ಒಂದು ಜೊತೆ ಎದುರು ಬದಿಗಳು ಮಾತ್ರ ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಿದ್ದರೆ ಅದನ್ನು ಸಾಟಿ-ಇಬ್ಬದಿ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಯುವವರು.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆAD || BC, AB CD

3. ಸರಿಇಬ್ಬದಿಯ ನಾಲ್ಬದಿ (Isosceles trapezoid)

image6 Qu

ನಾಲ್ಬದಿಯ ಎರಡು ಎದುರು ಬದಿಗಳು ಮಾತ್ರ ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಿದ್ದು ಮತ್ತು ಅದರ ಬುಡದ ಮೂಲೆಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಿದ್ದರೆ ಅದನ್ನು ಸರಿ-ಇಬ್ಬದಿಯ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಯುವರು.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AB = DC, AD || BC, AB CD

ಮೂಲೆಗೆರೆಗಳು: AC = DB

ಮೂಲೆಕಟ್ಟಳೆ: BAD = CDA, AEB = DEC, AED = BEC

4. ಸಾಟಿಬದಿ ನಾಲ್ಬದಿ (Parallelogram)

Image7 Qu

ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ಎದುರು ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಿದ್ದು ಮತ್ತು ಎಲ್ಲಾ ಎದುರು ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಳತೆಯನ್ನು ಹೊಂದಿದ್ದರೆ ಅದನ್ನು ಸಾಟಿಬದಿ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಯುವರು.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AD = BC, AB = DC, AD || BC, AB || DC

ಮೂಲೆಕಟ್ಟಳೆ: BAD = BCD, ABC= ADC

5. ಹರಳಾಕೃತಿ (Rombus)

Image8 Qu

ಹರಳಾಕೃತಿ ಅಥವಾ ವಜ್ರಾಕೃತಿ ಎಂದರೆ ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಳತೆಯನ್ನು ಹೊಂದಿದ್ದು ಮತ್ತು ಅದರ ಮೂಲೆಗೆರೆಗಳು ಒಂದಕ್ಕೊಂದು ನೇರಡ್ಡವಾಗಿ ಕತ್ತರಿಸುತ್ತವೆ (Diagonals are perpendicularly bisect each other).

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AD = BC = AB = DC, AD || BC, AB || DC.

ಮೂಲೆಕಟ್ಟಳೆ: AOB = BOC = AOD = DOC = 90°, ABC= ADC, BAD = BCD.

 6. ಬದಿಬೇರ್ಮೆ ಹರಳಾಕೃತಿ (Rhomboid)

Image9 Qu

ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ಎದುರು ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸಾಟಿಯಿದ್ದು ಮತ್ತು ಅಕ್ಕಪಕ್ಕದ ಬದಿಗಳು ಬೇರೆ ಬೇರೆ ಅಳತೆಯನ್ನು ಹೊಂದಿದ್ದು ಹಾಗು ಅದರ ಮೂಲೆಗಳು ಸರಿಮೂಲೆಯಾಗದಿದ್ದರೆ (Non-Right Angle) ಅದು ಬದಿಬೇರ್ಮೆ ಹರಳಾಕೃತಿಯಾಗುತ್ತದೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AD || BC, AB || DC , AB BC, CD DA, AD = BC, AB = DC

ಮೂಲೆಕಟ್ಟಳೆ: ABC 90°, ADC 90°, BAD 90°, BCD 90°

7. ಆಯತ ಅಥವಾ ನೇರಡ್ಡಸಾಟಿ ನಾಲ್ಬದಿ (Rectangle)

Image10 Qu

ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ಎದುರು ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿ-ಸಾಟಿಯಿದ್ದು (Opposite sides are equal and parallel) ಮತ್ತು ಅದರ ಮೂಲೆಗಳು ನೇರಡ್ಡವಾಗಿದ್ದರೆ (Right Angle) ಅದು ಆಯತವಾಗುತ್ತದೆ. ಆಯತಕ್ಕೆ ಕನ್ನಡದಲ್ಲಿ ನೇರಡ್ಡಸಾಟಿ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಯಬಹುದು.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AD || BC, AB || DC , AD = BC, AB = DC

ಮೂಲೆಕಟ್ಟಳೆ: ABC = ADC = BAD = BCD = 90°

8. ಚೌಕ ಅಥವಾ ಸರಿ ನಾಲ್ಬದಿ (Square)

Image11 Qu

ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ಎದುರು ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಸಾಟಿಯಾಗಿದ್ದು (Sides are Equal and Parallel) ಮತ್ತು ಅದರ ಮೂಲೆಗಳು ನೇರಡ್ಡವಾಗಿದ್ದರೆ (Right Angle) ಅದು ಚೌಕವಾಗುತ್ತದೆ. ಚೌಕಕ್ಕೆ ಕನ್ನಡದಲ್ಲಿ ಸರಿ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಯಬಹುದು.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AD || BC, AB || DC, AD = BC = AB = DC

ಮೂಲೆಕಟ್ಟಳೆ: ABC = ADC = BAD = BCD = 90°

(ಚೌಕದ ಬಗ್ಗೆ ಹೆಚ್ಚಿನ ಮಾಹಿತಿ ತಿಳಿಸುವ ಅರಿಮೆಯ ಬರಹ : https://arime.org/ಚೌಕ )

9. ಗಾಳಿಪಟ (Kite)

Image12 Qu

ನಾಲ್ಬದಿಯ ಜೊತೆಯ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಳತೆಯನ್ನು (Pair of adjacent sides are equal to each other) ಹೊಂದಿದ್ದು ಮತ್ತು ಮೂಲೆಗೆರೆಗಳು ಒಂದಕ್ಕೊಂದು ನೇರಡ್ಡವಾಗಿ ಕತ್ತರಿಸಿದರೆ (Diagonals are perpendicularly bisect each other) ಅದು ಗಾಳಿಪಟಾಕೃತಿಯಾಗಿರುತ್ತದೆ. ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ಕಾಣುವಂತೆ ಜೋಡಿ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಾಗಿವೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AB = AD, BC = CD.

ಮೂಲೆಕಟ್ಟಳೆ: AOB = BOC = COD = DOA = 90°

10. ತಗಲು ನಾಲ್ಬದಿ (Tangential quadrilateral)

Image13 Qu

ಒಂದು ದುಂಡುಕದ (Circle) ಮೇಲಿನ ಎಲ್ಲಾ ನಾಲ್ಕು ತಗಲುಗೆರೆಗಳು (Tangent lines) ಒಂದು ನಾಲ್ಬದಿಯಾಗಿ ಮಾರ್ಪಟ್ಟಾಗ ಅದು ತಗಲು ನಾಲ್ಬದಿಯಾಗಿರುತ್ತದೆ. ಈ ನಾಲ್ಬದಿಯ ಎದುರು ಬದಿಗಳ ಮೊತ್ತವು ಇನ್ನೊಂದು ಎದುರು ಬದಿಗಳ ಮೊತ್ತಕ್ಕೆ ಸರಿಯಾಗಿರುತ್ತದೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ತಗಲುಗೆರೆಗಳು: AB, BC, CD, DA

ಬದಿಕಟ್ಟಳೆ: AD + BC = AB + DC.

ದುಂಡುಕ: ದುಂಡುಕದ ನಡುವು ನಾಲ್ಬದಿಗೆ ಒಳನಡು O (Incentre) ಆಗುತ್ತದೆ

11. ತಗಲು ಸಾಟಿಇಬ್ಬದಿಯ ನಾಲ್ಬದಿ (Tangential trapezoid)

Image14 Qu

ಒಂದು ದುಂಡುಕದ (Circle) ಮೇಲಿನ ಎಲ್ಲಾ ನಾಲ್ಕು ತಗಲುಗೆರೆಗಳು (Tangent lines) ಒಂದು ನಾಲ್ಬದಿಯಾಗಿ ಮಾರ್ಪಟ್ಟು ಮತ್ತು ಒಂದು ಜೊತೆ ಎದುರುಬದಿಗಳು ಸಾಟಿಯಾದಾಗ (Opposite sides are parallel to each other) ಅದು ತಗಲು ಸಾಟಿಇಬ್ಬದಿಯ ನಾಲ್ಬದಿ ಎಂದೆನೆಸಿಕೊಳ್ಳುತ್ತದೆ. ಇಲ್ಲಿ ಸಾಟಿಬದಿಗಳನ್ನು (Parallel Sides) ಬುಡ (Base) ಎಂದು ಮತ್ತು ಉಳಿದೆರಡು ಬದಿಗಳನ್ನು ಕಾಲು (Leg) ಎಂದು ಕರೆಯುವರು

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ತಗಲುಗೆರೆಗಳು: AB, BC, CD, DA

ಬದಿಕಟ್ಟಳೆ: AD + BC = AB + DC, AD || BC, ಬುಡ =AD, BC ಮತ್ತು ಕಾಲು = AB, DC

ದುಂಡುಕ: ದುಂಡುಕದ ನಡುವು ನಾಲ್ಬದಿಗೆ ಒಳನಡು (Incentre) ಆಗುತ್ತದೆ

 12. ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿ (Cyclic quadrilateral)

Image15 Qu

ಒಂದು ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ತುದಿಗಳು (Vertices) ದುಂಡುಕದ ಮಯ್ಯನ್ನು (Circumference) ತಗಲಿದಾಗ ಅದು ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿ ಎಂದು ಕರೆಸಿಕೊಳ್ಳುತ್ತದೆ ಹಾಗು ಯಾವುದೇ ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯ ಎದುರು ಮೂಲೆಗಳ ಮೊತ್ತ 180° ಆಗಿರುತ್ತದೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ತುದಿಗಳು: A, B, C, D

ಬದಿಗಳು: AD, BC, AB, DC.

ದುಂಡುಕ: ದುಂಡುಕದ ನಡುವು ನಾಲ್ಬದಿಗೆ ಒಳನಡು O (Incentre) ಆಗುತ್ತದೆ.

ಮೂಲೆಕಟ್ಟಳೆ: BAD + BCD = ABC + ADC = 180°

13. ನೇರಡ್ಡಬದಿ ಗಾಳಿಪಟ (Right Kite)

Image16 Qu

ನಾಲ್ಬದಿಯು ಸರಿಯಳತೆಯ ಜೋಡಿ ಬದಿಗಳನ್ನು ಹೊಂದ್ದಿದ್ದು ಹಾಗು ನಾಲ್ಬದಿಯ ಎರಡು ಬೇರೆ ಬೇರೆ ಅಳತೆಯ ಬದಿಗಳು ಕೂಡುವೆಡೆಗಳು ನೇರಡ್ಡಗಳಾಗಿದ್ದರೆ (Perpendicular) ಅದು ನೇರಡ್ಡಬದಿ ನಾಲ್ಬದಿ ಅಥವಾ ನೇರಡ್ಡಬದಿ ಗಾಳಿಪಟವಾಗುತ್ತದೆ. ನೇರಡ್ಡಬದಿ ಗಾಳಿಪಟವನ್ನು ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯನ್ನಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ, ಹೀಗಾಗಿ ಇದು ದುಂಡುಸುತ್ತು (Cyclic Quadrilaterals) ನಾಲ್ಬದಿಯ ಒಂದು ಬಗೆಯಾಗಿದೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AB = BC, AD = DC.

ಮೂಲೆಕಟ್ಟಳೆ: DAB = BCD = 90° ಮತ್ತು AOB = BOC = COD = DOA = 90° , ABC + ADC = 180° ( ಇದು ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿ (Cyclic Quadrilaterals) ಕೂಡ ಆಗಿರುವುದರಿಂದ)

 14. ಎರಡುನಡು ನಾಲ್ಬದಿ (Bicentric quadrilateral)

Image17 Qu

ಒಂದು ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ಬದಿಗಳು (Sides) ಒಳದುಂಡುಕಕ್ಕೆ (incircle) ತಗಲಿದ್ದು ಮತ್ತು ಅದರ ಎಲ್ಲಾ ತುದಿಗಳು (Vertices) ಹೊರದುಂಡುಕಕ್ಕೆ (circumcircle) ತಗಲಿದ್ದು, ಒಳದುಂಡುಕದ ನಡುವು ಒಳದುಂಡುನಡು (incentre) ಮತ್ತು ಹೊರದುಂಡುಕದ ನಡುವು ಹೊರದುಂಡುನಡುವನ್ನು (circumcentre) ಹೊಂದಿರುತ್ತವೆ ಹಾಗು ಯಾವುದೇ ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯ ಎದುರು ಮೂಲೆಗಳ ಮೊತ್ತ 180° ಆಗಿರುತ್ತದೆ. ಇಂತಹ ನಾಲ್ಬದಿಗಳನ್ನು ಎರಡುನಡು ನಾಲ್ಬದಿ ಎಂದು ಕರೆಯಬಹುದು.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ತುದಿಗಳು: A, B, C, D

ಬದಿಗಳು: AD, BC, AB,DC.

ದುಂಡುಕ: ಒಳದುಂಡುಕದ ನಡುವು ನಾಲ್ಬದಿಗೆ ಒಳದುಂಡುನಡು O1 (Incentre) ಆಗುತ್ತದೆ ಹಾಗು ಹೊರದುಂಡುಕದ ನಡುವು ನಾಲ್ಬದಿಗೆ ಹೊರದುಂಡುನಡು O2 (circumcentre) ಆಗುತ್ತದೆ,

ಮೂಲೆಕಟ್ಟಳೆ: BAD + BCD = ABC + ADC = 180°

15. ನೇರಡ್ಡಮೂಲೆಗೆರೆ ನಾಲ್ಬದಿ (Orthodiagonal quadrilateral)

Image18 Qu

ಒಂದು ನಾಲ್ಬದಿಯ ಮೂಲೆಗೆರೆಗಳು ಒಂದಕ್ಕೊಂದು ನೇರಡ್ಡವಾಗಿ ಕತ್ತರಿಸಿದಾಗ (Diagonals are orthogonal) ಅದು ನೇರಡ್ಡಮೂಲೆಗೆರೆ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಸಿಕೊಳ್ಳುತ್ತದೆ. ಈ ನಾಲ್ಬದಿಯ ಹಿರಿಮೆ ಏನೆಂದರೆ ಯಾವುದೇ ಎದುರುಬದಿಗಳ ಇಮ್ಮಡಿಗಳ (Sum of the squares of opposite sides) ಮೊತ್ತವು ಉಳಿದ ಎದುರುಬದಿಗಳ ಇಮ್ಮಡಿಗಳ ಮೊತ್ತಕ್ಕೆ ಸರಿಯಾಗಿರುತ್ತವೆ. ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿದಂತೆ ಬದಿಗಳ ಕೆಂಪುಬಣ್ಣದ ಒಟ್ಟು ಹರವು ನೀಲಿಬಣ್ಣದ ಒಟ್ಟು ಹರವಿಗೆ ಸರಿಯಾಗಿರುತ್ತವೆ. ಹೀಗೆ dಮೂಲೆಗೆರೆಗಳು ನೇರಡ್ಡವಾಗಿ ಕತ್ತರಿಸುವ ಚೌಕ (Square), ಗಾಳಿಪಟ (Kite) ಮತ್ತು ಹರಳಾಕೃತಿಗಳು (Rhombus) ನೇರಡ್ಡಮೂಲೆಗೆರೆ ನಾಲ್ಬದಿಯ ಗುಂಪಿಗೆ ಸೇರುತ್ತವೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AD2 + BC2 = DC2 + AB2

ಮೂಲೆಕಟ್ಟಳೆ: AOB = BOC = COD = DOA = 90°

16. ಸರಿಮೂಲೆಗೆರೆ ನಾಲ್ಬದಿ (Equidiagonal quadrilateral)

Image19 Qu

ಒಂದು ನಾಲ್ಬದಿಯ ಮೂಲೆಗೆರೆಗಳು ಒಂದೇ ಅಳತೆಯನ್ನು (Diagonals are in equal length) ಹೊಂದಿದ್ದರೆ ಅದು ಸರಿಮೂಲೆಗೆರೆ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಸಿಕೊಳ್ಳೊತ್ತದೆ. ಹೀಗೆ ಮೂಲೆಗೆರೆಗಳು ಒಂದೇ ಅಳತೆಯನ್ನು ಹೊಂದಿರುವ ಚೌಕ (Square), ಆಯತ (Rectangle) ಮತ್ತು ಸರಿಇಬ್ಬದಿಯ ನಾಲ್ಬದಿ (Isosceles trapezoid) ಸರಿಮೂಲೆಗೆರೆ ನಾಲ್ಬದಿಯ ಗುಂಪಿಗೆ ಸೇರುತ್ತವೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಗಳು: AD, BC, AB, DC.

ಮೂಲೆಗೆರೆಗಳು: AC = DB

 17. ಹೊರತಗಲುಗೆರೆ ನಾಲ್ಬದಿ (Extangential quadrilateral)

Image20 Qu

ನಾಲ್ಬದಿಯ ಎಲ್ಲಾ ಬದಿಗಳ ಮುಂಗೆರೆಗಳು (Extended Lines) ಒಂದು ಹೊರ ದುಂಡುಕದ (excircle) ಮೇಲ್ಮಯ್ಯನ್ನು ತಗಲಿದರೆ (Tangent) ಅದು ಹೊರತಗಲುಗೆರೆ (Ex-tangential) ನಾಲ್ಬದಿ ಎಂದು ಕರೆಸಿಕೊಳ್ಳುತ್ತದೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AB + BC = AD + DC ಹಾಗು AB + CD = BC + AD

ಹೊರತಗಲುಗೆರೆ: BF, DG, CF, CG

18. ಜೇಮ್ಸ್ಲೇವ್ ನಾಲ್ಬದಿ (Hjelmslev quadrilateral)

Image21 Qu

ಒಂದು ನಾಲ್ಬದಿಯು ಎದುರುಬದರು ಸರಿಮೂಲೆಗಳನ್ನು ಹೊಂದಿದ್ದರೆ ಅದನ್ನು ಜೇಮ್ಸ್ಲೇವ್ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಯುತ್ತಾರೆ, ನೇರಡ್ಡಬದಿ ಗಾಳಿಪಟ (Right Kite) ಕೂಡ ಒಂದು ಜೇಮ್ಸ್ಲೇವ್ ನಾಲ್ಬದಿಯಾಗಿದೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಗಳು: AD, BC, AB, DC.

ಮೂಲೆಕಟ್ಟಳೆ: BAD = BCD = 90° ಮತ್ತು ABC + ADC = 180°

B. ತಗ್ಗು ನಾಲ್ಬದಿಗಳು (Concave Quadrilaterals)

ನಾಲ್ಬದಿಯ ಯಾವುದೇ ಒಂದು ಒಳ ಮೂಲೆಯೂ 180° ಗಿಂತ ಹೆಚ್ಚಿದ್ದರೆ ಅದು ತಗ್ಗು ನಾಲ್ಬದಿಯಾಗಿರುತ್ತದೆ. ಉದಾಹರಣೆಗೆ ಕೆಳಗಿನ ತಗ್ಗು ನಾಲ್ಬದಿಯನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ.

 ಈಟಿ ನಾಲ್ಬದಿ (Dart Quadrilateral)

Image22 Qu

ಒಂದು ನಾಲ್ಬದಿಯ ಜೋಡಿಗೆರೆಗಳು (Pair of adjacent sides are equal) ಒಂದೇ ಅಳತೆಯಲ್ಲಿದ್ದು ಮತ್ತು ಅದರ ಒಂದು ಮೂಲೆಯೂ 180° ಗಿಂತ ಹೆಚ್ಚಿದ್ದರೆ ಅದು ಈಟಿ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಸಿಕೊಳ್ಳುತ್ತದೆ. ಈ ನಾಲ್ಬದಿಯು ಈಟಿ ತುದಿಯನ್ನು (Dart) ಹೋಲುವುದರಿಂದ ಇದನ್ನು ಈಟಿ ನಾಲ್ಬದಿ ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಉದಾಹರಣೆ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿದಂತೆ ಅದರ ಒಂದು ಮೂಲೆಯೂ 210° ಆಗಿದೆ, ಇದು 180° ಗಿಂತ ಹೆಚ್ಚಿದೆ, ಹಾಗಾಗಿ ಇದು ತಗ್ಗು ನಾಲ್ಬದಿಯ (Concave Quadrilateral) ಒಂದು ಬಗೆಯಾಗಿದೆ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: AB = AD, BC = CD

ಮೂಲೆಕಟ್ಟಳೆ: ABC = ADC, BCD = 210° > 180°.

 II. ಸುಳುವಲ್ಲದ ನಾಲ್ಬದಿಗಳು (Complex Quadrilaterals).

ಸುಲಭವಾಗಿ ತಿಳಿಯುವ ಸುಳುವಾದ ನಾಲ್ಬದಿಯ (Simple Quadrilateral) ಮಾರ್ಪಾಟಿಗಿಂತ ಬೇರೆಯದಾದ ಮಾರ್ಪಾಟನ್ನು ಹೊಂದಿರುವ ನಾಲ್ಬದಿಗಳನ್ನು ಸುಳುವಲ್ಲದ ನಾಲ್ಬದಿಗಳು (Complex Quadrilateral) ಎಂದು ಕರೆಯುವರು. ಇಂತಹ ಸುಳುವಲ್ಲದ ನಾಲ್ಬದಿಯ ಬಗೆಗಳಲ್ಲಿ ತಿರುಚು ನಾಲ್ಬದಿಯು (self-intersecting Quadrilaterals) ಒಂದು ಬಗೆಯಾಗಿದೆ.

ಒಂದು ನಾಲ್ಬದಿಯ ಒಂದು ಬದಿಯನ್ನು ತಿರುಚಿದಾಗ (Crossed) ತಿರುಚು ನಾಲ್ಬದಿ ಉಂಟಾಗುತ್ತದೆ. ತಿರುಚು ನಾಲ್ಬದಿಗಳನ್ನು ಚಿಟ್ಟೆ ನಾಲ್ಬದಿ (Butterfly Quadrilateral), ಬಿಲ್ಲುಗಂಟು ನಾಲ್ಬದಿ (BowTie Quadrilateral) ಎಂದೂ ಕರೆಯುವವರು. ಕೆಳಕಂಡಂತೆ ಕೆಲವು ಈ ಸುಳುವಲ್ಲದ ತಿರುಚು ನಾಲ್ಬದಿಯ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳೋಣ.

ತಿರುಚು ಆಯತ (Crossed Rectangle)

Image24 Qu

ಒಂದು ಆಯತವನ್ನು (Rectangle) ಎರಡು ಸರಿಪಾಲನ್ನಾಗಿ ತಿರುಚಿ ಮತ್ತು ತಿರುಚಿದ ತುದಿಗಳು (Vertices) ಒಂದಕ್ಕೊಂದು ತಾಗಿದ್ದರೆ ಅದನ್ನು ತಿರುಚು ಆಯತ ಎಂದು ಕರೆಯಬಹುದು. ಎಲ್ಲಾ ಸರಿಸಾಟಿ ತಿರುಚು ನಾಲ್ಬದಿಗಳು ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯಾಗಿದೆ (Cyclic Quadrilaterals) ಕೂಡ.

ಈ ನಾಲ್ಬದಿಯನ್ನು ಕೆಳಕಂಡಂತೆ ಗುರುತಿಸಬಹುದು.

ಬದಿಕಟ್ಟಳೆ: ABCD ಆಯತದಲ್ಲಿ AB ಬದಿಯನ್ನು ತಿರುಚಿದಾಗ ಅದು BA ಆಗುತ್ತದೆ ಹಾಗು AB =CD ಆಗಿರುತ್ತದೆ.

ಮೂಲೆಗೆರೆಗಳು: BC, DA ಎಂಬ ಎರಡು ಮೂಲೆಗೆರೆಗಳು ಏರ್ಪಡುತ್ತವೆ, ಹಾಗು BC = DA ಆಗಿರುತ್ತದೆ, ಅದರ ತಿರುಚು ನಡುವು X ಆಗಿರುತ್ತದೆ ಹಾಗು AX = XD, CX =XB ಆಗಿರುತ್ತದೆ.

ಸುಳುವಲ್ಲದ ನಾಲ್ಬದಿಗಳಿಗೆ (Complex Quadrilaterals) ಇನ್ನೂ ಕೆಲವು ಉದಾಹರಣೆಗಳೆಂದರೆ ತಿರುಚು ಸಾಟಿಬದಿ ನಾಲ್ಬದಿ (Antiparallelogram) ಮತ್ತು ತಿರುಚು ಚೌಕ (Crossed Square).

ತಿರುಚು ಸಾಟಿಬದಿ ನಾಲ್ಬದಿ (Antiparallelogram)             

Image23 Qu

ತಿರುಚು ಚೌಕ  (Crossed Square)

Image25 Qu

ನಾಲ್ಬದಿಯ ಗುಣಗಳು:

1. ಸುಳುವಾದ ನಾಲ್ಬದಿಯ ಗುಣಗಳು (Properties of simple quadrilaterals)

  • ಯಾವುದೇ ಸುಳುವಾದ ನಾಲ್ಬದಿಯ ಒಳಮೂಲೆಯ ಮೊತ್ತವು 360°ಆಗಿರುತ್ತದೆ.
  • ನಾಲ್ಬದಿಯಲ್ಲಿ ಹೆಚ್ಚೆಂದರೆ ಎರಡು ಮೂಲೆಗೆರೆಗಳನ್ನು (Diagonals) ಎಳೆಯಬಹುದು.
  • ನಾಲ್ಬದಿಯಲ್ಲಿ ಬದಿಗಳ ಉದ್ದ ಹೆಚ್ಚುಕಡಿಮೆಯಾದಂತೆ (Proportion) ಅದರ ಮೂಲೆಗೆರೆಯ ಉದ್ದವು ಹೆಚ್ಚುಕಡಿಮೆಯಾಗುತ್ತವೆ.
  • ಉಬ್ಬು ನಾಲ್ಬದಿಯಲ್ಲಿ (Convex Quadrilateral) ಎಲ್ಲಾ ಎರಡು ಮೂಲೆಗೆರೆಗಳು (Diagonals) ನಾಲ್ಬದಿಯ ಒಳಗಿರುತ್ತವೆ. ಉದಾಹರಣೆಗೆ ಮೇಲಿನ ಎಲ್ಲಾ ಉಬ್ಬು ನಾಲ್ಬದಿಯ ಬಗೆಗಳನ್ನು ನೋಡಬಹುದು.
  • ತಗ್ಗು ನಾಲ್ಬದಿಯಲ್ಲಿ (Concave Quadrilateral) ಒಂದು ಮೂಲೆಗೆರೆ (Diagonal) ನಾಲ್ಬದಿಯ ಹೊರಗಿರುತ್ತದೆ. ಉದಾಹರಣೆಗೆ ಮೇಲಿನ ಈಟಿ ನಾಲ್ಬದಿಯನ್ನು (Dart Quadrilateral) ನೋಡಬಹುದು.
  • ನಾಲ್ಬದಿಗಳ ಗುಣಲಕ್ಷಣಗಳು ಅವುಗಳ ಬದಿ, ಮೂಲೆ ಮತ್ತು ಮೂಲೆಗೆರೆಗಳ ಮೇಲೆ ಮಾರ್ಪಾಟು ಹೊಂದುತ್ತವೆ. ಹೆಚ್ಚಿನ ಗುಣಲಕ್ಷಣಗಳನ್ನು ತಿಳಿಯಲು ಮೇಲೆ ತಿಳಿಸಿದ ಎಲ್ಲಾ ಬಗೆಯ ನಾಲ್ಬದಿಗಳ ಬಗ್ಗೆ ಮತ್ತೊಮ್ಮೆ ತಿಳಿಯಿರಿ.
  • ಯಾವುದೇ ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯ (Cyclic Quadrilaterals) ಎದುರು ಮೂಲೆಗಳ ಮೊತ್ತ (Sum of opposite angles) 180° ಆಗಿರುತ್ತದೆ, ಇದರ ಬಗ್ಗೆ ಹೆಚ್ಚಿನ ಮಾಹಿತಿ ತಿಳಿಯಲು ಮೇಲೆ ತಿಳಿಸಿರುವ ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯನ್ನು ನೋಡಿ.

 2. ಸುಳುವಲ್ಲದ ನಾಲ್ಬದಿಯ ಗುಣಗಳು (Properties of complex quadrilaterals).

  • ತಿರುಚು ನಾಲ್ಬದಿಯು (Crossed Quadrilaterals) ಒಂದು ಸುಳುವಲ್ಲದ ನಾಲ್ಬದಿಯಾಗಿದೆ.
  • ಯಾವುದೇ ತಿರುಚು ನಾಲ್ಬದಿಯು ಒಂದು ಜೊತೆ ಕಿರಿಮೂಲೆ (Acute Angle) ಮತ್ತು ಇನ್ನೊಂದು ಜೊತೆ ಮೀರುಮೂಲೆ (Reflex Angle) ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
  • ಯಾವುದೇ ತಿರುಚು ನಾಲ್ಬದಿಯ ಮೂಲೆಗಳ ಒಟ್ಟು ಮೊತ್ತ 720° ಆಗಿರುತ್ತದೆ
  • ಯಾವುದೇ ತಿರುಚು ನಾಲ್ಬದಿಯು ದುಂಡುಸುತ್ತು ನಾಲ್ಬದಿಯಾಗಿರುತ್ತದೆ (Cyclic Quadrilaterals), ಕೆಳಗಿನ ಓಡುಚಿತ್ರದಲ್ಲಿ ಇದನ್ನು ಕಾಣಬಹುದು.

 (ಸೆಲೆಗಳುhttp://www.bbc.co.ukhttps://www.mathsisfun.comhttp://byjus.com/cbsehttp://www.mbacrystalballhttp://www.ask-math.comhttp://www.lavcmath.com, Wikipedia)

ಪಾಲುಗಳು (fractions) – ಭಾಗ 3

ಪಾಲುಗಳ ಕುರಿತು ಕೆಲವು ಹೇಳಿಕೆಗಳು.

ಒಂದು ವಸ್ತು ಅಥವಾ ವಸ್ತುಗಳ ಅಳತೆಗಳನ್ನು ಎಷ್ಟು ಸಮ ಪಾಲುಗಳನ್ನಾಗಿಯಾದರು ಮಾಡಬಹುದು.

ಇದರ ಬಗ್ಗೆ ಹೆಚ್ಚಿನ ಮಾಹಿತಿ ತಿಳಿಯಲು ಮೊದಲನೆಯ ಬರಹದ ಮೊದಲ ಹೇಳಿಕೆಗಳನ್ನು ನೋಡಿ.

ಒಂದು ವಸ್ತು ಅಥವಾ ಅಳತೆಯನ್ನು ಪಾಲುಗಳಲ್ಲಿ ತೋರಿಸಬೇಕೆಂದರೆ ವಸ್ತು ಅಥವಾ ಅಳತೆಯನ್ನು ಪಾಲುಗಳನ್ನಾಗಿಸಲೇಬೇಕು.

ಎರಡು ಪಾಲುಗಳಲ್ಲಿ ಮೇಲೆಣಿಗಳು (Numerators) ಒಂದೇ ಇದ್ದಾಗ ಮತ್ತು ಅದರ ಕೆಳಗೆಣಿ (Denominator) ಚಿಕ್ಕದಿದ್ದಾಗ ಆ ಪಾಲಿನ ಬೆಲೆ (Value of a fraction) ಹೆಚ್ಚಾಗಿರುತ್ತದೆ ಹಾಗು ಕೆಳಗೆಣಿ ದೊಡ್ಡದಿದ್ದಾಗ ಆ ಪಾಲಿನ ಬೆಲೆ ಕಡಿಮೆಯಾಗಿರುತ್ತದೆ.

ಉದಾಹರಣೆ:- 10/20 ಮತ್ತು 10/15 ಎಂಬ ಎರಡು ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ. ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಮೇಲೆಣಿ 10 ಆಗಿದೆ, ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಕೆಳಗೆಣಿಗಳು 20 ಮತ್ತು 15 ಆಗಿವೆ.
ನಾವುಗಳು ಈ ಎರಡು ಪಾಲುಗಳ ಕೆಳಗೆಣಿಗಳು ಸರಿಬರುವಂತೆ ಗುಣಿಸಬೇಕು. ಮೊದಲ ಪಾಲಿನ ಕೆಳಗೆಣಿ 20 ಕ್ಕೆ 3 ರಿಂದ ಗುಣಿಸಿದಾಗ 60 ಆಯಿತು, ಎರಡನೇ ಪಾಲಿನ ಕೆಳಗೆಣಿ 15 ಕ್ಕೆ 4 ರಿಂದ ಗುಣಿಸಿದಾಗ 60 ಆಯಿತು, ಹೀಗಾಗಿ ಈ ಎರಡು ಪಾಲುಗಳು ಸರಿಕೆಳಗೆಣಿ ಪಾಲುಗಳಾದವು (Like Fraction).
ಕೆಳಗೆಣಿಗಳನ್ನು ಸರಿಕೆಳಗೆಣಿಗಳನ್ನಾಗಿಸುವಾಗ ಯಾವ ಸಂಖ್ಯೆಯಿಂದ ಗುಣಿಸುತ್ತೇವೆಯೋ ಆಯಾ ಸಂಖ್ಯೆಯಿಂದ ಆಯಾ ಪಾಲಿನ ಮೇಲೆಣಿಗಳನ್ನು ಗುಣಿಸಿಕೊಳ್ಳಬೇಕು, ಏಕೆಂದರೆ ಪಾಲಿನ ಬೆಲೆ ಬದಲಾಗಬಾರದು, ಇದರಂತೆ ಕೆಳಗೆ ಗುಣಿಸಿಕೊಳ್ಳೋಣ.
ಮೊದಲ ಪಾಲು 10/20 = (10 x 3)/(20 x 3) = 30/60 ನ್ನು ಎರಡನೇ ಪಾಲು 10/15 = (10 x 4)/(15 x 4) = 40/60 ಕ್ಕೆ ಹೋಲಿಸಿದಾಗ ಎರಡನೇ ಪಾಲು ದೊಡ್ಡದಾಗಿದೆ. i.e 10/15 > 10/20. ಈ ಎರಡು ಪಾಲುಗಳಲ್ಲಿ ಎರಡನೇ ಪಾಲಿನ ಕೆಳಗೆಣಿ 15 ಚಿಕ್ಕದು ಮತ್ತು ಆ ಪಾಲಿನ ಬೆಲೆ ದೊಡ್ಡದಾಗಿದೆ. ಹಾಗು ಮೊದಲನೇ ಪಾಲಿನ ಕೆಳಗೆಣಿ 20 ದೊಡ್ಡದು ಮತ್ತು ಆ ಪಾಲಿನ ಬೆಲೆ ಚಿಕ್ಕದಾಗಿದೆ.

ಪಾಲುಗಳಲ್ಲಿ ಕೆಳಗೆಣಿಗಳು (Denominators) ಒಂದೇ ಇದ್ದಾಗ ಹಾಗು ಅದರ ಮೇಲೆಣಿ  (Numerator) ಚಿಕ್ಕದಿದ್ದಾಗ ಆ ಪಾಲಿನ ಬೆಲೆ (Value of a fraction) ಕಡಿಮೆಯಾಗಿರುತ್ತದೆ ಹಾಗು ಅದರ ಮೇಲೆಣಿ ದೊಡ್ಡದಿದ್ದಾಗ ಆ ಪಾಲಿನ ಬೆಲೆ ಹೆಚ್ಚಾಗಿರುತ್ತದೆ.

ಉದಾಹರಣೆ:- 5/9 ಮತ್ತು 4/9 ಎಂಬ ಎರಡು ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ. ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಕೆಳಗೆಣಿ 9 ಆಗಿದೆ, ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಮೇಲೆಣಿಗಳು 5 ಮತ್ತು 4 ಆಗಿವೆ. ಮೊದಲ ಪಾಲು 5/9 ನ್ನು ಎರಡನೇ ಪಾಲು 4/9 ಕ್ಕೆ ಹೋಲಿಸಿದಾಗ ಮೊದಲನೇ ಪಾಲು ದೊಡ್ಡದಾಗಿದೆ. i.e 5/9 > 4/9. ಈ ಎರಡು ಪಾಲುಗಳಲ್ಲಿ ಮೊದಲನೇ ಪಾಲಿನ ಮೇಲೆಣಿ 5 ದೊಡ್ಡದು ಮತ್ತು ಆ ಪಾಲಿನ ಬೆಲೆ ದೊಡ್ಡದಾಗಿದೆ. ಹಾಗು ಎರಡನೇ ಪಾಲಿನ ಮೇಲೆಣಿ 4 ಚಿಕ್ಕದು ಮತ್ತು ಆ ಪಾಲಿನ ಬೆಲೆ ಚಿಕ್ಕದಾಗಿದೆ.

ಪಾಲಿನಲ್ಲಿ ಬಿಡಿಪಾಲು (Unit Fraction) ಎಂದರೆ ಪಾಲಿನ ಮೇಲೆಣಿ ಯಾವಾಗಲೂ ಒಂದು (1) ಆಗಿರುತ್ತದೆ.

ಉದಾಹರಣೆ:- 1/2, 1/4, 1/5, 1/23, 1/41.

ಸರಿಕೆಳಗೆಣಿ ಪಾಲುಗಳಲ್ಲಿ (Like Fraction) ಕೆಳಗೆಣಿಗಳು ಒಂದೇ ರೀತಿಯಲ್ಲಿರುವುದರಿಂದ ಆಗುವ ಅನುಕೂಲಗಳು.

  • ಪಾಲುಗಳನ್ನು ಸುಲಭವಾಗಿ ಕೂಡಬಹುದು (Addition).
    ಉದಾಹರಣೆ:- 3/7 ಮತ್ತು 2/7 ಎಂಬ ಎರಡು ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ. ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಕೆಳಗೆಣಿ 7 ಆಗಿದೆ, ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಮೇಲೆಣಿಗಳು 3 ಮತ್ತು 2 ಆಗಿವೆ.
    ಇವುಗಳನ್ನು ಹೀಗೆ ಸುಲಭವಾಗಿ ಕೂಡಬಹುದು:
    3/7 + 2/7 = (3 + 2)/7 = 5/7
  • ಪಾಲುಗಳನ್ನು ಸುಲಭವಾಗಿ ಕಳೆಯಬಹುದು (Subtraction).
    ಉದಾಹರಣೆ:- 5/8 ಮತ್ತು 1/8 ಎಂಬ ಎರಡು ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ. ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಕೆಳಗೆಣಿ 7 ಆಗಿದೆ, ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಮೇಲೆಣಿಗಳು 5 ಮತ್ತು 1 ಆಗಿವೆ.
    ಇವುಗಳನ್ನು ಹೀಗೆ ಸುಲಭವಾಗಿ ಕಳೆಯಬಹುದು.
    5/8 – 1/8 = (5-1)/8 = 4/8
  • ಪಾಲುಗಳನ್ನು ಸುಲಭವಾಗಿ ಭಾಗಿಸಬಹುದು (Division).
    ಉದಾಹರಣೆ: 7/9 ಮತ್ತು 5/9 ಎಂಬ ಎರಡು ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ. ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಕೆಳಗೆಣಿ 9 ಆಗಿದೆ, ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಮೇಲೆಣಿಗಳು 7 ಮತ್ತು 5 ಆಗಿವೆ.
    ಇವುಗಳನ್ನು ಹೀಗೆ ಸುಲಭವಾಗಿ ಕಳೆಯಬಹುದು.
    (7/9) / (5/9 ) = 7/5
    ಇಲ್ಲಿ ಕೆಳಗೆಣಿಗಳು ಒಂದೇ ರೀತಿಯಲ್ಲಿರುವುದರಿಂದ ಭಾಗಿಸುವಾಗ ಕೆಳಗೆಣಿಗಳು ತಮ್ಮ ಬೆಲೆಯನ್ನು ಕಳೆದುಕೊಳ್ಳುತ್ತವೆ.
  • ಪಾಲುಗಳನ್ನು ಸುಲಭವಾಗಿ ಪೆಚ್ಚಿಸಬಹುದು (Multiplication).
    ಉದಾಹರಣೆ: 2/5 ಮತ್ತು 3/5 ಎಂಬ ಎರಡು ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ. ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಕೆಳಗೆಣಿ 5 ಆಗಿದೆ, ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಮೇಲೆಣಿಗಳು 2 ಮತ್ತು 3 ಆಗಿವೆ.
    (2/5) x (3/5) = (2×3)/(5 x 5 ) = (2×3)/(25 ) = 6/25.
  • ಪಾಲುಗಳನ್ನು ಸುಲಭವಾಗಿ ದೊಡ್ಡದು ಚಿಕ್ಕದೆಂದು ಕಂಡುಹಿಡಿಯಹುದು.
    ಉದಾಹರಣೆ:- 8/12 ಮತ್ತು 7/12 ಎಂಬ ಎರಡು ಪಾಲುಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ. ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಕೆಳಗೆಣಿ 12 ಆಗಿದೆ, ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ಪಾಲಿನ ಮೇಲೆಣಿಗಳು 8 ಮತ್ತು 7 ಆಗಿವೆ.
    ಮೊದಲ ಪಾಲು 8/12 ನ್ನು ಎರಡನೇ ಪಾಲು 7/12 ಕ್ಕೆ ಹೋಲಿಸಿದಾಗ ಮೊದಲನೇ ಪಾಲು ದೊಡ್ಡದಾಗಿದೆ.
    ಈ ಎರಡು ಪಾಲುಗಳಲ್ಲಿ ಮೊದಲನೇ ಪಾಲಿನ ಮೇಲೆಣಿ 8 ದೊಡ್ಡದು ಮತ್ತು ಆ ಪಾಲಿನ ಬೆಲೆ ದೊಡ್ಡದಾಗಿದೆ. ಹಾಗು ಎರಡನೇ ಪಾಲಿನ ಮೇಲೆಣಿ 7 ಚಿಕ್ಕದು ಮತ್ತು ಆ ಪಾಲಿನ ಬೆಲೆ ಚಿಕ್ಕದಾಗಿದೆ.
    ∴ 8/12 > 7/12.

ಪಾಲಿನ ಹಳಮೆ

  • ಸುಮಾರು 1000 BC ಹೊತ್ತಿನಲ್ಲಿ ಈಜಿಪ್ಟಿನ ಎಣಿಕೆಯರಿಗರು ಬಿಡಿಪಾಲುಗಳನ್ನು (Unit Fractions) ಕೂಡುತ್ತಿದ್ದರು, ಇದರಲ್ಲಿ ಮೇಲೆಣಿ ಯಾವಾಗಲೂ ಒಂದು (1) ಆಗಿರುತ್ತಿತ್ತು ಮತ್ತು ಕೆಳಗೆಣಿ ಯಾವುದಾದರೂ ಬಿಡಿ ಎಣಿಕೆ (Whole Number) ಆಗಿರುತ್ತಿತ್ತು. ಇದನ್ನು ಈಜಿಪ್ಟಿನ ಪಾಲೆಣಿಕೆ (Egyptian Fractions) ಎಂದು ಕರೆಯುವರು.
    ಉದಾಹರಣೆಗೆ.
    1/2 + 1/3 +1/16
  • ಸ್ಕಾಟ್ಲೆಂಡಿನ ಅರಕೆಗಾರ ಅಲೆಕ್ಸಾಂಡರ್ ಹೆನ್ರಿ ರಿಂಡ್ ಈಜಿಪ್ಟಿನಲ್ಲಿ ಅರಕೆ ಮಾಡುವಾಗ ಸಿಕ್ಕ 1650 BC – 1550 BC ಹೊತ್ತಿನ ಜೊಂಡುಹುಲ್ಲಿನ ಕಾಗದದಲ್ಲಿ (Papyrus) ಪಾಲುಗಳ ಬಗ್ಗೆ ತಿಳಿಸಲಾಗಿದೆ. ಅದನ್ನು ಈಗ ಅದನ್ನು ರಿಂಡ್ ಮೆತಮೆಟಿಕಲ್ ಪ್ಯಾಪಿರಸ್ (Rhind Mathematical Papyrus) ಎಂದು ಕರೆಯುವರು.
    300px-Rhind_Mathematical_Papyrus
  • ಎರಡು ಸಾವಿರ ವರ್ಷಗಳ ಹಿಂದೆ ಗ್ರೀಕರು ಬಿಡಿಪಾಲುಗಳ (Unit Fractions) ಬಗ್ಗೆ ಅರಕೆ ನಡೆಸಿದ್ದರು, ಗ್ರೀಕಿನ ಪೈತಾಗೋರಸ್ (500 BC) ಕೂಡ ಪಾಲುಗಳ ಬಗ್ಗೆ ಅರಕೆ ಮಾಡಿದ್ದನು.
  • ಸುಮಾರು 100 B.C ಹೊತ್ತಿಗೆ ಸೇರಿದ ಜೈನರ ಸ್ತಾನಂಗ ಸೂತ್ರ (Sthananga Sutra) ಎಂಬ ಅರಕೆಯ ಹೊತ್ತಗೆಯಲ್ಲಿ ಪಾಲುಗಳ ಬಗ್ಗೆ ಹೇಳಲಾಗಿದೆ.
  • 600 A.D ಹೊತ್ತಿಗೆ ಸೇರಿದ ಬಂಗಾಳದ ಎಣಿಕೆಯರಿಗ ಭಾಸ್ಕರನು (Bhaskara I) ಪಾಲುಗಳ ಬಗ್ಗೆ ಅರಕೆ ಮಾಡಿದ್ದನು.
  • ಸುಮಾರು 1200 A.D ಗೆ ಸೇರಿದ ಮೊರೊಕ್ಕೋದ (Morocco) ಎಣಿಕೆಯರಿಗ ಅಲ್-ಹಸರ್ (Al-Hassar) ಪಾಲುಗಳ ಬಗ್ಗೆ ಅರಕೆ ಮಾಡಿದ್ದನು.
  • ಸುಮಾರು ಹದಿನೈದು ನೂರರ ನಂತರ ಯುರೋಪಿನಲ್ಲಿ ಹತ್ತರ ಪಾಲುಗಳ ಬಗ್ಗೆ (Decimal Fractions) ಹಲವಾರು ಅರಕೆಗಳು ನಡೆದವು.

ಚಟುವಟಿಕೆ: 

ನೀವುಗಳು ದಿನಾಲು ನೋಡುವ ಒಂದಿಶ್ಟು ವಸ್ತುಗಳ ಪಾಲುಗಳನ್ನು ಪಟ್ಟಿಮಾಡಿ ಮತ್ತು ಅವುಗಳು ತಕ್ಕು ಪಾಲುಗಳು , ತಕ್ಕುದಲ್ಲದ ಪಾಲುಗಳು, ಸರಿ ಪಾಲುಗಳು, ಬೆರಕೆ ಪಾಲುಗಳು, ಸರಿಕೆಳಗೆಣಿ ಪಾಲುಗಳು ಮತ್ತು ಹೋಲದ ಕೆಳಗೆಣಿ ಪಾಲುಗಳಾಗಿವೆಯೇ ಎಂದು ತಾಳೆಹಚ್ಚಿ ನೋಡಿ.
ಹೆಚ್ಚಿನ ಮಾಹಿತಿಗೆ ಒಂದನೇ ಬರಹ ಮತ್ತು ಎರಡನೇ ಬರಹಗಳನ್ನು ನೋಡಿ.

ಸೆಲೆಗಳು:

  1. https://www.learnnext.com/nextgurukul/wiki/concept/CBSE/VI/Maths/Types-of-Fractions.htm
  2. http://www.ask-math.com/Types-of-fractions.html
  3. http://metal.brightcookie.com/1_calc/calc_t4/htm/calc4_2_1.htm
  4. http://study.com/academy/lesson/what-is-a-fraction-definition-and-types.html
  5. http://www.basic-math-explained.com/types-of-fractions.html#.V-9Y4SF97IU
  6. http://www.math-only-math.com/Types-of-Fractions.html
  7. http://images.tutorvista.com/cms/images/41/like-and-unlike-fractions.png
  8. http://www.ilmoamal.org/bms/attachments/course_pics/4mixedfrac.JPG
  9. ಐದನೇ ತರಗತಿಯ ಗಣಿತ ಪಟ್ಯಪುಸ್ತಕ