ಕರೆಂಟ್ ಅಂದರೇನು ? ಕರೆಂಟನ್ನು ತಾಮ್ರ, ಕಬ್ಬಿಣದಂತಹ ವಸ್ತುಗಳಷ್ಟೇ ಏಕೆ ತನ್ನ ಮೂಲಕ ಹಾಯ್ದು ಹೋಗಲು ಬಿಡುತ್ತವೆ ? ವೋಲ್ಟೇಜ್ ಅಂದರೇನು ? ಹೀಗೆ ಹಲವು ಪ್ರಶ್ನೆಗಳು ನಮ್ಮಲ್ಲಿ ಮೂಡಬಹುದು. ಮುಂದಿನ ಕೆಲವು ಬರಹಗಳಲ್ಲಿ ‘ಮೊದಲ’ ಹಂತದಿಂದ ವಿಷಯವನ್ನು ಅರಿಯಲು ಪ್ರಯತ್ನಿಸೋಣ.
ಮೊದಲಿಗೆ ನಮ್ಮ ಎಂದಿನ ಬದುಕಿನಲ್ಲಿ ಕಂಡುಬರುವ ಈ ಉದಾಹರಣೆಗಳನ್ನು ನೋಡಿ,
ರೇಷ್ಮೆ ಬಟ್ಟೆಗೆ ಮಯ್ಯಿ ತಾಕಿದಾಗ ಕೆಲವು ಸಲ ಚುರುಕೆನ್ನುವಂತ ಅನುಭವವಾಗುತ್ತದೆ.
ಮೇಲಿನ ಎರಡು ಉದಾಹರಣೆಗಳ ಹಿಂದೆ ಇರುವುದು ವಸ್ತುಗಳ ನಡುವೆ ಆಗುವ ಮಿಂಚಿನಂತಹ ಅಂದರೆ ಕರೆಂಟನಂತಹ ಕಸುವಿನ ಸಾಗಾಟ. ಇದನ್ನು ಇಂಗ್ಲೀಶಿನಲ್ಲಿ ‘ಚಾರ್ಜ್’ (Charge) ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಕನ್ನಡದಲ್ಲಿ ಇದಕ್ಕೆ ‘ಹುರುಪು’ ಎನ್ನಬಹುದು. ಬಾಚಣಿಗೆಯಲ್ಲಿದ್ದ ಒಂದು ಬಗೆಯ ಮಿಂಚಿನ ‘ಹುರುಪು’ (electric charge) ಹಾಳೆಯಲ್ಲಿದ್ದ ಇನ್ನೊಂದು ಬಗೆಯ ಮಿಂಚಿನ ಹುರುಪನ್ನು ತನ್ನೆಡೆಗೆ ಸೆಳೆಯುವುದರಿಂದ ನಮಗೆ ಮಿಂಚು ಹರಿವಿನ ಅನುಭವಾಗುತ್ತದೆ. ಇದೇನಿದು ‘ಒಂದು ಬಗೆ’ ಮತ್ತು ‘ಇನ್ನೊಂದು ಬಗೆ’ಯ ಹುರುಪು (charge) ? ಹಾಗಾದರೆ ಬನ್ನಿ ಈಗ ಕರೆಂಟ್ ಹೊರತಾದ ವಸ್ತುಗಳ ಒಳಗಡೆ ಇಣುಕೋಣ.
1) ವಸ್ತುಗಳ ಒಳಗಡೆಯ ಕಿರಿದಾದ ರೂಪಕ್ಕೆ ‘ಅಣು’/’ಸೀರು’ (atom) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಕಬ್ಬಿಣ, ಕಟ್ಟಿಗೆ, ನೀರು, ಹಾಳೆ ಮುಂತಾದ ಎಲ್ಲಾ ವಸ್ತುಗಳೂ ಕೋಟಿಗಟ್ಟಲೇ ಕಿರಿದಾದ ಅಣುಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿರುತ್ತವೆ. ವಸ್ತುವಿನ ಅಣುಗಳು ಅವುಗಳ ಗುಣವನ್ನು ತೀರ್ಮಾನಿಸುತ್ತವೆ.
2) ವಸ್ತುಗಳ ಅಣುವಿನಲ್ಲಿ ಈ ಕೆಳಗಿನ ಭಾಗಗಳಿರುತ್ತವೆ.
ನಡುವಣ (nucleus): ಇದು ಅಣುವಿನ ನಟ್ಟ ನಡುವಿನ ಭಾಗವಾಗಿದ್ದು ಇದರಲ್ಲಿ ಪ್ರೋಟಾನ್ ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ಗಳು ಇರುತ್ತವೆ.
ಪ್ರೋಟಾನ್ಗಳನ್ನು ‘ಸೆಳೆತದ ಬಯಲಿಗೆ’ (magnetic field) ಒಳಪಡಿಸಿದಾಗ ಅವುಗಳು ಬಯಲಿಗೆ ಎದುರಾಗಿ ಸಾಗುವುದರಿಂದ ಅವುಗಳು ಒಂದು ಬಗೆಯ ‘ಹುರುಪು’ (charge) ಹೊಂದಿವೆ ಎಂದು ಗುರುತಿಸಲಾಗುತ್ತದೆ. ತಿಳುವಳಿಕೆಯನ್ನು ಸುಲಭವಾಗಿಸಲು ಪ್ರೋಟಾನ್ಗಳು ತೋರುವ ಈ ಎದುರು ಬಗೆಯ ಹುರುಪಿಗೆ (charge) ‘ಕೂಡು’ ಅಂದರೆ + (positive) ಗುರುತನ್ನು ತಳುಕುಹಾಕಲಾಗಿದೆ, ಹಾಗಾಗಿ ಪ್ರೋಟಾನ್ಗಳನ್ನು ‘ಪಾಸಿಟಿವಲಿ ಚಾರ್ಜ್ಡ್’ (positively charged) ಅನ್ನಲಾಗುತ್ತದೆ. ಈ ಗುಣವನ್ನು ಬಳಸುತ್ತಾ ಕನ್ನಡದಲ್ಲಿ ಪ್ರೋಟಾನ್ಗಳನ್ನು ‘ಕೂಡು-ಹುರುಪಿನವು’ ಇಲ್ಲವೇ ‘ಕೂಡುವಣಿಗಳು’ ಎಂದು ಕರೆಯಬಹುದು.
ಅದೇ ನ್ಯೂಟ್ರಾನ್ಗಳನ್ನು ‘ಸೆಳೆತದ ಬಯಲಿಗೆ’ (magnetic field) ಒಳಪಡಿಸಿದಾಗ ಅವುಗಳು ಯಾವುದೇ ಒಂದು ಬಗೆಯ ಹುರುಪು (charge) ತೋರಗೊಡುವುದಿಲ್ಲ (ಒಂದು ಬಗೆಯ ಹುರುಪಿಲ್ಲದೇ ನೆಲೆಗೊಂಡಿರುವುದರಿಂದ ಕನ್ನಡದಲ್ಲಿ ನ್ಯೂಟ್ರಾನ್ಗಳನ್ನು ‘ನೆಲೆವಣಿಗಳು’ ಅನ್ನಬಹುದು).
ನಡುವಣದ (nucleus) ಸುತ್ತ ಸುತ್ತುವ ತುಣುಕುಗಳೇ ಇಲೆಕ್ಟ್ರಾನ್ಸ್. ಇವುಗಳನ್ನು ‘ಸೆಳೆತದ ಬಯಲಿಗೆ’ (magnetic field) ಒಳಪಡಿಸಿದಾಗ, ಬಯಲಿನೆಡೆಗೆ ಸಾಗುವುದರಿಂದ ಇವುಗಳು ಪ್ರೋಟಾನ್ಗಗಿಂತ ಬೇರೆ ಬಗೆಯ ಹುರುಪನ್ನು (charge) ಹೊಂದಿವೆ ಎಂದು ತಿಳಿದುಕೊಳ್ಳಲಾಗಿದೆ. ಆದ್ದರಿಂದ ಪ್ರೋಟಾನ್ಗಳಿಗೆ ‘ಕೂಡು’ (+) ಗುರುತು ತಳುಕುಹಾಕಿದಂತೆ ಇಲೆಕ್ಟ್ರಾನ್ಗಳಿಗೆ ಕಳೆ (-) ಗುರುತು ತಳುಕಿಸಲಾಗಿದೆ. ಅಂದರೆ ಇಲೆಕ್ಟ್ರಾನ್ಸಗಳು ‘ನೆಗೆಟಿವ್ ಚಾರ್ಜ್ಡ್’ (negative charge) ಹೊಂದಿರುತ್ತವೆ. ಹಾಗಿದ್ದರೆ ಇಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ಕನ್ನಡದಲ್ಲಿ ‘ಕಳೆ-ಹುರುಪಿನವು’ ಇಲ್ಲವೇ ‘ಕಳೆವಣಿಗಳು’ ಅನ್ನಬಹುದು.
ಒಂದು ಅಣುವಿನಲ್ಲಿ ಕೂಡುವಣಿಗಳು (protons) ಮತ್ತು ಕಳೆವಣಿಗಳು (electrons) ಅಷ್ಟೇ ಸಂಖ್ಯೆಯಲ್ಲಿದ್ದರೆ ಆ ವಸ್ತುಗಳು ಕರೆಂಟಿಗೆ ಅನುವು ಮಾಡಿಕೊಡುವುದಿಲ್ಲ. ಅದೇ ಕಳೆವಣಿಗಳು (electrons) ಮತ್ತು ಕೂಡುವಣಿಗಳ (protons) ಸಂಖ್ಯೆಯು ಅಣುವಿನಲ್ಲಿ ಬೇರೆ ಬೇರೆ ಸಂಖ್ಯೆಯಲ್ಲಿದ್ದರೆ ಆ ವಸ್ತುವಿನಿಂದ ಇನ್ನೊಂದು ವಸ್ತುವಿಗೆ ಕಳೆವಣಿಗಳ (electrons) ಕೊಡುಕೊಳ್ಳುವಿಕೆಯಾಗಿ ಕರೆಂಟ್ ಉಂಟಾಗುತ್ತದೆ.
ಬಾಚಣಿಗೆಯಿಂದ ಕೂದಲು ಬಾಚಿದಾಗ ಮತ್ತು ಬಾಚಣಿಗೆಯನ್ನು ಹಾಳೆಯೆಡೆಗೆ ಹಿಡಿದಾಗ ಆದದ್ದು ಇದೇ, ಕೂದಲಿನ ಅಣುಗಳು ಇಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ಕಳೆದುಕೊಂಡರೆ ಬಾಚಣಿಕೆಯ ಅಣುಗಳು ಇಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ಪಡೆದುಕೊಂಡವು. ಹೀಗೆ ಇಲೆಕ್ಟ್ರಾನ್ಗಳ ಜಿಗಿತದಿಂದ ಉಂಟಾದದ್ದೇ ಕರೆಂಟ್. ಈ ಬಗೆಯಲ್ಲಿ ಎರಡು ವಸ್ತುಗಳ ಉಜ್ಜುವಿಕೆ/ತಾಕುವಿಕೆಯಿಂದ ಉಂಟಾಗುವ ಕರೆಂಟನ್ನು ನೆಲೆಸಿದ ಕರೆಂಟ್ (static current/electricity) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.
ನಮ್ಮ ಮನೆಗೆ ಹರಿಯುವ ಕರೆಂಟ್ ವಸ್ತುಗಳ ಅಣುಗಳಲ್ಲಿರುವ ಇಲೆಕ್ಟ್ರಾನ್ಗಳ ಹರಿವಿನಿಂದಲೇ ದೊರೆಯುವುದು ಆದರೆ ಅದು ನೆಲೆಸಿದ ಕರೆಂಟಗಿಂತ (static current) ಒಂಚೂರು ಬೇರೆ ಬಗೆಯದು. ಈ ಕುರಿತು ಮುಂದಿನ ಬರಹದಲ್ಲಿ ನೋಡೋಣ.
ಕನ್ನಡದಲ್ಲಿ ಹಲವು ಬಗೆಯ ಅರಿವಿನ ಕವಲುಗಳನ್ನು ಕಟ್ಟ ಬೇಕಾದರೆ ಪದಕಟ್ಟಣೆ ಮಾಡುವುದು ಅಗತ್ಯ. ಡಾ.ಡಿ.ಎಸ್.ಶಿವಪ್ಪ ಅವರು 1970 ರಷ್ಟು ಮುಂಚೆನೇ ಕನ್ನಡದಲ್ಲಿ ವೈದ್ಯ ಪದಕೋಶವನ್ನು ಅಣಿಗೊಳಿಸಿದ್ದರು. ಡಾ. ಶಿವಪ್ಪ ಅವರಲ್ಲದೇ ಇನ್ನೂ ಹಲವು ಮಹನೀಯರು ಈ ಕುರಿತು ಕೆಲಸ ಮಾಡಿದ್ದಾರೆ. ಈ ಕೆಲಸವನ್ನು ಮುಂದುವರೆಸಬೇಕಿದೆ.
ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಕಟ್ಟಿದ ಮಯ್ಯರಿಮೆಯ ಪದಪಟ್ಟಿಯನ್ನು ಕೆಳಗಿನ ಕಡತದಲ್ಲಿ ಕಾಣಬಹುದು.
ವಿಜ್ಞಾನದ ಉಪಯೋಗಗಳನ್ನು ನಾವು ಪ್ರತಿದಿನ ಪಡೆಯುತ್ತಿದ್ದರೂ, ವಿಜ್ಞಾನ ಹೊಮ್ಮಿಸಿದ ತಂತ್ರಜ್ಞಾನಗಳ ಬಳಕೆಯಿಲ್ಲದೇ ಇಂದು ಬದುಕು ಕಷ್ಟ ಅಂತಾ ಅನುಭವಕ್ಕೆ ಬಂದರೂ, ಅದರ ಕಲಿಕೆಯಲ್ಲಿ ನಾವು ಇನ್ನೂ ಹಿಂದೇಟು ಹಾಕುತ್ತೇವೆ. ಅದರಲ್ಲೂ ಶಾಲೆಯಲ್ಲಿ ಓದುತ್ತಿರುವ ಹೆಚ್ಚಿನ ಮಕ್ಕಳಿಗೆ ವಿಜ್ಞಾನ ಮತ್ತು ಗಣಿತವೆಂದರೆ ಕಬ್ಬಿಣದ ಕಡಲೆಯೇ ಸರಿ! “ಅದ್ಯಾಕೇ ಈ ವಿಷಯಗಳು ಇವೆ?” ಅಂತಾ ಹಲವು ಮಕ್ಕಳಿಗೆ ಅನ್ನಿಸುತ್ತಿರುವುದನ್ನು ಕಾಣಬಹುದು. ಪದವಿಯ ಹಂತಕ್ಕೆ ಹೋಗುವ ವಿದ್ಯಾರ್ಥಿಗಳೂ ಕೂಡ ಕಾಟಾಚಾರಕ್ಕೆ ಇಲ್ಲವೇ ತಂತ್ರಜ್ಞಾನ ಕಲಿಕೆಯಿಲ್ಲದೆ ಉದ್ಯೋಗ ಸಿಗುವುದಿಲ್ಲ ಅನ್ನುವ ಕಾರಣಕ್ಕಾಗಿಯೇ ಕಲಿಯುತ್ತಾರೆ ಹೊರತು ನಿಜವಾಗಿ ಅದರಲ್ಲಿ ಆಸಕ್ತಿ ಇಟ್ಟುಕೊಂಡು ಕಲಿಯುವುದು ತುಂಬಾ ಕಡಿಮೆ.
“ವಿಜ್ಞಾನದಲ್ಲಿ ಯಾಕೆ ಮಕ್ಕಳಿಗೆ ಅಷ್ಟು ಆಸಕ್ತಿ ಹುಟ್ಟುವುದಿಲ್ಲ” ಅನ್ನುವುದಕ್ಕೆ ಹಲವು ಕಾರಣಗಳಿರಬಹುದು. ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಹಲವಾರು ಶಾಲೆಯ ಮಕ್ಕಳೊಂದಿಗೆ ಒಡನಾಡಿದಾಗ ನನಗಾದ ಅನುಭವಗಳನ್ನು ಇಲ್ಲಿ ಹಂಚಿಕೊಳ್ಳುತ್ತಿರುವೆ. ಬೆಂಗಳೂರಿನ ಬಸವನಗುಡಿಯಲ್ಲಿರುವ “ಮುನ್ನೋಟ“, ಕನ್ನಡಿಗರ ಏಳಿಗೆಗೆ ಸಂಬಂಧಿಸಿದ ಪುಸ್ತಕಗಳಿಗೆ ಮೀಸಲಾದ ಮಳಿಗೆಯಾಗಿದ್ದು, ಅದರ ಜತೆಗೆ ಕನ್ನಡ ಮಾಧ್ಯಮದ ಶಾಲೆಗಳಿಗೆ ಭೇಟಿಕೊಟ್ಟು ದಾನಿಗಳ ನೆರವಿನಿಂದ ಮಕ್ಕಳಿಗೆ ವಿಜ್ಞಾನದ ಪುಸ್ತಕಗಳನ್ನು ಹಂಚುವ ಕೆಲಸವನ್ನು ಮಾಡುತ್ತಿದೆ. ಕನ್ನಡದಲ್ಲಿ ವಿಜ್ಞಾನದ ಬರಹಗಳನ್ನು ಮೂಡಿಸುತ್ತಿರುವ ನಮ್ಮ ಅರಿಮೆ ತಂಡ, ಮುನ್ನೋಟ ತಂಡದೊಂದಿಗೆ ಸೇರಿ ಹಲವು ಶಾಲೆಗಳಿಗೆ ಭೇಟಿಕೊಟ್ಟಾಗ ಆಗಿರುವ ಅನುಭವದ, ಚರ್ಚೆಯ ಸಾರಾಂಶವನ್ನು ಇಲ್ಲಿ ಬರೆದಿರುವೆ.
ಶಾಲೆಯ ಮಕ್ಕಳೊಂದಿಗೆ ಈ ಕಾರ್ಯಕ್ರಮದಲ್ಲಿ ಮಾತನಾಡಲು ಶುರು ಮಾಡಿದಾಗ “ಯಾರಿಗೆ ವಿಜ್ಞಾನ ಇಷ್ಟ?” ಅನ್ನುವ ಪ್ರಶ್ನೆ ಕೇಳಿದಾಗ ಹೆಚ್ಚು ಕಡಿಮೆ ಎಲ್ಲ ಮಕ್ಕಳೂ “ನನಗಿಷ್ಟ” ಅನ್ನುತ್ತಾರೆ. “ಇಷ್ಟ ಇಲ್ಲ” ಅಂದರೆ ಶಿಕ್ಷಕರು ಬಯ್ಯಬಹುದು ಇಲ್ಲವೇ ಗುಂಪಿನಲ್ಲಿ ಎಲ್ಲರೂ “ಇಷ್ಟ” ಅನ್ನುತ್ತಿದ್ದಾರೆ ನಾನು ಹೇಗೆ “ಇಲ್ಲ” ಅನ್ನಲಿ ಅನ್ನುವ ಅಳುಕು ಮಕ್ಕಳಲ್ಲಿ ಇರುವುದು ಗಮನಕ್ಕೆ ಬಂದಿತು. ಮುಂದಿನ ಪ್ರಶ್ನೆಯಾಗಿ “ವಿಜ್ಞಾನ ಯಾಕೆ ಇಷ್ಟ?” ಅಂತಾ ಕೇಳಿದಾಗ, ಹೆಚ್ಚಿನ ಮಕ್ಕಳು “ಅದರಲ್ಲಿ ಪ್ರಯೋಗಗಳಿರುತ್ತವೆ ಅದಕ್ಕೆ ಇಷ್ಟ” ಎಂದು ಹೇಳುತ್ತಾರೆ.
ಮುಂದುವರೆಯುತ್ತಾ, “ಹಾಗಾದರೆ ವಿಜ್ಞಾನ ಅಂದರೇನು? ಯಾಕೆ ಅದನ್ನು ಕಲಿಯಬೇಕು?” ಅಂತಾ ಕೇಳಿದಾಗ ಹೆಚ್ಚಿನ ಮಕ್ಕಳು ನಿಜವಾಗಿ ಅವಕ್ಕಾಗಿ ಉತ್ತರಕ್ಕೆ ತಡಕಾಡುತ್ತಿರುವುದನ್ನು ಕಂಡೆ. ಕೆಲವು ಮಕ್ಕಳು ಈ ಪ್ರಶ್ನೆಗೆ ಉತ್ತರವಾಗಿ ಜೀವಕೋಶಗಳು, ಪರಿಸರ ಮುಂತಾದ ಪಠ್ಯಪುಸ್ತಗಳಲ್ಲಿರುವ ಪಾಠದ ಹೆಸರಗಳನ್ನು ಹೇಳಿದರು. ಕೆಲವೇ ಕೆಲವು ಮಕ್ಕಳು “ವಿಜ್ಞಾನ ಕಲಿತರೆ ನಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನ ವಿಷಯಗಳ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳಬಹುದು” ಅನ್ನುವಂತಹ ಉತ್ತರಗಳನ್ನು ನೀಡಿದರು.
ಈ ಮೇಲಿನ ಪ್ರಶ್ನೋತ್ತರಗಳಿಂದ ಕಂಡುಬಂದಿದ್ದೇನೆಂದರೆ,
ಹೆಚ್ಚಿನ ಮಕ್ಕಳಿಗೆ “ವಿಜ್ಞಾನ” ಎಂಬುದು ಒಂದು “ಪಠ್ಯಪುಸ್ತಕದ ವಿಷಯ” ಅಷ್ಟೆ.
ಪ್ರಯೋಗಗಳ (ಅಂದರೆ ಮಾಡಿನೋಡುವುದರ) ಮೂಲಕ ಹೇಳಿದರೆ ವಿಜ್ಞಾನ ಕಲಿಯುವುದು ಮಕ್ಕಳಿಗೆ ಇಷ್ಟ.
ಮಾತುಕತೆಯ ಮುಂದಿನ ಅಂಗವಾಗಿ ಅವರಿಗೆ ವಿಜ್ಞಾನಿಗಳ ಬದುಕನ್ನು ಚಿಕ್ಕ ಕತೆಗಳ ರೂಪದಲ್ಲಿ ಹೇಳಿದೆ.
ಗೆಲಿಲಿಯೋ ಮೊದಲ ಬಾರಿಗೆ ಭೂಮಿಯ ಸುತ್ತ ಗ್ರಹಗಳು ಮತ್ತು ಸೂರ್ಯ ಸುತ್ತುವುದಿಲ್ಲ ಬದಲಾಗಿ ಸೂರ್ಯ ನಡುವಿನಲ್ಲಿದ್ದು ಭೂಮಿ ಸೇರಿದಂತೆ ಉಳಿದ ಗ್ರಹಗಳು ಆತನ ಸುತ್ತ ಸುತ್ತುತ್ತವೆ ಅಂತಾ ಹೇಳಿದ್ದು ಮತ್ತು ಅದಕ್ಕೆ ಸಮಾಜ ಅವರನ್ನು ಹೀಯಾಳಿಸಿದ್ದರ ಬಗ್ಗೆ ಮತ್ತು ಹೀಯಾಳಿಕೆಗೆ ಎದೆಗುಂದದೆ ಗೆಲಿಲಿಯೋ ಮುನ್ನಡೆದುದರ ಕುರಿತಾಗಿಯೂ ಹೇಳಿದೆ.
ಅಲೆಕ್ಸಾಂಡರ್ ಗ್ರಾಹಂ ಬೆಲ್ ಅವರು ತಮ್ಮ ತಾಯಿಯ ಕಿವುಡುತನದಿಂದ ನೊಂದು ಸುಮ್ಮನಾಗಿರದೇ ಶಬ್ದ ಮತ್ತು ಅದರ ಸಾಗಾವಿಕೆಯ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸಿದರು. ಇದೇ ಮುಂದೆ ಅವರು ಟೆಲಿಫೋನ್ ಕಂಡುಹಿಡಿಯಲು ಅಡಿಪಾಯವಾಗಿದ್ದರ ಕುರಿತು ತಿಳಿಸಿದೆ.
ಶ್ರೀನಿವಾಸ ರಾಮಾನುಜನ್ ತುಂಬಾ ಚಿಕ್ಕ ವಯಸ್ಸಿನಲ್ಲಿ ತೀರಿಕೊಂಡರೂ, ಅವರು ಗಣಿತದಲ್ಲಿ ಮಾಡಿದ ಮೇರುಮಟ್ಟದ ಕೆಲಸದ ಬಗ್ಗೆ ಹೇಳಿದೆ.
ವಿಶ್ವೇಶ್ವರಯ್ಯನವರು ಜೋಗದಿಂದ ದುಮ್ಮಿಕ್ಕುವ ನೀರು ಕಂಡು ಬೇರೆಯವರಂತೆ ಬರೀ ಮುದಗೊಳ್ಳದೇ ಅದರಲ್ಲಿ ಅಡಗಿರುವ ಶಕ್ತಿಯ ಬಳಕೆಯ ಬಗ್ಗೆ ಮುಂದಾಗಿದ್ದರ ಕುರಿತು ಹೇಳಿದೆ.
ಕತೆಯ ಜತೆಗೆ ಆಯಾ ವಿಜ್ಞಾನಿಗಳ ಚಿತ್ರ ಗುರುತಿಸಲು ಇಲ್ಲವೇ ಅವರು ಮಾಡಿದ ಕೆಲಸದ ಬಗ್ಗೆ ಪ್ರಶ್ನೆ ಕೇಳಿ ಅದಕ್ಕೆ ಸರಿಯಾಗಿ ಉತ್ತರಿಸಿದ ಮಕ್ಕಳಿಗೆ ಪುಸ್ತಕ ರೂಪದಲ್ಲಿ ಬಹುಮಾನ ನೀಡಿದೆ. ಕತೆ ಮತ್ತು ಬಹುಮಾನ ಮಕ್ಕಳಿಗೆ ಇಷ್ಟವಾದವು ಅನ್ನಿಸಿತು. ವಿಜ್ಞಾನಿಗಳು ತಮ್ಮ ಜೀವನದುದ್ದಕ್ಕೂ ಹಲವು ಕಷ್ಟಗಳನ್ನು ಎದುರಿಸಿದರೂ ಹೇಗೆ ಸಾಧನೆ ಮಾಡಿದರು ಅನ್ನುವುದನ್ನು ಮನವರಿಕೆ ಮಾಡುವ ಉದ್ದೇಶದಿಂದ ಮಾತುಕತೆಯಲ್ಲಿ ಈ ಮೇಲಿನ ಬಗೆ ಅಳವಡಿಸಿಕೊಂಡೆ.
ಮುಂದುವರೆಯುತ್ತಾ, ಕಣ್ಕಟ್ಟಿನ ಮಾದರಿಗಳಲ್ಲಿ ಒಂದಾದ “ತಿರುಗುವ ಹಾವುಗಳು” (Rotating Snakes) ಚಿತ್ರವನ್ನು ಮಕ್ಕಳಿಗೆ ತೋರಿಸಿದಾಗ, ಚಿತ್ರಗಳು ತಿರುಗುತ್ತಿರುವಂತೆ ಕಾಣುವುದು ಆದರೆ ನಿಜವಾಗಿ ಅವು ತಿರುಗದೇ ನಮ್ಮ ಮಿದುಳಿಗೆ ಉಂಟಾಗುವ “ಅನಿಸಿಕೆ” ಎಂದು ತಿಳಿಸಿದೆ. ಹಾಗೆನೇ ವಿಜ್ಞಾನ ಕೂಡ ಬರೀ ಕಣ್ಣಿಗೆ ಕಾಣುವುದನ್ನು ನಿಜವೆಂದು ಬಗೆಯದೇ ವಿಷಯದ ಆಳಕ್ಕೆ ಇಳಿಯಲು ನೆರವಾಗುತ್ತದೆ ಎಂದು ಕೊಂಡಿ ಬೆಸೆಯಲು ಪ್ರಯತ್ನಿಸಿದೆ.
ಲಕ್ಷಗಟ್ಟಲೇ ವರುಷಗಳಿಂದ ಮನುಷ್ಯ ಹಂತ ಹಂತವಾಗಿ ಹೇಗೆ ತನ್ನ ಅರಿವನ್ನು ಹಿಗ್ಗಿಸಿಕೊಳ್ಳುತ್ತಾ ಬಂದಿದ್ದಾನೆ ಎನ್ನುವುದನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದ ಮೂಲಕ ಚರ್ಚಿಸಿದೆ. ಸುತ್ತಣವನ್ನು ಅರಿಯದೇ ಹಾಗೆಯೇ ಇದ್ದು ಬಿಟ್ಟಿದ್ದರೆ ಮನುಷ್ಯ ಕೂಡ ಇತರೆ ಪ್ರಾಣಿಗಳಂತೆ ಆಗಿ ಬಿಡುತ್ತಿದ್ದ. ಚಿಕ್ಕ-ಚಿಕ್ಕದಾಗಿ ಎಡೆಬಿಡದೇ ಇಟ್ಟ ಕಲಿಕೆಯ ಹೆಜ್ಜೆಗಳು ಇಂದು ನಮ್ಮ ನೆರವಿಗೆ ಬಂದಿವೆ. ಹಾಗಾಗಿ ವಿಜ್ಞಾನದಲ್ಲಿ ಪ್ರತಿಯೊಬ್ಬರ ಯೋಚನೆ, ತೊಡಗುವಿಕೆ ಮನುಕುಲಕ್ಕೆ ಬೇಕಾಗಿದೆಯೆಂದೆ. (ಮಕ್ಕಳೆಡೆಗೆ ಕೈ ತೋರಿಸುತ್ತಾ)
ಮಕ್ಕಳನ್ನು ಮಾತುಕತೆಯಲ್ಲಿ ಇನ್ನಷ್ಟು ತೊಡಗಿಸಲು ಮತ್ತು ನಿಜವಾಗಿ ವಿಜ್ಞಾನ ಎಂದರೇನು ಅಂತಾ ಮನವರಿಕೆ ಮಾಡಲು “ಏನು? ಏಕೆ? ಹೇಗೆ?” ಅನ್ನುವ ಚಟುವಟಿಕೆಯೊಂದನ್ನು ರೂಪಿಸಿದೆ. ಮಕ್ಕಳಿಗೆ ಇಷ್ಟವಾಗುವಂತೆ ಮಲ್ಲಿಗೆ, ಸಂಪಿಗೆ, ಗುಲಾಬಿ, ತಾವರೆ ಎಂಬ ಹೆಸರು ಆಯ್ದುಕೊಂಡು ಮೂರು-ನಾಲ್ಕು ತಂಡಗಳನ್ನು ಮಾಡಿದೆ.
ಈ ಚಟುವಟಿಕೆಯಲ್ಲಿ ಪ್ರತಿಯೊಂದು ತಂಡ ಮೂರು ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಬೇಕು. ಆ ಪ್ರಶ್ನೆಗಳು ಹೇಗಿರಬೇಕೆಂದರೆ,
– ಸುತ್ತಮುತ್ತ ಕಾಣುವ ಏನೇ ಕುತೂಹಲ, ಅಚ್ಚರಿಗಳನ್ನು ಹುಟ್ಟಿಸಿದ ಪ್ರಶ್ನೆಗಳಾಗಿರಬೇಕು.
– ಕೇಳುವ ಪ್ರಶ್ನೆಗಳು ಅವರ ಅನುಭವಗಳಾಗಿರಬೇಕು ಹೊರತು ಪಠ್ಯಪುಸ್ತಕಗಳಿಂದ ಎತ್ತುಕೊಂಡಿದ್ದು ಆಗಿರಬಾರದು.
– ಕೇಳುವ ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರ ಗೊತ್ತಿರಬೇಕಂತಿಲ್ಲ, ಬರೀ ಚಂದದ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಿದರೆ ಸಾಕು.
ಪ್ರಶ್ನೆಗಳನ್ನು ಕಲೆಹಾಕಲು 10 ನಿಮಿಷಗಳ ಸಮಯ ಗೊತ್ತುಪಡಿಸಿದೆ.
ಚಟುವಟಿಕೆ ಶುರು ಮಾಡುತ್ತಿರುವಂತೆ ಕೆಲವು ಮಕ್ಕಳು ಗುನುಗುಟ್ಟುತ್ತಾ ಕುಳಿತರು ಇನ್ನು ಕೆಲವು ಮಕ್ಕಳು ಬೇರೆಯ ಮಕ್ಕಳೊಂದಿಗೆ ಬೆರೆಯದೇ ಒಬ್ಬಂಟಿಯಾಗಿ ಕುಳಿತುಕೊಂಡಿದ್ದರು. ಚಟುವಟಿಕೆಯ ಬಗ್ಗೆ ಇನ್ನಷ್ಟು ತಿಳಿಸಲು,
“ನೋಡಿ ಮಕ್ಕಳೇ ಪ್ರತಿದಿನ ಬೆಳಿಗ್ಗೆ ಎದ್ದಾಗಿನಿಂದ ತಿಂಡಿ ತಿಂದು, ಶಾಲೆಗೆ ಬಂದು ಪಾಠ ಓದಿ, ಊಟ ಮಾಡಿ, ಆಟವಾಡಿ, ಸಂಜೆ ಮನೆಗೆಲಸ ಮಾಡಿ, ರಾತ್ರಿ ಊಟ ಮಾಡಿ ಮಲಗುವವರೆಗೂ ಹಲವಾರು ವಿಷಯಗಳು ನಿಮಗೆ ಕಂಡಿರುತ್ತವೆ. ಕೆಲವು ವಿಷಯಗಳನ್ನು ನಿಮ್ಮನ್ನು ಕುತೂಹಲಕ್ಕೆ ಈಡು ಮಾಡಿರಬಹುದು. ಉದಾ: ನಾವೇಕೆ ನಿದ್ದೆ ಮಾಡುತ್ತೇವೆ? ಎಲೆಗಳು ಹಸಿರಾಗೇಕೆ ಇರುತ್ತವೆ? ಮಣ್ಣು ಹೇಗೆ ಉಂಟಾಯಿತು? ನೀರಡಿಕೆ ಏಕೆ ಆಗುತ್ತದೆ? ಮುಂತಾದ ಕುತೂಹಲದ ಪ್ರಶ್ನೆಗಳು ನಿಮ್ಮಲ್ಲಿ ಹುಟ್ಟಿರಬಹುದು. ಅಂತಹ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳುವುದೇ ಇಂದಿನ ಆಟ. ಹಾಗಾಗಿ ಪಠ್ಯಪುಸ್ತಕಗಳನ್ನು ಪಕ್ಕಕ್ಕಿಟ್ಟು ನಿಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನಲ್ಲಿ ಕಂಡುಬಂದ ಅಚ್ಚರಿಯ ವಿಷಯಗಳ ಬಗ್ಗೆ ಗಮನಿಸಿ”
ಅಂದಾಗ, ಮಕ್ಕಳು ಒಗ್ಗೂಡಿ ಪ್ರಶ್ನೆಗಳನ್ನು ಕಲೆಹಾಕಲು ಮುಂದಾದರು. “ಪಠ್ಯಪುಸ್ತಕದಾಚೆಗೆ, ಎಷ್ಟೇ ಚಿಕ್ಕದಾದ, ಸುಲಭವೆನಿಸುವ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಬಹುದು” ಅಂದಾಗ ಅವರಲ್ಲಿ ಹುರುಪು ಹೆಚ್ಚಿದ್ದನ್ನು ಗಮನಿಸಿದೆ. ಪ್ರತಿಯೊಂದು ತಂಡದ ಪರವಾಗಿ ಯಾರಾದರೂ ಒಬ್ಬರು ಪ್ರಶ್ನೆ ಕಲೆಹಾಕಿ, ಕೇಳಲು ಹೇಳಿದೆ.
ಪ್ರಶ್ನೆ ಕಲೆಹಾಕುವಾಗ ಹೆಚ್ಚಿನ ಮಕ್ಕಳು ಆ ಚಟುವಟಿಕೆಯಲ್ಲಿ ತೊಡಗಿಕೊಂಡಿರುವುದು ಕಂಡಿತು. ಗೊತ್ತುಪಡಿಸಿದ ಹೊತ್ತು ಮುಗಿಯುತ್ತಿದ್ದಂತೆ ಹಲವು ಮಕ್ಕಳು ಕೈ ಎತ್ತಿ, “ನಾನು ಕೇಳುತ್ತೇನೆ…ನಾನು ಕೇಳುತ್ತೇನೆ” ಅಂತಾ ಮುಂದಾದರು.
ಮಕ್ಕಳು ಕೇಳಿದ ಮೊದಲ ಕೆಲವು ಪ್ರಶ್ನೆಗಳು ಮತ್ತೇ ಪಠ್ಯಪುಸ್ತಕಗಳಿಂದ ಆಯ್ದುಕೊಂಡಿದ್ದು ಆಗಿದ್ದವು. (ಉದಾ: ಜೀವಕೋಶದಲ್ಲಿ ಮೈಟೋಕಾಂಡ್ರಿಯಾದ ಕೆಲಸವೇನು?) ಆದರೆ ಚಟುವಟಿಕೆ ಮುಂದುವರೆದಂತೆ ಅವರಿಗೆ ಇನ್ನಷ್ಟು ಒಳ್ಳೊಳ್ಳೆ ಪ್ರಶ್ನೆಗಳು ಬರಲು ತೊಡಗಿದವು. ಮಕ್ಕಳು ಕೇಳಿದ ಕೆಲವು ಪ್ರಶ್ನೆಗಳನ್ನು ಕೆಳಗೆ ಕೊಟ್ಟಿರುವೆ,
ನಾವು ಆಕಳಿಸಿದಾಗ ಕಣ್ಣೀರು ಏಕೆ ಬರುತ್ತದೆ?!
ಮನುಷ್ಯ ಸತ್ತ ಕೆಲವು ಗಂಟೆಗಳಲ್ಲಿ ವಾಸನೆ ಏಕೆ ಬರುತ್ತದೆ?! [ಈ ಪ್ರಶ್ನೆ ಕೇಳಿದ ಮಗು ಕೆಲವು ದಿನಗಳ ಮುಂಚೆ ತನ್ನ ಮನೆಯ ಪಕ್ಕ ಯಾರೋ ತೀರಿಹೋದದ್ದನ್ನು ಗಮನಿಸಿತ್ತು]
ನಾವು ವರುಷಗಳು ಕಳೆದಂತೆ ಏಕೆ, ಹೇಗೆ ಬೆಳೆಯುತ್ತೇವೆ?!
ಈರುಳ್ಳಿ ಹೆಚ್ಚುವಾಗ ಕಣ್ಣೀರು ಏಕೆ ಬರುತ್ತದೆ!? [ಈ ಪ್ರಶ್ನೆ ಕೇಳಿದ ಮಗು ಅಮ್ಮನಿಗೆ ಅಡುಗೆಯಲ್ಲಿ ಸಹಾಯ ಮಾಡುತ್ತದೆ. ಆಗ ಈ ಪ್ರಶ್ನೆ ಬಂದಿತಂತೆ]
ನಮ್ಮ ಮೈಯಲ್ಲಿ ರಕ್ತ ಹೇಗೆ ಉಂಟಾಗುತ್ತದೆ?!
ಹೌದು, ಹೌದು ಅನ್ನಿಸುವ ಮೇಲಿನಂತಹ ಪ್ರಶ್ನೆಗಳಲ್ಲದೇ ಮೇಲ್ನೋಟಕ್ಕೆ ಸ್ವಲ್ಪ ತಮಾಶೆ ಅನ್ನಿಸಿದರೂ, ಮಕ್ಕಳ ಎಲ್ಲೆಯಿಲ್ಲದ ಕುತೂಹಲವನ್ನು ತೋರ್ಪಡಿಸುವ ಕೆಳಗಿನ ಪ್ರಶ್ನೆಗಳನ್ನೂ ಕೇಳಿದರು,
ಮನುಷ್ಯರು ಮಾತಾಡುತ್ತಾರೆ ಆದರೆ ನಮ್ಮ ಮನೆಯ ಹಸು ಏಕೆ ಮಾತಾಡುವುದಿಲ್ಲ?! [ಈ ಮಗುವಿಗೆ ತಮ್ಮ ಹಸುವಿನ ಕೊಟ್ಟಿಗೆಯಲ್ಲಿ ಈ ಪ್ರಶ್ನೆ ಮೂಡಿತ್ತಂತೆ]
ಚುಕ್ಕೆ ಬಾಳೆಹಣ್ಣಿನ ಮೇಲೆ ಚುಕ್ಕೆಗಳಿರುತ್ತವೆ ಆದರೆ ಏಲಕ್ಕಿ ಬಾಳೆಹಣ್ಣಿನಲ್ಲಿ ಏಲಕ್ಕಿ ಏಕಿರುವುದಿಲ್ಲ!?
ಬಸ್ಸು, ರೈಲು ಗಾಡಿಗಳಿದ್ದರೂ ವಿಮಾನ ಏಕೆ ಕಂಡುಹಿಡಿದರು?
ಚಟುವಟಿಕೆಯಲ್ಲಿ ಒಳ್ಳೆಯ ಪ್ರಶ್ನೆ ಕೇಳಿ ಗೆದ್ದ ತಂಡದಿಂದ ಶಾಲೆಗೆ ಉಡುಗೊರೆಯಾಗಿ ವಿಜ್ಞಾನದ ಪುಸ್ತಕವೊಂದನ್ನು ಕೊಡಲಾಯಿತು. ಚಟುವಟಿಕೆಯ ಬಳಿಕ ಮನೆಯಲ್ಲಿಯೇ ಮಾಡಬಹುದಾದ ವಿಜ್ಞಾನ ಪ್ರಯೋಗಗಳ ಪುಸ್ತಕಗಳನ್ನು ಎಲ್ಲ ಮಕ್ಕಳಿಗೆ ಕೊಡಲಾಯಿತು.
ಒಟ್ಟಾರೆಯಾಗಿ ಈ ಚಟುವಟಿಕೆ ಮಕ್ಕಳನ್ನು ತುಂಬಾ ಹುರುಪುಗೊಳಿಸಿದ್ದು ಕಂಡು ಬಂದಿತು. “ಮಕ್ಕಳು ಇಷ್ಟು ಹುರುಪಿನಿಂದ ನಮ್ಮೊಡನೆ ಒಡನಾಡುವುದಿಲ್ಲ. ಪ್ರಶ್ನೆ ಕೇಳುವುದಕ್ಕೆ ಮುಂದೆ ಬರುವುದಿಲ್ಲ” ಅನ್ನುವಂತಹ ಅನುಭವಗಳನ್ನು ಶಾಲೆಯ ಶಿಕ್ಷಕರು ಹಂಚಿಕೊಂಡರು.
ವಿಜ್ಞಾನವೆಂದರೆ ನಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನ ವಿಷಯಗಳ ಸುತ್ತ ಕುತೂಹಲ ಬೆಳೆಸಿಕೊಳ್ಳುವುದು, ಅವುಗಳ ಬಗ್ಗೆ ಆಳವಾಗಿ ತಿಳಿದುಕೊಳ್ಳುವುದೇ ವಿಜ್ಞಾನದ ಗುರಿಯಾಗಿದೆ. ಸರಿ ಯಾವುದೆಂದು ಮೇಲ್ನೋಟಕ್ಕೆ ನೋಡದೇ ಆಳವಾಗಿ ಒರೆಗೆಹಚ್ಚುವುದು ವಿಜ್ಞಾನದ ತಳಹದಿ. ಪಠ್ಯಪುಸ್ತಕಗಳಲ್ಲಿರುವ ಪಾಠಗಳನ್ನು ಓದಿ, ಪರೀಕ್ಷೆ ಬರೆಯುವುದಷ್ಟೇ ವಿಜ್ಞಾನವಲ್ಲ ಅನ್ನುವುದನ್ನು ನಾವು ತಿಳಿದುಕೊಳ್ಳಬೇಕೆಂದು ತಿಳಿಸಿದಾಗ ಮಕ್ಕಳು ಚಟುವಟಿಕೆಗಳಲ್ಲಿ ಪಾಲ್ಗೊಂಡ ನಲಿವಿನೊಂದಿಗೆ ಹೌದೆನ್ನುವಂತೆ ತಲೆತೂಗಿದರು.
ಮೇಲಿನ ಶಾಲೆಯ ಮಕ್ಕಳೊಂದಿಗಿನ ಒಡನಾಟದಿಂದ ನನಗಾದ ಕಲಿಕೆಯೆಂದರೆ,
1. ವಿಜ್ಞಾನ ಕಲಿಸುವುದರಲ್ಲಿ ನಾವು ಮುಖ್ಯವಾಗಿ ಎಡವುತ್ತಿರುವುದೆಲ್ಲಿ ಎಂದರೆ, ವಿಜ್ಞಾನ ನಮ್ಮ ಬದುಕಿನ ಸುತ್ತನೇ ಇರುವ, ನಮ್ಮ ಸುತ್ತಣದ ತಿಳುವಳಿಕೆ ಅನ್ನುವುದನ್ನು ಮಕ್ಕಳಿಗೆ ಮನವರಿಕೆ ಮಾಡುವಲ್ಲಿ ಸೋಲುತ್ತಿರುವುದು. ವಿಜ್ಞಾನ ಹೇಗೆ ನಮ್ಮ ಬದುಕಿನೊಂದಿಗೆ ಹಾಸುಹೊಕ್ಕಾಗಿದೆ ಅನ್ನುವುದನ್ನು ಮೊದಲು ತಿಳಿಸಬೇಕು ಅದಾದ ಬಳಿಕವೇ ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿರುವ ಪಠ್ಯಕ್ರಮದಂತೆ ಕಲಿಸಲು ಮುಂದಾಗಬಹುದು. ಈ ಬಗೆಯನ್ನು ಪ್ರತಿಯೊಂದು ಪಾಠಕ್ಕೂ ಅಳವಡಿಸಿಕೊಳ್ಳಬಹುದು. ಉದಾಹರಣೆಗೆ, ’ಅಣು’ ಪಾಠವನ್ನು ಕಲಿಸುವ ಮುನ್ನ, ನಮ್ಮ ಸುತ್ತಮುತ್ತ ಕಾಣುವ ವಸ್ತುಗಳ ಜತೆಗೆ ನಮ್ಮ ಮೈ ಕೂಡ ಮೂಲದಲ್ಲಿ ಅಣುಗಳಿಂದ ಆಗಿರುವುದನ್ನು ಮಕ್ಕಳಿಗೆ ತಿಳಿಸಿಕೊಡಬೇಕು. ’ಅಣು’ಗಳ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸಿದುದರಿಂದ ಉದಾಹರಣೆಗೆ ನೀರಿನ ಗುಣಗಳನ್ನು ಚನ್ನಾಗಿ ತಿಳಿಯಲು ಆಯಿತು, ಹೆಚ್ಚು ಗಟ್ಟಿಯಾದ, ಹಗುರವಾದ ವಸ್ತುಗಳನ್ನು ಕಂಡುಹಿಡಿಯಲು ಸಾಧ್ಯವಾಯಿತು, ವಸ್ತುವೊಂದು ಇನ್ನೊಂದು ವಸ್ತುವಿನೊಡನೆ ಹೇಗೆ ಬೆರೆಯುತ್ತದೆ ಅನ್ನುವುದನ್ನು ಅರಿಯಲು ನೆರವಾಯಿತು ಹೀಗೆ ಮುಂದುವರೆಯಬಹುದು.
2. ಕಲಿಕೆಯಲ್ಲಿ ಮಕ್ಕಳ “ಪಾಲ್ಗೊಳ್ಳುವಿಕೆ” ತುಂಬಾ ಮುಖ್ಯ. ಹಾಗಾಗಿ ಶಾಲೆಯ ಕೋಣೆಯಲ್ಲಿ ಕಲಿಕೆ ಬರೀ ಶಿಕ್ಷಕರಿಂದ ಮಕ್ಕಳೆಡೆಗೆ ಹರಿಯದೇ, ಎರಡೂ ಬದಿಯಿಂದ ಚರ್ಚೆಯ, ಪ್ರಶ್ನೋತ್ತರಗಳ ರೂಪದಲ್ಲಿ ನಡೆದರೆ ಹೆಚ್ಚು ಪರಿಣಾಮಕಾರಿಯಾಗಬಲ್ಲದು. ಮಕ್ಕಳು ಹೆಚ್ಚು ತೊಡಗಿದಷ್ಟು ಕಲಿಕೆ ಸುಲಭ.
3. ವಿಜ್ಞಾನ ಕಲಿಕೆಯಲ್ಲಿ “ಓದಿ” ಕಲಿಯುವುದರ ಜತೆಗೆ “ಮಾಡಿ” ಕಲಿಯುವುದಕ್ಕೆ ಒತ್ತುಕೊಡಬೇಕು. ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಕಿರಿದಾದರೂ ಪರವಾಗಿಲ್ಲ ಪ್ರತಿಯೊಂದು ಶಾಲೆ ವಿಜ್ಞಾನದ ಪ್ರಯೋಗಮನೆಯನ್ನು ಹೊಂದಿರಬೇಕು. ಶಾಲೆಯ ಕೋಣೆಯಲ್ಲಿ ಕಲಿಸುವಾಗಲೂ ಕೂಡಾ ಶಿಕ್ಷಕರು ಪಾಠಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಕಿರು ಪ್ರಯೋಗಗಳನ್ನು ಮಾಡಿ ತೋರಿಸಬಹುದು.
4. ಮಕ್ಕಳ ಯೋಚನೆಯ ಹರಿವನ್ನು ಕಟ್ಟಿಹಾಕುವುದಾಗಲಿ ಇಲ್ಲವೇ “ಇದೇ ದಾರಿ ಸರಿಯಾದುದು”, “ಹೀಗೆನೇ ಯೋಚನೆ ಮಾಡಬೇಕು” ಅನ್ನುವುದನ್ನು ಕಲಿಸುಗರು ಮಾಡಬಾರದು. ಮಕ್ಕಳಿಗೆ ರೆಕ್ಕೆ ಬಡಿಯಲು ಬಿಟ್ಟಷ್ಟು ಅವರು ಹೊಸ ದಿಕ್ಕುಗಳನ್ನು ಅರಸಲು ಸಾಧ್ಯವಾಗುತ್ತದೆ. ಕಲಿಸುಗರು ಮಕ್ಕಳೊಂದಿಗೆ ಗೆಳೆಯ/ಗೆಳತಿಯಂತೆ ಬೆರೆತಷ್ಟೂ ಕಲಿಕೆ, ಕಲಿಸುವಿಕೆ ಸುಲಭವಾಗುತ್ತದೆ. [ಹಾಗಂತ ಬರೀ ತರ್ಲೆ ಮಾಡಲು ಬಿಡುವುದು ಅಂತಲ್ಲಾ:-) ]
5. ಪಠ್ಯಪುಸ್ತಕಗಳು ಕನ್ನಡದ ನುಡಿ ಸೊಗಡಿಗೆ ಒಗ್ಗುವಂತೆ ಮಾಡಬೇಕು. ಈಗಿರುವ ಪಠ್ಯಪುಸ್ತಕಗಳಲ್ಲಿ ತುಂಬಾ ಕಷ್ಟಕರವಾದ ಪದಗಳು, ವಾಕ್ಯಗಳ ಬಳಕೆ ಮಾಡಲಾಗಿದೆ. ವಿಜ್ಞಾನ ಅವರಿಗೆ ಬರೀ ಪಠ್ಯಕ್ರಮದ ವಿಷಯ, ಅದಕ್ಕೂ ಅವರ ಪರಿಸರಕ್ಕೂ ನಂಟಿಲ್ಲ ಅನ್ನಿಸುವುದಕ್ಕೆ ಇದು ಕೂಡ ಕಾರಣ. ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಶಿಕ್ಷಣ ಇಲಾಖೆ ಮತ್ತು ಸರಕಾರ ಕೂಡಲೇ ಗಮನಹರಿಸಿ, ಸರಿಪಡಿಸಬೇಕು. ತಾಯ್ನುಡಿ ಮಾಧ್ಯಮದಲ್ಲಿ ಕಲಿಕೆಯ ಪ್ರಯೋಜನ ಮಕ್ಕಳು ಪಡೆಯುವಂತಾಗಲು ಇದು ಆಗಬೇಕು. ಇಲ್ಲವಾದರೆ ಪಠ್ಯಪುಸ್ತಕಗಳ ಚೌಕಟ್ಟಿನಲ್ಲಿ ನೋಡಿದಾಗ ಇಂಗ್ಲೀಶ್ ಮತ್ತು ಕನ್ನಡ ಮಾಧ್ಯಮದಲ್ಲಿ ಕಲಿಕೆಯ ವ್ಯತ್ಯಾಸವೇನೂ ಉಳಿಯುವುದಿಲ್ಲ. ಎರಡೂ ಪಠ್ಯಪುಸ್ತಕಗಳೂ ಮಕ್ಕಳಿಗೆ ದೂರವಾದ ಪದಗಳಿಂದ ಪರಕೀಯವಾಗಿ ಬಿಡುತ್ತವೆ.
[ಪದಗಳ ಬಳಕೆಯ ಬಗ್ಗೆ ನಡೆಸಿದ ಅಧ್ಯಯನ ವರದಿಯನ್ನು ಓದಲು ಇಲ್ಲಿಗೆ ಹೋಗಿ ]
ಶಾಲೆಯ ಮಕ್ಕಳೊಂದಿಗೆ ಒಡನಾಡುವ ನಮ್ಮ ತಂಡದ ಕೆಲಸ ಮುಂದುವರೆಯಲಿರುವುದರಿಂದ, ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಇನ್ನಷ್ಟು ಕಲಿಕೆಯಾಗುವುದಂತೂ ನಿಜ. ಹಾಗಾಗಿ ಈ ಬರಹ ಮುಂದೊಮ್ಮೆ ಮತ್ತಷ್ಟು ಹಿಗ್ಗಬಹುದು.
ಒಂದು ಗೋಡೆಯ ಈ ಬದಿಯಲ್ಲಿ ನೀವು ಯಾವುದೋ ಕೆಲಸದಲ್ಲಿ ತೊಡಗಿದ್ದೀರಿ. ಇನ್ನೊಂದು ಬದಿಯಲ್ಲಿ ನಿಮ್ಮ ಗೆಳೆಯರು ಕಾಲ್ಚೆಂಡು ಆಡುತ್ತಿದ್ದಾರೆ. ಆ ಚೆಂಡು ಗೋಡೆಗೆ ಬಡಿಯುತ್ತದೆ. ಬಡಿದು ಹಿಂಪುಟಿದು ಅವರ ಕಡೆಗೇ ಸಾಗುತ್ತದೆಯಲ್ಲವೇ? ಒಂದುವೇಳೆ, ಗೋಡೆಯನ್ನು ತೂರಿ (ಗೋಡೆ ಒಡೆಯದೆಯೇ), ಆ ಚೆಂಡು ನಿಮ್ಮ ತಲೆ ಕುಟುಕುವಂತಿದ್ದರೆ?
ಹೀಗೂ ಯೋಚಿಸೋಣ. ಒಂದು ಪೆಟ್ಟಿಗೆಯಲ್ಲಿ ಯಾರೋ ಬೆಕ್ಕನ್ನಿಟ್ಟು ನಿಮಗೆ ಉಡುಗೊರೆಯಾಗಿ ನೀಡುತ್ತಾರೆ. ಆ ಪೆಟ್ಟಿಗೆಯನ್ನು ತೆಗೆದಾಗ ಮುದ್ದಾದ ಬೆಕ್ಕು ಮಿಯವ್ ಎನ್ನುತ್ತದೆ. ಒಂದು ವೇಳೆ ಉಸಿರು ಕಟ್ಟಿದ್ದಿದ್ದರೆ, ಪಾಪ, ನೀವು ನೋಡಿದಾಗ ಸತ್ತು ಹೋಗಿರುತ್ತದೆ. ಆದರೆ, ನೀವು ಆ ಪೆಟ್ಟಿಗೆ ತೆಗೆಯುವ ಮುನ್ನ ಅದು ಬದುಕಿತ್ತೋ, ಸತ್ತಿತ್ತೋ? ಯಾರೋ ಒಬ್ಬ ವಿಜ್ಞಾನಿ ಬಂದು “ಅದು ಬದುಕಿಯೂ ಇತ್ತು, ಸತ್ತೂ ಇತ್ತು” ಎಂದರೆ?
ಇಂತಹ ಬೆರಗನ್ನೂ, ಬೆಡಗನ್ನೂ ಮೂಡಿಸುವ ಭೌತಶಾಸ್ತ್ರದ ಕವಲೇ ಬಿಡಿ ಕಟ್ಟಳೆ (Quantum Theory). ಇದು ಹೊಮ್ಮಿದ ಬರೀ 30 ವರುಷಗಳಲ್ಲಿ, ನಮ್ಮ ಸುತ್ತಣದ ಅರಿವನ್ನೇ ಮೇಲೆಕೆಳಗೆ ಮಾಡಿದ ಕಟ್ಟಳೆ ಇದು. ಬನ್ನಿ, ಆ ಕಟ್ಟಳೆಯ ಕಟ್ಟೆಯೊಳಗೊಮ್ಮೆ ಇಳಿದುಬರೋಣ.
೧೯ನೇ ಶತಮಾನದ ಕೊನೆಯಲ್ಲಿ, ಜಗತ್ತಿನ ಹೆಚ್ಚಿನ ವಿಜ್ಞಾನಿಗಳು ಒಂದು ತೀರ್ಮಾನಕ್ಕೆ ಬಂದಿದ್ದರು. ತಿಳಿಯಬೇಕಾದ್ದನ್ನೆಲ್ಲ ಈಗಾಗಲೇ ತಿಳಿಯಲಾಗಿದೆ, ಇನ್ನು ಹೊಸದಾಗಿ ಕಂಡುಹಿಡಿಯುವಂತದ್ದು ಏನೂ ಇಲ್ಲ ಎಂದು! ಅವರ ಪ್ರಕಾರ, ಒಂದು ವಸ್ತುವಿನ, ಈ ಹೊತ್ತಿನ ಇರುವು ಮತ್ತು ವೇಗವನ್ನು ಗೊತ್ತುಪಡಿಸಿದರೆ, ಮುಂದಿನ ಎಲ್ಲ ಹೊತ್ತುಗಳಲ್ಲಿ ಆ ವಸ್ತುವಿನ ಇರುವು ಮತ್ತು ವೇಗವನ್ನು, ಯಾವುದೇ ಗೊಂದಲಕ್ಕೆ ಎಡೆಯಿಲ್ಲದಂತೆ, ಕಂಡುಹಿಡಿಯಬಹುದಾಗಿತ್ತು. ಇದಕ್ಕೆ, ಹಳೆಯ ಇಲ್ಲವೇ ವಾಡಿಕೆಯ ಕದಲರಿಮೆ (Classical Mechanics) ಎಂದು ಕರೆಯಬಹುದು. ಇದರ ಪ್ರಕಾರ, ಜಗತ್ತಿನಲ್ಲಿ ಎಲ್ಲವೂ ನಿಶ್ಚಿತ. ಈ ತಿಳುವಳಿಕೆಯಲ್ಲಿ ತೇಲುತ್ತಿದ್ದ ಭೌತಶಾಸ್ತ್ರಜ್ಞರನ್ನು ಒಮ್ಮೆಲೆ ಬಡಿದೆಬ್ಬಿಸಿದ್ದು ಹಲವು ಪ್ರಯೋಗಗಳು. ಅವುಗಳಲ್ಲಿ ಮುಖ್ಯವಾದವು; ಬೆಳುಕು-ವಿದ್ಯುತ್ ಪರಿಣಾಮ(Photoelectric Effect) ಮತ್ತು ಎಲೆಕ್ಟ್ರಾನ್ ಮೇಲ್ವಾಯುವಿಕೆ (Interference).
ಒಂದು ಲೋಹದ ಪಟ್ಟಿಯ ಮೇಲೆ ಬೆಳಕನ್ನು ಚೆಲ್ಲಿದಾಗ, ಇಲೆಕ್ಟ್ರಾನ್ಸ್ ಹೊರಹೊಮ್ಮುವ ಘಟನೆಗೆ, ಬೆಳುಕು-ವಿದ್ಯುತ್ ಪರಿಣಾಮ ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಬೆಳಕನ್ನು ಅಲೆಯೆಂದು ತಿಳದು, ಈ ಘಟನೆಯನ್ನು ಮುಂಗಂಡರೆ, ಅದು ಕೊಡುತ್ತಿದ್ದ ಉತ್ತರಗಳೇ ಬೇರೆ. ಅರಸಿಕೆಯಲ್ಲಿ ಕಂಡುಬಂದಂತಹ ಫಲಿತಾಂಶಗಳೇ ಬೇರೆ! ಆದರೆ, ಅಲೆಬಾಗುವಿಕೆ (diffraction) ಮತ್ತು ಮೇಲ್ವಾಯುವಿಕೆಗಳೆಂಬ ವಿಚಾರಗಳಲ್ಲಿ ಬೆಳಕನ್ನು ಅಲೆಯೆಂದು ಅಂದುಕೊಳ್ಳದೇ ವಿಧಿಯಿಲ್ಲ. ಇಲ್ಲಿ, ಅಲೆಯೆಂದು ತಿಳಿದರೆ ಫಲಿತಾಂಶ ಸರಿಹೊಂದುವುದಿಲ್ಲ. ಹಾಗಾಗಿ, ಬೆಳಕು ಸಣ್ಣ ಸಣ್ಣ ತುಣುಕುಗಳೂ(particles) ಆಗಿರಬೇಕು ಎಂಬುದನ್ನು ವಿಜ್ಞಾನಿಗಳು ಮನಗಂಡರು. ಆ ತುಣುಕುಗಳು ಬಿಡಿ ಬಿಡಿಯಾಗಿಯೇ (quantum) ಸಾಮರ್ಥ್ಯವನ್ನು ಹೊಂದಿರುತ್ತವೆ.
ಇನ್ನೊಂದೆಡೆ, ಇಲೆಕ್ಟ್ರಾನ್ಗಳು ಎರಡು ಕುಳಿಗಳಿರುವ ತೆರೆಯ ಕಡೆಗೆ ಬಿಟ್ಟು, ಆ ತೆರೆಯ ಹಿಂದೆ ಇನ್ನೊಂದು ತೆರೆಯನ್ನಿಟ್ಟು, ಇಲೆಕ್ಟ್ರಾನ್ ಎಲ್ಲಿ ಬಂದು ಬಿದ್ದಿತು ಎಂದು ನೋಡುವ ಪ್ರಯೋಗವನ್ನು ಕೈಗೊಳ್ಳಲಾಯಿತು. ಇದರ ಫಲಿತಾಂಶವೂ ಸೋಜಿಗವನ್ನುಂಟುಮಾಡಿತ್ತು. ಯಾವ ಕುಳಿಯಿಂದ ಹಾದು ಬಂದಿತು ಎಂದು ತಿಳಿಯಲು ಹೋಗದಿದ್ದರೆ, ಇಲೆಕ್ಟ್ರಾನ್ ಒಂದು ಅಲೆಯಂತೆ ನಡೆದುಕೊಳ್ಳುತ್ತಿತ್ತು. ಒಂದುವೇಳೆ, ಯಾವ ಕುಳಿಯಿಂದ ಬಂದಿತೆಂದು ತಿಳಿಯಹೊರಟರೆ, ಅದು ತನ್ನ ಅಲೆಯ ತೊಡಗನ್ನು ಕಳಚಿ, ತುಣುಕಿನ ಅರಿವೆಯನ್ನು ತೊಡುತ್ತಿತ್ತು! ಈ ಪ್ರಯೋಗವನ್ನು ಕೆಳಗಿನ ಓಡುಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಲು ಪ್ರಯತ್ನಿಸಲಾಗಿದೆ.
ಪ್ರಯೋಗಗಳನ್ನ ಮಾಡದೆ, ಒಂದು ಎಲೆಕ್ಟ್ರಾನು ಇದೇ ಕುಳಿಯ ಮೂಲಕ ಹೋದೀತು ಎಂದು ಬರಿದೇ ಕಲ್ಪಿಸಿದರೆ, ಕಡ್ಡಾಯವಾಗಿ ನಮ್ಮ ಊಹೆ ಕೆಟ್ಟೀತು! ನಾವು ಗಮನಿಸದೇ ಇದ್ದರೆ, ಹಲವು ಕುಳಿಗಳ ಮೂಲಕ ಒಂದೇ ಎಲೆಕ್ಟ್ರಾನು, ಒಂದೇ ಹೊತ್ತಿನಲ್ಲಿ ಸಾಗುವ ಬೆಡಗನ್ನು ಹೊಂದಿರುವುದು ಕಂಡುಬಂದಿತು. ಆಗ, ವಿಜ್ಞಾನಿಗಳ ತಲೆಯಲ್ಲಿ ಮೂಡಿದ್ದ ಪ್ರಶ್ನೆ ಎಂದರೆ “ಎಲೆಕ್ಟ್ರಾನ್ ಅಲೆಯೋ, ತುಣುಕೋ? ಇಲ್ಲ, ಎರಡೂನೋ? ಇಲ್ಲ, ಬೇರೆಯೇನೋ?” ಈ ಬಗೆಯ ಗೊಂದಲಕ್ಕೆ ಅಲೆ-ತುಣುಕಿನ ಇಬ್ಬಗೆತನ (Wave Particle Duality) ಎಂದು ಕರೆಯುತ್ತಾರೆ.
ಇಂತಹ ಹಲವಾರು ಬೆರಗುಗಳ ಬೆನ್ನು ಹತ್ತಿ ಅರಸಿದಾಗ, ವಿಜ್ಞಾನಿಗಳು ಕಂಡುಕೊಂಡ ದಿಟ, ನಿಜಕ್ಕೂ ನೆಲೆಬಿರಿಯುವಂತದ್ದಾಗಿತ್ತು. ನಾವು ಗಮನಿಸದೇ, ಇಲ್ಲ, ಒರೆದು ನೋಡದೆ, ಯಾವುದೇ ಒಂದು ವಸ್ತು (ಅಣು ಅಳತೆಯ ವಸ್ತುಗಳು), ಅಲೆಯೋ ಇಲ್ಲ, ತುಣುಕೋ ಎಂದು ಹೇಳಲು ಬರುವುದಿಲ್ಲ. ಮೊದಲನೆಯದಾಗಿ, ಅಲೆ ಮತ್ತು ತುಣುಕು ಎಂಬ ಬೇರ್ಮೆಗಳೇ ನಿರ್ದಿಷ್ಟವಾಗಿ ನಮ್ಮ ಜಗತ್ತಿನಲ್ಲಿ ಇಲ್ಲ! ಈ ಬೇರ್ಮೆಗಳು, ನಮ್ಮ ಹೊರಗಣ್ಣಿಗೆ, ಮನಸ್ಸಿಗೆ ಕಾಣುವ ಹುಸಿ ರೂಪಗಳಷ್ಟೆ.
ನಾವು, ಅಣು ಅಳತೆಯ ಕಣಗಳ ಕುರಿತು ಮಾತನಾಡುವಾಗ, ಅವು ಒಂದು ನಿರ್ದಿಷ್ಟ ಎಡೆಯಲ್ಲಿ ದೊರಕುವ ಇಲ್ಲ, ನಿರ್ದಿಷ್ಟ ಬಿರುಸಿನಲ್ಲಿ ಸಾಗುವ ಆಗುವಳೆಯನ್ನಷ್ಟೇ (probability) ಹೇಳಬಹುದು. ಒಂದು ಎಡೆಯಲ್ಲಿ ಎಲೆಕ್ಟ್ರಾನಿನ ಇರುವಿನ ಆಗುವಳೆಯು ಹೆಚ್ಚಿದ್ದರೆ, ಅಲ್ಲಿ ಆ ಎಲೆಕ್ಟಾನ್ ಹೆಚ್ಚಿನ ಸಲ ಕಂಡುಬರುವುದು ಎಂದಷ್ಟೇ ಹೇಳಬಹುದೇ ಹೊರತು, ಯಾವತ್ತಿಗೂ ಅಲ್ಲೇ ಕಂಡುಬರುತ್ತದೆ ಎಂದು ಹೇಳಬರುವುದಿಲ್ಲ. ಇನ್ನೊಂದು ಬಗೆಯಲ್ಲಿ ಹೇಳುವುದಾದರೆ, ಈ ಜಗತ್ತು ಅನಿಶ್ಚಿತತೆಯಿಂದ ಕೂಡಿದೆ.
ಹಾಗಾದರೆ, ಈ ಕಣಗಳು ಒಳಪಡುವ ಕಟ್ಟಳೆಗಳು ಯಾವುವು? ಎಂದು ಅರಸಹೊರಟರೆ, ನಮಗೆ ಸಿಗುವುದು ಅಲೆಯ ಎಣಿನಂಟು (Wave Function). ಈ ಎಣಿನಂಟು, ಒಂದು ವಸ್ತುವಿನ ಸ್ಥಿತಿಯ ಮಾಹಿತಿಯನ್ನು ಹೊಂದಿರುತ್ತದೆ. ಹಾಗೆಯೇ ಈ ಗಣಿತದ ನಂಟು, ಆ ಸ್ತಿತಿಯ ಎಲ್ಲಾ ಸಾಧ್ಯತೆಗಳನ್ನು ತನ್ನ ಒಡಲೊಳಗೆ, ನೇರಣಿಗೆಯಲ್ಲಿ(Linear superposition) ಅವಿತಿಟ್ಟುಕೊಂಡಿರುತ್ತದೆ. ಆ ವಸ್ತುವನ್ನು ಗಮನಿಸಿದಾಗ, ಯಾವುದೋ ಒಂದು ಸಾಧ್ಯತೆಯಷ್ಟೇ ಉಳಿದು, ಮಿಕ್ಕೆಲ್ಲಾ ಸಾಧ್ಯತೆಗಳು ಕುಸಿಯುತ್ತವೆ. ಯಾವ ಸಾಧ್ಯತೆ ಉಳಿಯುತ್ತದೆ ಎಂಬುದು, ಅದರ ಆಗುವಳೆಯ ಮೇಲೆ ನಿಂತಿದೆ.
ಉದಾಹರಣೆಗೆ, ತುಂಬ ಸರಳಗೊಳಿಸಿ ಹೇಳುವುದಾದರೆ, ಒಂದು ನಾಣ್ಯವನ್ನು ಮೆಲಕ್ಕೆ ಹಾರಿಸಿದಾಗ, ಅದರ “ತಲೆಯೋ, ಬಾಲವೋ” ಎಂಬ ಸ್ಥಿತಿಗಳೆರಡರ ಬೆರಕೆಯಾಗಿದೆ. |ತ>ಅನ್ನು “ತಲೆ”ಗೂ, |ಬ>ಅನ್ನು “ಬಾಲ”ಕ್ಕೂ ಗುರುತಿಸಿದರೆ, ಆ ಸ್ಥಿತಿಯು, a|ತ> + b|ಬ> ಆಗಿದೆ. ಇಲ್ಲಿ, a ಮತ್ತು b ಗಳು ಸ್ಥಿರಾಂಕಗಳು (constants). ಅಂದರೆ, ನಾಣ್ಯವು ನೆಲಕ್ಕೆ ಬೀಳುವವರೆಗೂ, ಅದರ ಸ್ಥಿತಿಯು ತಲೆಯೂ ಹೌದು, ಬಾಲವೂ ಹೌದು. ಆ ಎರಡೂ ಸ್ಥಿತಿಗಳ ಬೆರಕೆಯಲ್ಲಿ ಇರುತ್ತದೆ. ಆದರೆ, ಕೊನೆಯಲ್ಲಿ ಆ ನಾಣ್ಯವು ನೆಲಕ್ಕೆ ಬಿದ್ದಾಗ, ಯಾವುದಾದರೂ ಒಂದು ಸ್ಥಿತಿ ಉಳಿದು, ಮಿಕ್ಕವು ಕುಸಿದುಹೋಗುತ್ತವೆ (“ತಲೆ” ಉಳಿದರೆ“ಬಾಲ” ಅಳಿದುಹೋಗುತ್ತದೆ).
ಇದೇ ತಿಳುವಳಿಕೆಯನ್ನು ಬೆಳಕಿಗೆ ಚಾಚಿದರೆ, ನಮಗೆ ಆ ಬೆಳಕು-ವಿದ್ಯುತ್ ಪರಿಣಾಮದ ಒಳತಿರುಳು ಗೊತ್ತಾಗುತ್ತದೆ. ಬೆಳಕು, ಆ ಲೋಹದೊಳಗಣ ಇಲೆಕ್ಟ್ರಾನ್ ಜೊತೆ ಸಂಪರ್ಕವನ್ನು ಏರ್ಪಡಿಸುವಾಗ, ಎಣಿನಂಟಿನ ಹಲವು ಸಾಧ್ಯತೆಗಳು ಕುಸಿದು, ಯಾವುದೋ ಒಂದು ಸಾಧ್ಯತೆ ಉಳಿದುಕೊಳ್ಳುತ್ತದೆ. ಹಾಗಾಗಿ, ಬೆಳಕನ್ನು “ತುಣುಕು” ಎಂದು ಪರಿಗಣಿಸಬೇಕು. ಆದರೆ, ಅದು ಹಲವು ಕುಳಿಗಳ ಮೂಲಕ ಸಾಗುವಾಗಲೋ, ಇಲ್ಲ, ಒಂದು ಕಿರುವಸ್ತುವಿನ ಸುತ್ತ ಬಾಗುವಾಗಲೋ, ಎಲ್ಲ ಬಗೆಯ ಸಾಧ್ಯತೆಗಳನ್ನು ನಾವು ಪರಿಗಣಿಸಿ, ಬೆಳಕನ್ನು “ಅಲೆ”ಯೆಂದು ಗುರುತಿಸಬೇಕು. ಇದೇ ತೆರನಾದ ವಾದವನ್ನು ಎಲೆಕ್ಟ್ರಾನ್ಗಳಿಗೂ ಇಲ್ಲವೇ ಯಾವುದೇ ಕಣಕ್ಕೂ ಹೂಡಬೇಕು!
ಈಗ ಈ ಅರಿವನ್ನು, ನಮ್ಮ ಪೆಟ್ಟಿಗೆಯೊಳಗಿನ ಬೆಕ್ಕಿನ ಮೇಲೆ ಪ್ರಯೋಗ ಮಾಡೋಣ. ಈ ಪ್ರಯೋಗಕ್ಕೆ ಶ್ರೋಡಿಂಜರನ ಬೆಕ್ಕು (Schrodinger’s Cat) ಇಲ್ಲವೇ “ಶ್ರೋಡಿಂಜರನ ಯೋಚನೆಯ ಪ್ರಯೋಗ” (Schrodinger’s thought experiment) ಎಂಬ ಹೆಸರಿದೆ. ಅವನೇ ಈ ಪ್ರಯೋಗದ ಹೊಳಹನ್ನು ಮೊದಲು ಐನಸ್ಟೀನ್ಗೆ ತಿಳಿಸಿದ್ದು. ಅದರಂತೆ, ಆ ಪೆಟ್ಟಿಗೆಯೊಳಗೆ, ಒಂದಿಷ್ಟು ಸೂಸುವಿಕೆಗೆ (radioactive) ಒಳಪಡುವ ಅಣುಗಳನ್ನು ಇರಿಸಬೇಕು. ಅವುಗಳ ರಚನೆ ಹೇಗಿರಬೇಕೆಂದರೆ, ಒಂದು ವೇಳೆ ಸೂಸುವಿಕೆ ಮೂಡಿದಲ್ಲಿ, ಮಗ್ಗುಲಲ್ಲಿರುವ ಒಂದು ಕೊಡಲಿ “ಹೈಡ್ರೋಸಯಾನಿಕ್ ಆಸಿಡ್” ಅನ್ನು ತುಂಬಿರುವ ಒಂದು ಶೀಶದ ಮೇಲೆ ಬೀಳಬೇಕು ಮತ್ತು, ಅದು ಒಡೆದಾಗ ಹೊರಸೂಸುವ ವಾಸನೆಯಿಂದ ಬೆಕ್ಕು ಸಾಯಬೇಕು.
ಈಗ, ನಮ್ಮ ಗಮನದಲ್ಲಿರಬೇಕಾದದ್ದು ಏನೆಂದರೆ, ಸೂಸುವಿಕೆ “ಕ್ವಾಂಟಮ್” ಕಟ್ಟಳೆಗೆ ಒಳಪಡುತ್ತದೆ. ಅಂದರೆ, ನಾವು ಪೆಟ್ಟಿಗೆ ತೆಗೆದು ಗಮನಿಸುವವರೆಗೂ, ಅದು ಒಂದೇ ಹೊತ್ತಿನಲ್ಲಿ “ಸೂಸುವ” ಮತ್ತು “ಸೂಸದ” ಸ್ಥಿತಿಗಳಲ್ಲಿ “ಬೆರೆತು” ಇರಬೇಕು. ನಾವು ನೋಡಿದಾಗಷ್ಟೇ, ಒಂದು ಸ್ಥಿತಿ ಉಳಿದು, ಮಿಕ್ಕದ್ದು ಅಳಿಯುತ್ತದೆ. ಈಗ ಇಲ್ಲಿದೆಮಜಾ! ಬೆಕ್ಕಿನ “ಬದುಕು” ಮತ್ತು “ಸಾವು” ಎಂಬ ಪಾಡುಗಳು ಈ “ಸೂಸುವ” ಮತ್ತು “ಸೂಸದ” ಪಾಡುಗಳ ಮೇಲೆ ನಿಂತಿವೆ! ಹಾಗಾಗಿ, ನಾವು ಪೆಟ್ಟಿಗೆಯನ್ನು ತೆರೆದು ನೋಡದವರೆಗೂ, ಬೆಕ್ಕು “ಬದುಕು” ಮತ್ತು “ಸಾವು” ಎಂಬುದರ ಕಲಬೆರಕೆಯ ಸ್ಥಿತಿಯಲ್ಲಿ ಇರುತ್ತದೆ! ನಾವು ತೆರೆದು ನೋಡಿದಾಗಲೇ, ಒಂದು ಸ್ಥಿತಿ ಉಳಿದು, ಮಿಕ್ಕದ್ದು ಅಳಿಯುತ್ತದೆ! (ಈ ಬಗೆಯ ಹುರುಳಿಕೆಗೆ “ಕೋಪನ್ಹೇಗನ್ ಹುರುಳಿಕೆ” (Copenhagen Interpretation) ಎಂಬ ಹೆಸರಿದೆ).
ಬಿಡಿ ಕಟ್ಟಳೆಯ ಅರಿವು, ನಮ್ಮ ಜಗತ್ತನ್ನು ನೋಡುವ ಮತ್ತು ಅರ್ಥೈಸುವ ನಿಟ್ಟಿನಲ್ಲಿ ಹೊಸ ಕಣ್ಣನ್ನೇ ಒದಗಿಸಿದೆ. ಅದರ ಬಳಕೆಯಿಂದ ಲೇಸರ್, ಸೂಪರ್ ಕಂಡಕ್ಟರ್, ಕ್ವಾಂಟಮ್ ಕಂಪ್ಯೂಟರ್ ನಂತಹ, ಮನುಜನ ಬೆಳವಣಿಗೆಯ ಗತಿಯನ್ನೇ ಮಾರ್ಪಡಿಸುವ ತಂತ್ರಜ್ಞಾನಗಳು ಹುಟ್ಟಿಕೊಂಡಿವೆ, ಹುಟ್ಟುಕೊಳ್ಳುವವೂ ಕೂಡ.
ಬಿಡಿಕಟ್ಟಳೆಯ ವಿಸ್ಮಯ ಹೇಳುತ್ತಾ ಹೊರಟರೆ ಮುಗಿಯತೀರದು. ಜಗತ್ತಿನ ಗುಟ್ಟನ್ನು ರಟ್ಟುಮಾಡುವಲ್ಲಿ ಮೂಡಿರುವ ಎಲ್ಲಾ ಥಿಯರಿಗಳ ಬೆನ್ನೆಲುಬು ಬಿಡಿ ಕಟ್ಟಳೆ. ತಾನೇ ಕಟ್ಟಲು ನೆರವಾಗಿದ್ದ ಈ ಕಟ್ಟಳೆಯನ್ನು, “ದೇವರು ಜೂಜಾಡುವುದಿಲ್ಲ” ಎನ್ನುತ್ತಾ, ಅಲ್ಲಗಳೆದಿದ್ದ ಐನಸ್ಟೀನ್ ಆದರೆ, ದೇವರು ಬರೀ ಜೂಜಾಡುತ್ತಿಲ್ಲ, ತಾನೇ ಆ ಜೂಜಿನಲ್ಲಿ ಸಿಲುಕಿ, ಹೊರಬರಲಾರದೆ ಒದ್ದಾಡುತ್ತಿದ್ದಾನೆ. ಅವನ ಇರುವು “ಕ್ವಾಂಟಮ್” ಕಟ್ಟಳೆಯೊಳಗೆ ಸೆರೆಯಾಗಿದೆ!
(ಅರಿಮೆ ತಂಡ ಬೆಂಗಳೂರಿನ ಬಸವನಗುಡಿಯಲ್ಲಿರುವ ಮುನ್ನೋಟ ಪುಸ್ತಕ ಮಳಿಗೆಯೊಂದಿಗೆ ಒಡಗೂಡಿ ಕನ್ನಡದಲ್ಲಿ ತಿಂಗಳಿಗೊಮ್ಮೆ ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನದ ಮಾತುಕತೆ್ಯನ್ನು ಏರ್ಪಡಿಸುತ್ತಿದೆ. ಇಂತಹ ಮಾತುಕತೆಯೊಂದರ ಬರಹ ರೂಪವಿದು)
ಫಂಗೈಹಾಗುಬ್ಯಾಕ್ಟೀರಿಯಾದಂತಹಕಿರುಜೀವಿಗಳುನಮ್ಮಆಹಾರವನ್ನುಗಾಳಿಯಆಮ್ಲಜನಕಇರುವೆಡೆಇಲ್ಲವೇಗಾಳಿಯಿಲ್ಲದೆಡೆ,ಸಕ್ಕರೆಯಅಂಶ(ಗ್ಲುಕೋಸ್) ಸೇವಿಸಿಬೇರೆಪದಾರ್ಥಗಳನ್ನುತಯಾರಿಸುವಬಗೆಯೇಹುದುಗುವಿಕೆಗೆ ಕಾರಣ. ಸಾಮಾನ್ಯಪರಿಸ್ಥಿತಿಯಲ್ಲಿಗಾಳಿಯಕೊರತೆಇರುವುದಿಲ್ಲ, ಈಬಗೆಯಸೇವನೆಯನ್ನುಏರೋಬಿಕ್ಮೆಟಾಬೋಲಿಸಮ್(Aerobic metabolism) ಎನ್ನುತ್ತಾರೆ. ಆಮ್ಲಜನಕದಕೊರತೆಯಿದ್ದಾಗಈಕಿರುಜೀವಿಗಳಸೇವನೆಯಬಗೆಬೇರೆಯಾಗಿರುತ್ತದೆ, ಅದನ್ನುಅನ್ಯೆರೋಬಿಕ್ಮೆಟಾಬೋಲಿಸಮ್(Anaerobic Metabolism) ಎನ್ನುತ್ತಾರೆ. ಹೀಗೆಎರಡೂಬಗೆಯಲ್ಲಿಸೇವಿಸುವಜೊತೆಗೆಅವುಆಲ್ಕೋಹಾಲ್ಅಥವಾಇನ್ನಿತರರಾಸಾಯನಿಕಪದಾರ್ಥವನ್ನುತಯಾರಿಸುತ್ತವೆ. ಫಂಗೈಹಾಗುಬ್ಯಾಕ್ಟೀರಿಯಾಗಳಈಗುಣವನ್ನುಜನರುತಮ್ಮಅನುಕೂಲಕ್ಕೆಬಳಸುವಚಳಕವೇಹುದುಗುವಿಕೆ.
ಈತನಿಕೆಯಿಂದಹುದುಗುವಿಕೆಯಕ್ರಿಯೆಕಿರುಜೀವಿಗಳಕೈಚಳಕಎಂದುಸಾಬೀತಾಯಿತು. ಅಲ್ಲದೆ, ಬಗೆಬಗೆಯಬ್ಯಾಕ್ಟೀರಿಯಾಗಳುಹಾಗುಫಂಗೈಗಳುತಮ್ಮದೇವಿಶಿಷ್ಟರೀತಿಯಲ್ಲಿಆಹಾರಸೇವಿಸಿಆಲ್ಕೋಹಾಲ್ಅಥವಾಆಸಿಡ್ಗಳನ್ನುತಯಾರಿಸುತ್ತದೆಎಂದುತಿಳಿಯಿತು. ಪಾಶ್ಚರ್ಅವರಈತನಿಕೆಯಿಂದಅವರಿಗೆಹುದುಗುವಿಕೆಚಳಕದತಂದೆ (Father of Fermentation Technology)ಎಂಬಪಟ್ಟಸಿಕ್ಕಿತು.
ಅಮೆರಿಕಾದ ನಾಸಾ (NASA) ಕೂಟ ಸೂರ್ಯನ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸಲು ಇಂದು ಪಾರ್ಕರ್ ಸೋಲಾರ್ ಪ್ರೋಬ್ ಎಂಬ ಬಾನಬಂಡಿಯನ್ನು ಹಾರಿಸಲಿದೆ. ಇನ್ನು ಎರಡು ಗಂಟೆಗಳಲ್ಲಿ ಅಂದರೆ ಭಾರತದ ಹೊತ್ತು ಮಧ್ಯಾಹ್ನ ಸುಮಾರು 1 ಗಂಟೆಗೆ ಈ ಬಾನಬಂಡಿ ಬಾನಿಗೆ ನೆಗೆಯಲಿದೆ. ಈ ಮೂಲಕ ವಿಜ್ಞಾನದ ಹೊಸದೊಂದು ಮೈಲಿಗಲ್ಲು ದಾಟಲು ಮನುಕುಲ ಎದುರುನೋಡುತ್ತಿದೆ.
ಭೂಮಿಯ ವಾತಾವರಣ, ಜೀವಿಗಳು ಬೆಳೆಯಲು ಬೇಕಾದ ಶಕ್ತಿಮೂಲವಾದ ಸೂರ್ಯನ ಹತ್ತಿರಕ್ಕೆ ಹೋಗಲು ಇಲ್ಲಿಯವರಿಗೆ ಆಗಿಲ್ಲ ಏಕೆಂದರೆ ಸೂರ್ಯನ ಮೇಲ್ಮೈ ತುಂಬಾ ಬಿಸಿಯಾಗಿದ್ದು, ಆ ಬಿಸಿಯನ್ನು ತಡೆದುಕೊಳ್ಳುವ ಸಲಕರಣೆಗಳನ್ನು ಮಾಡುವುದು ತುಂಬಾ ಕಷ್ಟ. ಸೂರ್ಯನ ಮೇಲ್ಮೈಯ ಸುತ್ತಣದ ಭಾಗದಲ್ಲಿ ಕಾವಳತೆ ಸುಮಾರು 20,00,000 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ವರೆಗೆ ತಲುಪುತ್ತದೆ!
ಹಾಗೆನೇ ಭೂಮಿಯಿಂದ ಸೂರ್ಯನಿರುವ ದೂರ, ಸಲಕರಣೆಗಳನ್ನು ಕಳಿಸಲು ಇನ್ನೊಂದು ಸವಾಲು ಒಡ್ದುತ್ತದೆ. ಸೂರ್ಯ ಮತ್ತು ಭೂಮಿಯ ನಡುವಿನ ಸರಾಸರಿ ದೂರ ಸುಮಾರು 15 ಕೋಟಿ ಕಿಲೋ ಮೀಟರ್! ಪಾರ್ಕರ್ ಬಾನಬಂಡಿ ಸೂರ್ಯನ ಮೇಲ್ಮೈಯಿಂದ ಸುಮಾರು 60 ಲಕ್ಷ ಕಿ.ಮೀ. ನಷ್ಟು ಹತ್ತಿರ ಹೋಗಲಿದ್ದು, ಇಷ್ಟು ಹತ್ತಿರಕ್ಕೆ ಹೋಗುವ ಮೊದಲ ಸಲಕರಣೆ ಇದಾಗಲಿದೆ.
ನೇಸರ, ಸೂರ್ಯ, ರವಿ ಮುಂತಾದ ಹೆಸರುಗಳಿಂದ ಗುರುತಿಸಲ್ಪಡುವ ಈ ನಕ್ಷತ್ರ ನಮಗೆ ಶಕ್ತಿಯ ಮೂಲ. ಹೈಡ್ರೋಜನ್ ಅಣುಗಳ ಬೆಸುಗೆಯಿಂದಾಗಿ ಸೂರ್ಯನಲ್ಲಿ ಹೇರಳವಾದ ಶಕ್ತಿ ಬಿಡುಗಡೆಯಾಗುತ್ತದೆ. ಸುಮಾರು 4.57 ಬಿಲಿಯನ್ ವರುಷಗಳ ಹಿಂದೆ ಹೈಡ್ರೋಜನ್ ಮತ್ತು ಹೀಲಿಯಂ ಅಣುಗಳಿಂದ ಕೂಡಿದ್ದ ದೈತ್ಯ ಅಣುಮೋಡದ ಕುಸಿತದಿಂದ ಸೂರ್ಯ ಉಂಟಾಗಿದ್ದು, ತನ್ನ ಬದುಕಿನ ಅರ್ಧ ಆಯುಷ್ಯವನ್ನು ಸೂರ್ಯ ಈಗಾಗಲೇ ಕಳೆದಿದ್ದಾನೆ ಎಂದು ವಿಜ್ಞಾನಿಗಳು ಅಂದಾಜಿಸಿದ್ದಾರೆ.
ಸೂರ್ಯನಲ್ಲಿ ಮುಖ್ಯವಾಗಿ ತಿರುಳು (core), ಸೂಸಿಕೆಯ ಹರವು (radiative zone), ಒಯ್ಯಿಕೆಯ ಹರವು (convective zone), ಬೆಳಕುಗೋಳ (photosphere), ಬಣ್ಣಗೋಳ (chromosphere), ಹೊಳಪುಗೋಳ (corona) ಎಂಬ ಭಾಗಗಳನ್ನು ಗುರುತಿಸಲಾಗಿದೆ. ಈ ಭಾಗಗಳನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ.
ತಿರುಳಿನ ಭಾಗದಲ್ಲಿ ಹೈಡ್ರೋಜನ್ ಅಣುಗಳ ಬೆಸುಗೆಯಿಂದ ಬಿಡುಗಡೆಯಾಗುವ ಶಕ್ತಿ ಉಳಿದ ಭಾಗಗಳನ್ನು ದಾಟಿ ಹೊರಸೂಸುತ್ತದೆ. ನಾಸಾ ಇಂದು ಹಾರಿಸಲಿರುವ ಬಾನಬಂಡಿ ಸುಮಾರು 88 ದಿನಗಳ ಪ್ರಯಾಣದ ಬಳಿಕ ಸೂರ್ಯನ ಸುತ್ತಣದ ಭಾಗವಾದ ಹೊಳಪುಗೋಳದ ಹತ್ತಿರಕ್ಕೆ ಮೊದಲ ಬಾರಿಗೆ ಹೋಗಲಿದೆ.
ಸೋಲಾರ್ ಪಾರ್ಕರ್ ಬಾನಬಂಡಿ ಸುಮಾರು ಏಳು ವರುಶಗಳ ಕಾಲ ಸೂರ್ಯನ ಸುತ್ತ ಅಧ್ಯಯನ ನಡೆಸಲಿದ್ದು, ಅದರ ಒಟ್ಟಾರೆ ಪ್ರಯಾಣವನ್ನು ದಿನಾಂಕಕ್ಕೆ ತಕ್ಕಂತೆ ಕೆಳಗಿನ ಓಡುಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ. (ಚಿತ್ರಸೆಲೆ: ವಿಕಿಪೀಡಿಯಾ)
(ಚಿತ್ರದಲ್ಲಿನ ಬಣ್ಣಗಳ ವಿವರ – ಹಳದಿ: ಸೂರ್ಯ, ಹಸಿರು: ಬುಧ, ತಿಳಿನೀಲಿ: ಶುಕ್ರ, ಕಡುನೀಲಿ: ಭೂಮಿ, ನವಿರುಗೆಂಪು: ಪಾರ್ಕರ್ ಪ್ರೋಬ್)
ಬಾನಬಂಡಿಯ ಭಾಗಗಳು:
ಪಾರ್ಕರ್ ಸೋಲಾರ್ ಪ್ರೋಬ್ ಸೂರ್ಯನ ಸುತ್ತಣದಲ್ಲಿ ಎದುರಾಗುವ ಹೆಚ್ಚಿನ ಕಾವಳತೆಯನ್ನು ತಡೆದುಕೊಳ್ಳುವಂತೆ ಅಣಿಗೊಳಿಸಲಾಗಿದೆ. ಇದಕ್ಕಾಗಿ ಕಾರ್ಬನ್ ಎಳೆಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟ ಸಿ.ಎಫ್.ಆರ್.ಸಿ. ಎಂಬ ವಸ್ತುವನ್ನು ಬಳಸಲಾಗಿದೆ. ಇದು ಸುಮಾರು 1377 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ವರೆಗಿನ ಕಾವಳತೆಯನ್ನು ತಡೆದುಕೊಳ್ಳಬಲ್ಲದು.
(ಚಿತ್ರಸೆಲೆ: KnowledgeSuttra.com )
ಬಾನಬಂಡಿಗೆ ಏನಾದರೂ ತೊಂದರೆಯಾದರೆ ಭೂಮಿಗೆ ಮಾಹಿತಿಯನ್ನು ಕಳಿಸಲು ಸುಮಾರು 8 ನಿಮಿಶಗಳು ತಗಲುವುದರಿಂದ, ಈ ಹೊತ್ತಿನಲ್ಲಿ ತಂತಾನೇ ತೀರ್ಮಾನ ಕೈಗೊಳ್ಳುವಂತೆ ಬಾನಬಂಡಿಯನ್ನು ಸಜ್ಜುಗೊಳಿಸಲಾಗಿದೆ. ಸೂರ್ಯನ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸಲು ಬೇಕಿರುವ ವೈಜ್ಞಾನಿಕ ಸಲಕರಣೆಗಳನ್ನು ಬಾನಬಂಡಿಯ ನಡುವಿನ ಭಾಗದಲ್ಲಿ ಇರಿಸಲಾಗಿದೆ. ಬಾನಬಂಡಿಯಲ್ಲಿ ಎರಡು ಸೋಲಾರ್ ಸಾಲುತಟ್ಟೆಗಳಿದ್ದು, ಅಧ್ಯಯನಕ್ಕೆ ಬೇಕಾದ ವಿದ್ಯುತ್ ಶಕ್ತಿಯನ್ನು ಒದಗಿಸುತ್ತವೆ.
ಬಾನಬಂಡಿಯ ಕೆಲಸಗಳು:
ಇಂದು ಬಾನಿಗೇರಿ 2025 ರವರೆಗೆ ಸೂರ್ಯನ ಸುತ್ತ ಅಧ್ಯಯನ ನಡೆಸುವ ಪಾರ್ಕರ್ ಬಾನಬಂಡಿ ಈ ಕೆಳಗಿನ ಮುಖ್ಯ ಅಧ್ಯಯನದ ಗುರಿಗಳನ್ನು ಹೊಂದಿದೆ,
1. ಹೊಳಪುಗೋಳದ (ಕರೋನಾ) ಕಾವು ಮತ್ತು ಆ ಮೂಲಕ ಸೂರ್ಯ ಅಲೆಗಳ ವೇಗಹೆಚ್ಚುವಿಕೆಗೆ ಕಾರಣವಾದ ಶಕ್ತಿ ಹರಿವಿನ ಮೂಲವನ್ನು ತಿಳಿದುಕೊಳ್ಳುವುದು.
2. ಸೂರ್ಯನ ಸುತ್ತಣದಲ್ಲಿ ಉಂಟಾಗುವ ಕಾಂತ ಬಯಲಿನ (magnetic filed) ರಚನೆ ಮತ್ತು ಅದರ ಏರಿಳಿತದ ಕುರಿತು ಅರಿತುಕೊಳ್ಳುವುದು.
3. ಸೂರ್ಯನ ಸುತ್ತಣದಿಂದ ಹೊಮ್ಮುವ ಶಕ್ತಿದುಂಬಿದ ಕಣಗಳು ಹೇಗೆ ವೇಗಹೆಚ್ಚಿಸಿಕೊಳ್ಳುತ್ತವೆ ಮತ್ತು ಅವುಗಳು ಹೇಗೆ ಸಾಗಣಿಕೆಗೊಳ್ಳುತ್ತವೆ ಎಂದು ಅರಿಯುವುದು.
ಈ ಮೇಲಿನ ಮೂರು ಮುಖ್ಯ ಗುರಿಗಳ ಜತೆಗೆ ಸೂರ್ಯನ ಕುರಿತು ಇನ್ನೂ ಹತ್ತು ಹಲವಾರು ಹೊಸ ವಿಷಯಗಳು ತಿಳಿಯಲಿವೆ ಎಂದು ವಿಜ್ಞಾನಿಗಳು ಅಂದುಕೊಂಡಿದ್ದಾರೆ.
ಸೂರ್ಯನ ಬಗ್ಗೆ ಹಲವಾರು ವರುಷಗಳಿಂದ ಅಧ್ಯಯನ ಕೈಗೊಳ್ಳುತ್ತಾ ಬಂದಿರುವ ವಿಜ್ಞಾನಿ ಯುಜೀನ್ ಪಾರ್ಕರ್(Eugene Parker) ಅವರ ಹೆಸರಿನಲ್ಲಿ ಈ ಬಾನಬಂಡಿಯನ್ನು ಗುರುತಿಸಲಾಗಿದೆ. ವಿಜ್ಞಾನಿಯೊಬ್ಬ ಬದುಕಿರುವಾಗಲೇ ಅವರ ಹೆಸರನ್ನು ಬಾನಬಂಡಿಗೆ ಇಟ್ಟಿದ್ದು ಇದೇ ಮೊದಲ ಬಾರಿ.
ಬಾನಬಂಡಿಯನ್ನು ಹಾರಿಸಲು ಈ ಮುಂಚೆ ನಿಗದಿಪಡಿಸಿದ್ದ ದಿನಾಂಕಗಳನ್ನು ಹಲವು ಬಾರಿ ಮುಂದೂಡಲಾಗಿದ್ದು, ಇಂದು ಈ ಹಮ್ಮುಗೆ ನೆರವೇರಲಿ ಎಂದು ಹಾರೈಸೋಣ.
ಮಾಹಿತಿ: 11.08.2018 ರಂದು ಹಾರಿಕೆಗೆ 4 ನಿಮಿಷಗಳ ಮುಂಚೆ ಕೆಲವು ತೊಡಕುಗಳು ಕಂಡುಬಂದಿದ್ದರಿಂದ ಹಾರಿಕೆಯನ್ನು 1 ದಿನ ಮುಂದೂಡಲಾಯಿತು. ಇಂದು ಅಂದರೆ 12.08.2018 ರಂದು ಭಾರತದ ಹೊತ್ತು ಮಧ್ಯಾಹ್ನ ಸುಮಾರು 1 ಗಂಟೆಗೆ ಪಾರ್ಕರ್ ಸೋಲಾರ್ ಪ್ರೋಬ್ ಬಾನಿಗೇರಿತು.
ನೆಲದಿಂದ ನೆಗೆದ 45 ನಿಮಿಷಗಳ ಬಳಿಕ ಡೆಲ್ಟಾ 4 ಏರುಬಂಡಿಯಿಂದ(rocket) ಸೋಲಾರ್ ಪ್ರೋಬ್ ಬಾನಬಂಡಿ(spacecraft) ಬೇರ್ಪಟ್ಟು ಸೂರ್ಯನೆಡೆಗೆ ಪಯಣ ಬೆಳೆಸಿತು. ಇದೆ ವರುಷದ ಕೊನೆಗೆ ಅದು ಸೂರ್ಯನ ಹತ್ತಿರಕ್ಕೆ ತಲುಪುವ ನಿರೀಕ್ಷೆಯಿದೆ.
ದುಂಡಾಕಾರವಾಗಿರುವ ಭೂಮಿಯ ದುಂಡಗಲ (diameter) 12,756 ಕಿಲೋ ಮೀಟರಗಳು ಮತ್ತು ಅದರ ತೂಕ 5.97219 × 1024 ಕಿಲೋ ಗ್ರಾಂ. ಇಂತಹ ಸಾಲುಗಳನ್ನು ಓದಿದೊಡನೆ ಮುಖ್ಯವಾಗಿ ಎರಡು ವಿಷಯಗಳು ಬೆರೆಗುಗೊಳಿಸುತ್ತವೆ. ಮೊದಲನೆಯದು ಇಷ್ಟೊಂದು ದೊಡ್ಡದಾದ ಅಂಕಿಗಳು ಮತ್ತು ಎರಡನೆಯದು ಅವುಗಳನ್ನು ಅಳೆದುದು ಹೇಗೆ?.
ಇನ್ನೊಂದು ಅಚ್ಚರಿಯ ವಿಷಯವೆಂದರೆ ಭೂಮಿಯ ದುಂಡಗಲವನ್ನು ಮೊಟ್ಟಮೊದಲ ಬಾರಿಗೆ ಅಳೆದದ್ದು ಸರಿಸುಮಾರು 2200 ವರುಶಗಳ ಹಿಂದೆ! ಬನ್ನಿ, ಅವರಾರು? ಹೇಗೆ ಅಳೆದರು? ಎಂದು ತಿಳಿದುಕೊಳ್ಳೋಣ.
ಕ್ರಿ.ಪೂ. ಸುಮಾರು 200 ರಲ್ಲಿ ಈಜಿಪ್ಟಿನ ಎರತೊಸ್ತನೀಸ್ (Eratosthenes) ಎಂಬ ಗಣಿತದರಿಗ ಭೂಮಿಯ ದುಂಡಗಲವನ್ನು ಅಳೆದವರಲ್ಲಿ ಮೊದಲಿಗ. ಅದೂ ತನ್ನ ನಾಡಿನಲ್ಲೇ ಇದ್ದುಕೊಂಡು ಅರಿಮೆಯ ನೆರವಿನಿಂದ ಈ ಕೆಲಸವನ್ನು ಮಾಡಿ ತೋರಿಸಿದಾತ.
ಎರತೊಸ್ತನೀಸ್ರಿಗೆ ತನ್ನ ಸುತ್ತಮುತ್ತಲಿನ ಆಗುಹೋಗುಗಳು ತುಂಬಾ ಕುತೂಹಲ ಮೂಡಿಸಿದಂತವು. ಬೇಸಿಗೆಯ ಒಂದು ಗೊತ್ತುಪಡಿಸಿದ ಹೊತ್ತಿನಂದು ಸಿಯನ್ ಊರಿನ ಬಾವಿಯ ಮೇಲೆ ಹಾದುಹೋಗುವ ಸೂರ್ಯನ ಕಿರಣಗಳು, ಆ ಬಾವಿಯ ನಟ್ಟನಡುವೆ ಬೀಳುತ್ತಿದ್ದುದು ಮತ್ತು ಅದೇ ಹೊತ್ತಿಗೆ ಅಲ್ಲಿಂದ ಸುಮಾರು 750 ಕೀಲೋ ಮೀಟರಗಳಷ್ಟು ದೂರವಿರುವ ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾದ ಕಂಬವೊಂದರ ಮೇಲೆ ಸೂರ್ಯನ ಬೆಳಕಿನಿಂದ ಉಂಟಾಗುವ ನೆರಳು ನೇರವಾಗಿರದೇ ಒಂದು ಕೋನದಲ್ಲಿ ಇರುತ್ತಿದ್ದುದು, ಎರತೋಸ್ತೇನಸ್ ರ ಕುತೂಹಲ ಕೆರಳಿಸಿದ್ದವು.
ಸೂರ್ಯನ ನೆಟ್ಟ ನೇರವಾದ ಕಿರಣಗಳು ಉಂಟುಮಾಡುವ ನೆರಳು ಸಿಯಾನ್ ಊರಿನಲ್ಲಿ ನೇರವಾಗಿ ಮತ್ತು ಅದೇ ಹೊತ್ತಿಗೆ ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾದಲ್ಲಿ ಒಂದು ಕೋನದಲ್ಲಿದ್ದದ್ದು, ನಮ್ಮ ಭೂಮಿ ಚಪ್ಪಟೆಯಾಗಿರದೇ ದುಂಡಾಗಿದೆ ಅನ್ನುವಂತ ವಿಷಯವನ್ನು ಎರತೊಸ್ತನೀಸ್ರಿಗೆ ತೋರಿಸಿಕೊಟ್ಟಿದ್ದವು. ಗಣಿತವನ್ನರಿತಿದ್ದ ಎರತೊಸ್ತನೀಸ್ರಿಗೆ ಇದನ್ನು ಬಳಸಿಯೇ ಭೂಮಿಯ ಸುತ್ತಳತೆಯನ್ನು ಅಳೆಯುವ ಹೊಳಹು ಹೊಮ್ಮಿತು.
ಸಿಯಾನ್ ಊರಿನ ಬಾವಿಯ ಮೇಲೆ ಸೂರ್ಯನ ಕಿರಣಗಳು ನೇರವಾಗಿ ಬೀಳುತ್ತಿದ್ದ ಹೊತ್ತಿಗೆ ತನ್ನೂರು ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾದಲ್ಲಿದ್ದ ಕಂಬದ ನೆರಳು ಬೀಳುತ್ತಿದ್ದ ಕೋನವನ್ನು ಎರತೋಸ್ತೇನಸ್ ಅಳೆದರು. ಕಂಬ ಉಂಟುಮಾಡುತ್ತಿದ್ದ ನೆರಳಿನ ಕೋನವು 7.2° ಎಂದು ಗೊತ್ತಾಯಿತು.
ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾ ಮತ್ತು ಸಿಯನ್ ಊರುಗಳ ದೂರ ತಿಳಿದಿದ್ದ ಎರತೋಸ್ತೇನಸ್ ಗಣಿತದ ನಂಟುಗಳನ್ನು ಬಳಸಿ ಭೂಮಿಯ ಸುತ್ತಳತೆ ಮತ್ತು ದುಂಡಗಲವನ್ನು ಈ ಕೆಳಗಿನಂತೆ ಎಣಿಕೆಹಾಕಿದರು.
ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾ ಕಂಬದ ನೆರಳಿನ ಕೋನ = 7.2°
ಒಂದು ಸುತ್ತಿನಲ್ಲಿ ಇರುವ ಕೋನಗಳು = 360°
ಅಂದರೆ, ದುಂಡಾಗಿರುವ ಭೂಮಿಯ ಸುತ್ತಳತೆ ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾ ಮತ್ತು ಸಿಯಾನ್ ಊರುಗಳ ದೂರದ 360/7.2 = 50 ರಷ್ಟು ಇರಬೇಕು.
ಇನ್ನು, ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾ ಮತ್ತು ಸಿಯನ್ ಊರುಗಳ ನಡುವಿನ ದೂರ = 5000 ಸ್ಟೇಡಿಯಾ
(ಸ್ಟೇಡಿಯಾ/Stadia – ದೂರವನ್ನು ಅಳೆಯಲು ಎರತೊಸ್ತನೀಸ್ ಬಳಸಿದ ಅಳತೆಗೋಲು)
ಹಾಗಾಗಿ, ಭೂಮಿಯ ಸುತ್ತಳತೆ = 50 x 5000 = 250000 ಸ್ಟೇಡಿಯಾ = 40,000 ಕಿಲೋ ಮೀಟರಗಳು
(1 ಸ್ಟೇಡಿಯಾ = 0.15 ಕಿ.ಮೀ.)
ನಮಗೆ ಗೊತ್ತಿರುವಂತೆ, ಸುತ್ತಳತೆ = 3.142 x ದುಂಡಗಲ (Circumference = 3.142 x diameter)
ಹಾಗಾಗಿ, ಎರತೊಸ್ತನೀಸ್ ಎಣಿಕೆ ಹಾಕಿದ ಭೂಮಿಯ ದುಂಡಗಲ (diameter) = 40000/3.142 = 12730.7 ಕಿ.ಮೀ.
ಹೀಗೆ ಸುಮಾರು 2200 ವರುಶಗಳ ಹಿಂದೆ ಕೋನಗಳನ್ನು ಬಳಸಿ ಎರತೋಸ್ತೇನಸ್ ಅಳೆದದ್ದು, ಹೊಸಜಗತ್ತಿನಲ್ಲಿ ಉಪಗ್ರಹಗಳನ್ನು ಬಳಸಿ ಕರಾರುವಕ್ಕಾಗಿ ಅಳೆಯಲಾದ ಭೂಮಿಯ ದುಂಡಗಲ 12,756 ಕಿಲೋ ಮೀಟರಗಳಿಗೆ ತುಂಬಾ ಹತ್ತಿರವಾಗಿದೆ ಎಂಬುದನ್ನು ನೋಡಿದರೆ ಅರಿಮೆಯ ’ಹಿರಿಮೆ’ ಮನದಟ್ಟಾಗುತ್ತದೆ.
ನೋವು ಎಂಬುದು ಯಾರಿಗಾದರೂ ಆಗುವಂತದ್ದು. ಆರಂಭದಿಂದಲೂ ಮನುಷ್ಯ ನೋವಿನಿಂದ ತಪ್ಪಿಸಿಕೊಳ್ಳಲು ಹಲವಾರು ದಾರಿಗಳನ್ನು ಕಂಡುಕೊಳ್ಳುತ್ತಲೇ ಬಂದಿದ್ದಾನೆ. ಮೊದಲಿಗೆಲ್ಲ ಮತ್ತೇರಿಸುವ ವಸ್ತುಗಳೇ ನೋವಳಿಸುವ ಮದ್ದುಗಳಾಗಿ ಬಳಕೆಯಲ್ಲಿದ್ದವು. ರಸಾಯನಶಾಸ್ತ್ರ ಮುಂದುವರೆದಂತೆಲ್ಲ ಹೊಸ ಹೊಸ ಮದ್ದುಗಳು ಬೆಳಕಿಗೆ ಬರಲು ಆರಂಭಿಸಿದವು. ಜಗತ್ತಿನ ಅತಿ ಹೆಚ್ಚು ಬಳಕೆಯಲ್ಲಿರುವ ನೋವಳಿಕಗಳಲ್ಲಿ ಅಸಿಟೈಲ್ ಸ್ಯಾಲಿಸಿಲಿಕ್ ಆ್ಯಸಿಡ್ (ಆಸ್ಪ್ರಿನ್ – Aspirin) ಕೂಡ ಒಂದು. ಇದನ್ನು ಕಂಡು ಹಿಡಿದದ್ದು ಜರ್ಮನಿಯ ಫೆಲಿಕ್ಸ್ ಹಾಫಮನ್ ಎಂಬುವವರು.
ಹಾಫಮನ್ ಹುಟ್ಟಿದ್ದು 1878ರಲ್ಲಿ ಜರ್ಮನಿಯ ಸ್ವಾಬಿಯಾ ಪ್ರಾಂತ್ಯದ ಲುಡ್ವಿಗ್ ಎಂಬಲ್ಲಿ. ಮೊದಲು ಬೇರೆ ಬೇರೆ ಫಾರ್ಮಸಿಗಳಲ್ಲಿ ಕೆಲಸ ಮಾಡಿದ ನಂತರ ಮ್ಯೂನಿಕ್ ಯುನಿವರ್ಸಿಟಿಯಲ್ಲಿ ರಸಾಯನಶಾಸ್ತ್ರದ ಪದವಿಯನ್ನು 1893ರಲ್ಲಿ ಪಡೆದರು. ಆಮೇಲೆ ಅವರ ಗುರುಗಳಾದ ನೊಬೆಲ್ ಪ್ರಶಸ್ತಿ ವಿಜೇತ ಅಡಾಲ್ಫ್ ವಾನ್ ಬೇಯರ್ ಅವರ ಶಿಫಾರಸ್ಸಿನಿಂದ ಬಾಯರ್ (Bayer) ಕಂಪನಿಯಲ್ಲಿ ಹೊಸದಾಗಿ ಹುಟ್ಟುಹಾಕಲಾಗಿದ್ದ ಫಾರ್ಮಸಿ ಅರಕೆ ವಿಭಾಗದಲ್ಲಿ ಕೆಲಸ ದೊರೆಯಿತು.
1897ರಲ್ಲಿ ಹಾಫಮನ್ ಅವರು ಬೇರೆ ಬೇರೆ ಅಣುಕೂಟಗಳನ್ನು (molecule) ಅಸಿಟೈಲ್(acetyl) ಗುಂಪಿನೊಂದಿಗೆ ಸೇರಿಸಿ ಅವುಗಳ ಬಲಪಡಿಸುವಿಕೆ ಇಲ್ಲವೇ ನಂಜು ಕುಗ್ಗಿಸುವಿಕೆಯನ್ನು ಮಾಡಲು ಪ್ರಯತ್ನಿಸುತ್ತಿದ್ದರು. ಬಾಯರ್ ಕಂಪನಿಯು ಈ ಬಗೆಯಲ್ಲಿ ಪ್ರಯತ್ನಿಸಿ ಅದಾಗಲೇ ಜ್ವರಕ್ಕಾಗಿ ಫೆನಾಸಿಟಿನ್ (Phenacetin) (1888) ಮತ್ತು ಭೇದಿ ಚಿಕಿತ್ಸೆಗಾಗಿ ಟ್ಯಾನಿಗ್ (Tannig) (1894) ಎಂಬ ಅಸಿಟೈಲ್ಗೊಳಿಸಲಾದ ದ್ರವ್ಯಗಳನ್ನು ಬಳಕೆಗೆ ತಂದಿತ್ತು. ಇದೇ ಹಾದಿಯಲ್ಲಿ ಹಾಫಮನ್ ಕೂಡ ಪ್ರಯತ್ನಿಸುತ್ತಿದ್ದರು. ಇನ್ನೊಂದು ಮೂಲದ ಪ್ರಕಾರ ಹಾಫಮನ್ ತಮ್ಮ ತಂದೆಯ ಕೀಲು ನೋವು ಬೇನೆಗೆ ಈ ಅರಕೆ ನಡೆಸುತ್ತಿದ್ದರು ಅನ್ನಲಾಗುತ್ತದೆ. ಶತಮಾನಗಳಿಂದ ಬೈಚೆ ಮರದ ತೊಗಟೆಯು (willow bark) ನೋವಳಿಸುವ ಒಂದು ಔಷಧಿಯಾಗಿ ಬಳಕೆಯಲ್ಲಿತ್ತು. ಹತ್ತೊಂಬತ್ತನೇ ಶತಮಾನದ ಆರಂಭದಲ್ಲಿ ಹಲವಾರು ಅರಕೆಗಾರರು ಬೈಚೆಮರದ ತೊಗಟೆಯಿಂದ ಸ್ಯಾಲಿಸಿಲಿಕ್ ಆ್ಯಸಿಡ್ ಅನ್ನು ಬೇರ್ಪಡಿಸಿ ಬಳಕೆಗೆ ತಂದಿದ್ದರು. 1874ರಲ್ಲಿ ಹೇಡನ್ ಕಂಪನಿಯು ಸ್ಯಾಲಿಸಿಲಿಕ್ ಆ್ಯಸಿಡ್ ಅನ್ನು ಮಾರುಕಟ್ಟೆಗೆ ತಂದಿತ್ತು ಆದರೆ ಬಳಸಿದ ರೋಗಿಗಳಿಗೆ ಹಲವಾರು ಅಡ್ಡ ಪರಿಣಾಮಗಳನ್ನು ಉಂಟುಮಾಡಿತ್ತು. ಈ ಬೆಳವಣಿಗೆಗಳನ್ನು ಕಂಡು ಹಾಫಮನ್ ಅವರು ಸ್ಯಾಲಿಸಿಲಿಕ್ ಆ್ಯಸಿಡ್ ಅನ್ನು ಅಸಿಟೈಲ್ಗೊಳಿಸಲು ಆರಂಭಿಸಿ ಗೆಲವು ಕಂಡರು.
ಈ ವಿಷಯ ತಿಳಿಯುತ್ತಿದ್ದಂತೆ ವಿಭಾಗದ ಮುಖ್ಯಸ್ಥರಾದ ಹೆನ್ರಿಚ್ ಡ್ರೆಸರ್ ಅವರು ಮೊದಲು ತಮ್ಮ ಮೇಲೆಯೇ ಪ್ರಯೋಗಿಸಿ ನಂತರ ಹಲವಾರು ಪ್ರಾಣಿ ಪ್ರಯೋಗಗಳನ್ನು ಮಾಡಿ ಆಮೇಲೆ ರೋಗಿಗಳ ಮೇಲೆ ಪ್ರಯೋಗಿಸಿದರು. ಎಲ್ಲವೂ ಯಶಸ್ವಿಯಾದ ಮೇಲೆ 1899ರಲ್ಲಿ ಬಾಯರ್ ಕಂಪನಿಯು ಈ ಅಸಿಟೈಲ್ ಸ್ಯಾಲಿಸಿಲಿಕ್ ಆ್ಯಸಿಡ್ ಅನ್ನು ಆಸ್ಪ್ರಿನ್ (Asprin) ಎಂಬ ಹೆಸರಿನಲ್ಲಿ ಮಾರುಕಟ್ಟೆಗೆ ತಂದಿತು. ಮಾರುಕಟ್ಟೆಗೆ ಅಡಿಯಿಟ್ಟ ಕೆಲವೇ ದಿನಗಳಲ್ಲಿ ತುಂಬ ಮಂದಿಮೆಚ್ಚುಗೆ ಪಡೆಯಿತು. ಮೊದಲು ಪುಡಿಯ ರೂಪದಲ್ಲಿ ಇದ್ದದ್ದು ಕೆಲವು ವರುಶಗಳಲ್ಲಿ ಮಾತ್ರೆಯ ರೂಪವನ್ನು ಪಡೆಯಿತು. ಕಂಡುಹಿಡಿದು 100 ವರುಶಕ್ಕಿಂತ ಹೆಚ್ಚಾದರೂ ಇದರ ಮಂದಿಮೆಚ್ಚುಗೆಯಲ್ಲಿ ಯಾವುದೇ ಕೊರತೆಯಾಗಿಲ್ಲ. ಜಗತ್ತಿನಲ್ಲಿ ಈಗಲೂ ಅತಿ ಹೆಚ್ಚು ಪ್ರಮಾಣದಲ್ಲಿ ಬಳಕೆಯಲ್ಲಿದೆ. ಇಂತ ದ್ರವ್ಯವನ್ನು ಕಂಡುಹಿಡಿದಾಗ ಹಾಫಮನ್ ರಿಗೆ ಬರೀ 29 ವರುಶ.
ಬಾಯರ್ ಕಂಪನಿಯು ಇದರ ಪೇಟೆಂಟ್ಗಾಗಿ ಪ್ರಯತ್ನಿಸಿದರೂ ಅದಾಗಲೇ ಬೇರೆಯವರು ಇದನ್ನು ಸಾಧಿಸಿದ್ದಾರೆ ಎಂಬ ಕಾರಣದಿಂದ ಜರ್ಮನಿಯಲ್ಲಿ ನಿರಾಕರಿಸಲಾಯಿತು. ಆದರೆ ಬೇರೆಯವರು ಸಿದ್ಧಪಡಿಸಿದ್ದ ಮಾದರಿಯು ಹಾಫಮನ್ ಸಿದ್ಧಪಡಿಸಿದ್ದ ಹಾಗೆ ಶುದ್ಧ ಮತ್ತು ಪರಿಣಾಮಕಾರಿಯಾಗಿರಲಿಲ್ಲ. ಇಷ್ಟಾದರೂ ಕಂಪನಿಯು ತಲೆಕೆಡಿಸಿಕೊಳ್ಳದೇ ಇದರ ವ್ಯಾವಹಾರಿಕ ಲಾಭವನ್ನು ಅರಿತು ಅಮೆರಿಕ ಮತ್ತು ಜಗತ್ತಿನಾದ್ಯಂತ ದೊಡ್ಡ ಪ್ರಮಾಣದಲ್ಲಿ ಲಗ್ಗೆಯಿಟ್ಟಿತು. ಅಂದುಕೊಂಡಂತೆ ಅದಕ್ಕೆ ಲಾಭವಾಗುವುದರ ಜೊತೆಗೆ ಅಮೆರಿಕದಲ್ಲಿ ಪೇಟೆಂಟ್ ಕೂಡ ದೊರೆಯಿತು ಮತ್ತು 1900 ರಿಂದ 1917ವರೆಗೆ ತಯಾರಿಕೆಯ ಏಕಸ್ವಾಮ್ಯವನ್ನೂ ಪಡೆಯಿತು. ಆಸ್ಪ್ರಿನ್ ಮಾತ್ರೆಯು ಬಾಯರ್ ಕಂಪನಿಯನ್ನು ಜಗತ್ತಿನಾದ್ಯಂತ ಮನೆಮಾತಾಯಿಸಿತು.
1948ರಲ್ಲಿ ಕ್ಯಾಲಿಫೋರ್ನಿಯಾದ ವೈದ್ಯ ಡಾ.ಲಾರೆನ್ಸ ಕ್ರಾವನ್ ಅವರು ಆಸ್ಪ್ರಿನ್ ಮಾತ್ರೆಯು ಹೃದಯಾಘಾತವನ್ನು ತಡೆಯುವ ಸಾಮರ್ಥ್ಯವನ್ನು ಹೊಂದಿದೆಯೆಂದೂ ಜಗತ್ತಿಗೆ ತೋರಿಸಿಕೊಟ್ಟರು. ಆಗ ಅದರ ಬಳಕೆ ಇನ್ನೂ ಹೆಚ್ಚತೊಡಗಿತು. ಪಾಶ್ಚಿಮಾತ್ಯ ದೇಶಗಳಲ್ಲಿ ಇದು ನೋವಳಿಕವಾಗಿಯೇ ಹೆಚ್ಚು ಬಳಕೆಯಿದ್ದರೂ ಇಂಡಿಯಾದಲ್ಲಿ ಹೃದಯಾಘಾತ ಮತ್ತು ಪಕ್ಷಾಘಾತ (stroke) ತಡೆಯಲು ಹೆಚ್ಚು ಬಳಸಲಾಗುತ್ತದೆ.
1949ರಲ್ಲಿ ಬಾಯರ್ ಕಂಪನಿಯ ಮಾಜಿ ಕೆಲಸಗಾರನಾದ ಅರ್ಥರ್ ಐಶನ್ಗ್ರನ್ ಅವರು ಅಸಿಟೈಲ್ ಸ್ಯಾಲಿಸಿಲಿಕ್ ಆ್ಯಸಿಡ್ ನ ನಿಜವಾದ ತಯಾರಕ ತಾನಾಗಿದ್ದು ಹಾಫಮನ್ ಅಲ್ಲ ಎಂಬ ವಾದ ಇಟ್ಟರು. ಎಲ್ಲ ಯೋಜನೆ ಮತ್ತು ನಿರ್ದೆಶನ ಮಾಡಿದ್ದು ತಾವು ಮತ್ತು ಹಾಫಮನ್ ಬರೀ ಪ್ರಾಥಮಿಕ ಹಂತದ ತಯಾರಿಕೆಯಲ್ಲಿ ಮಾತ್ರ ತೊಡಗಿಕೊಂಡಿದ್ದರು ಅಂತ ತಮ್ಮ ವಾದದಲ್ಲಿ ಹೇಳಿದರು. ಆದರೆ ಯಾರೂ ಈ ಬಗ್ಗೆ ಗಮನ ಕೊಡಲಿಲ್ಲ. ಮುಂದೆ 1999 ಮತ್ತೆ ಈ ವಿವಾದ ಬುಗಿಲೆದ್ದಾಗ ಬಾಯರ್ ಕಂಪನಿಯು ಸ್ಪಷ್ಟೀಕರಣ ನೀಡಿ ಫೆಲಿಕ್ಸ ಹಾಫಮನ್ ಅವರೇ ಆಸ್ಪ್ರಿನ್ ಮಾಡುಗರು ಎಂದು ಈ ವಿವಾದಕ್ಕೆ ಕೊನೆ ಹಾಡಿದರು. ಈಗಲೂ ಕೆಲವರು ಅರ್ಥರ್ ಐಶನ್ಗ್ರನ್ ಅವರು ಯಹೂದಿಯಾದ್ದರಿಂದ ಬೇಕಂತಲೇ ಅವರ ಹೆಸರನ್ನು 1930 ರ ಈಚೆಗೆ ಕೈಬಿಡಲಾಗಿದೆ ಎಂದು ಹೇಳುತ್ತಾರೆ.
ಇನ್ನೊಂದು ಮುಖ್ಯವಾದ ದ್ರವ್ಯವೊಂದನ್ನು ಹಾಫಮನ್ ಅವರು ಅಸಿಟೈಲ್ ಸ್ಯಾಲಿಸಿಲಿಕ್ ಆ್ಯಸಿಡ್ ನ ಜೊತೆ ಜೊತೆಗೆ ಕಂಡುಹಿಡಿದಿದ್ದರು. ಅದುವೇ ಡೈಅಸಿಟೈಲ್ ಮಾರ್ಫಿನ್ (Diacetyl morphine). ಮಂದಿಯ ಬಾಯಲ್ಲಿ ಹೆರಾಯಿನ್ (Heroin) ಅಂತಲೇ ಚಿರಪರಿಚಿತ. ಜಗತ್ತು ಕಂಡ ಕಡು ಅಪಾಯಕಾರಿ ಮಾದಕ ದ್ರವ್ಯ. ವಿಭಾಗದ ಮುಖ್ಯಸ್ಥರಾದ ಹೆನ್ರಿಚ್ ಡ್ರೆಸರ್ ಅವರು ಇದೇ ಹೊತ್ತಲ್ಲಿ ಹಾಫಮನ್ ರಿಗೆ ಇನ್ನೊಂದು ಕೆಲಸ ಕೊಟ್ಟಿದ್ದರು. ಡ್ರೆಸರ್ ಅವರು ಗಸಗಸೆ ಬೀಜದಿಂದ ಹೊರತೆಗೆದ ಕೋಡೀನ್ (Codeine) ಎಂಬ ದ್ರವ್ಯದ ಪರಿಣಾಮ ಅರಿತಿದ್ದರು. ಅದು ಗಸಗಸೆ ಬೀಜದಿಂದಲೇ ಹೊರತೆಗೆದ ಮಾರ್ಫಿನ್ (Morphine) ಗಿಂತ ಅಶಕ್ತವಾಗಿತ್ತು. ಆದ್ದರಿಂದ ಒಂದು ಒಳ್ಳೆ ಬಗೆಯ ಔಷಧಿ ದ್ರವ್ಯ ಮಾಡಲು ಈ ಮಾರ್ಫಿನ್ ಅನ್ನು ಅಸಿಟೈಲ್ಗೊಳಿಸಲು ಹೇಳಿದ್ದರು. ಅಂತೆಯೇ ಹಾಫಮನ್ ಈ ಕೆಲಸದಲ್ಲಿ ತೊಡಗಿಕೊಂಡು ಮುಗಿಸಿದಾಗ ಹುಟ್ಟಿದ್ದೇ ಹೆರಾಯಿನ್. ಆವಾಗ ಯಾರಿಗೂ ಕೂಡ ಇದರ ಬಗ್ಗೆ ಮಾಹಿತಿ ಇರಲಿಲ್ಲ. ಆದರೆ ಇದರ ಕೆಟ್ಟ ಪರಿಣಾಮಗಳ ಬಗ್ಗೆ ಎಲ್ಲರಿಗೂ ತಿಳುವಳಿಕೆ ಮೂಡವಷ್ಟರಲ್ಲಿ ಬಾಯರ್ ಕಂಪನಿಯು ಅದಾಗಲೇ ಸಾಕಷ್ಟು ಪ್ರಮಾಣದ ಹೆರಾಯಿನ್ ಅನ್ನು ಕೆಮ್ಮಿನ ಔಷಧಿ ರೂಪದಲ್ಲಿ ಮಾರಾಟ ಮಾಡಿಯಾಗಿತ್ತು. ನಂತರ ಜಗತ್ತಿನಲ್ಲೆಡೆ ಈ ದ್ರವ್ಯವನ್ನು ನಿರ್ಬಂಧಿಸಲಾಯಿತು.
ಹೀಗೆ ಈ ಎರಡು ಬಗೆಯ ದ್ರವ್ಯಗಳು ಒಂದು ಆಸ್ಪ್ರಿನ್ ಮತ್ತೊಂದು ಹೆರಾಯಿನ್ ಒಬ್ಬ ವ್ಯಕ್ತಿಯಿಂದಲೇ ಹುಟ್ಟಿಕೊಂಡವು. ಒಂದು ಜಗತ್ತನ್ನು ನೋವಿನಿಂದ ದೂರವಿಟ್ಟರೆ ಮತ್ತೊಂದು ಜಗತ್ತನ್ನು ನೋವಿನ ಕೂಪಕ್ಕೆ ತಳ್ಳಿತು.
1928ರಲ್ಲಿ ಹಾಫಮನ್ ನಿವೃತ್ತಿ ಹೊಂದಿದಾಗ ಆಸ್ಪ್ರಿನ್ ಜಗತ್ತಿನೆಲ್ಲೆಡೆ ಪ್ರಸಿದ್ಧಿಯಾಗಿತ್ತು, ಫೆಲಿಕ್ಸ್ ಹಾಫಮನ್ ರನ್ನು ಹೊರತುಪಡಿಸಿ! ಹೌದು! ಆ ಕಾಲದಲ್ಲಿ ಅಂತರಾಷ್ಟ್ರೀಯ ಮಟ್ಟದಲ್ಲಿ ಅವರ ಹೆಸರು ಬೆಳಗಲೇ ಇಲ್ಲವಂತೆ. ಮುಂದೆ ಸಾರ್ವಜನಿಕ ಬದುಕಿನಿಂದ ದೂರವೇ ಉಳಿದಿದ್ದ ಹಾಫಮನ್ ಕೊನೆಯವರೆಗೂ ಮದುವೆ ಆಗಲೇ ಇಲ್ಲ. 1946ರ ಪೆಬ್ರವರಿ 8ರಂದು ಸ್ವಿಜರ್ಲೆಂಡ್ ನಲ್ಲಿ ಅವರು ಕೊನೆಯುಸಿರೆಳೆದರು.
ಇನ್ಸುಲಿನ್ ಎಂಬುದು ಅರಗುಸುರಿಗೆಯಲ್ಲಿರುವ (Pancreas) ಲ್ಯಾಂಗರಹೆನ್ಸ ಗೂಡುಕಟ್ಟಿನ (islets of Langerhans) ಕೋಶಗಳು ಸುರಿಸುವ ಒಂದು ಸುರಿವೊಯ್ಯುಕ (hormone). ಇನ್ಸುಲಿನ್, ರಕ್ತದಲ್ಲಿ ಸಕ್ಕರೆ (Glucose) ಪ್ರಮಾಣವನ್ನು ಹತೋಟಿಯಲ್ಲಿಡುತ್ತದೆ. ಏನಾದರು ತಿಂದ ಮೇಲೆ ಇಲ್ಲವೇ ಊಟವಾದ ಮೇಲೆ ರಕ್ತದಲ್ಲಿ ಸಕ್ಕರೆ ಪ್ರಮಾಣ ಹೆಚ್ಚುವುದರಿಂದ ಇನ್ಸುಲಿನ್ ಬಿಡುಗಡೆಗೊಳ್ಳುತ್ತದೆ. ಸಕ್ಕರೆ ಪ್ರಮಾಣ ತಗ್ಗಿದಾಗ ಇನ್ಸುಲಿನ್ ಸುರಿಗೆ ನಿಲ್ಲುತ್ತದೆ. ಈ ಬಗೆಯಲ್ಲಿ ಇನ್ಸುಲಿನ್ ರಕ್ತದಲ್ಲಿ ಸಕ್ಕರೆಯ ಪ್ರಮಾಣವನ್ನು ಸರಿದೂಗಿಸಿಕೊಂಡು ಇರುತ್ತದೆ.
ಒಂದು ವೇಳೆ ಇನ್ಸುಲಿನ್ ಸರಿಯಾದ ಪ್ರಮಾಣದಲ್ಲಿ ಸುರಿಯದೇ ಹೋದರೆ ಅದು ಸಕ್ಕರೆ ಕಾಯಿಲೆಗೆ (Diabetes mellitus) ಎಡೆ ಮಾಡಿಕೊಡುತ್ತದೆ. ತೀವ್ರವಾಗಿ ಈ ಕಾಯಿಲೆಯಿಂದ ಬಳಲುತ್ತಿರುವವರಿಗೆ ಚುಚ್ಚುಮದ್ದು ರೂಪದಲ್ಲಿ ಇನ್ಸುಲಿನ್ ನೀಡಬೇಕಾಗುತ್ತದೆ.
(ನಮ್ಮ ಮಯ್ಯಲ್ಲಿರುವ ಇನ್ಸುಲಿನ್ ರಾಸಾಯನಿಕ ಏರ್ಪಾಟು)
ಇನ್ಸುಲಿನ್ ಮೊದಲ ಬಾರಿ ಬೆಳಕಿಗೆ ಬಂದದ್ದು 1921 ರಲ್ಲಿ ಕೆನಡಾ ವಿಜ್ಞಾನಿಗಳಾದ ಫ್ರೆಡರಿಕ್ ಬ್ಯಾಂಟಿಂಗ್ ಮತ್ತು ಚಾರ್ಲ್ಸ್ ಬೆಸ್ಟ್ ಅವರುಗಳಿಂದ.
(ಫ್ರೆಡರಿಕ್ ಬ್ಯಾಂಟಿಂಗ್ (ಬಲಗಡೆ ಇರುವವರು) ಮತ್ತು ಚಾರ್ಲ್ಸ್ ಬೆಸ್ಟ್)
ಆದರೆ ಇದಕ್ಕೂ ಮೊದಲೇ 1916 ರಲ್ಲಿ ರೊಮೇನಿಯಾದ ವೈದ್ಯ ನಿಕೊಲೈ ಪೌಲೆಸ್ಕು ಅವರು ಪ್ರತ್ಯೇಕವಾಗಿಯೇ ಒಂದು ಅರಕೆ ನಡೆಸುತ್ತಿದ್ದರು. ಅರಗುಸುರಿಗೆಯ ಪ್ಯಾಂಕ್ರಿನ್ ಎಂಬ ಸಾರ ಸತ್ವದ ಅರಕೆಯನ್ನು ಒಂದು ನಾಯಿಯ ಮೇಲೆ ಮಾಡುತ್ತಿರುವಾಗ ಅದು ರಕ್ತದಲ್ಲಿರುವ ಸಕ್ಕರೆ ಪ್ರಮಾಣವನ್ನು ಕಡಿಮೆ ಮಾಡಬಲ್ಲದು ಎಂದು ಕಂಡುಕೊಂಡರು. ಇದೇ ಹೊತ್ತಲ್ಲಿ ಮೊದಲ ಮಹಾಯುದ್ದ ಶುರುವಾಗಿ ಅವರು ಅದರಲ್ಲಿ ಪಾಲ್ಗೊಳ್ಳಲು ತೆರಳಿದ್ದರು. ಆದರೆ ಯುದ್ದ ಮುಗಿದ ಮೇಲೆ ಅವರು ಮರಳಿಬಂದು ಅರಕೆಯಲ್ಲಿ ತೊಡಗಿಕೊಳ್ಳುವಶ್ಟರಲ್ಲಿ ಬ್ಯಾಂಟಿಂಗ್ ಮತ್ತು ಬೆಸ್ಟ ಅವರು ಇನ್ಸುಲಿನ್ ಅನ್ನು ಬೇರ್ಪಡಿಸಿ ಹಸನುಗೊಳಿಸಿದ್ದರು. ಇದಕ್ಕೆಲ್ಲ ಹಣಕಾಸು ಮತ್ತು ಪ್ರಯೋಗಾಲಯದ ನೆರವು ನೀಡಿ ದಾರಿತೋರುಕರಾಗಿ ನಿಂತವರು ಸ್ಕಾಟ್ಲೆಂಡ್ ನ ವೈದ್ಯ ಜೆ.ಜೆ.ಆರ್. ಮೆಕ್ಲೊಯ್ಡ. ಇನ್ಸುಲಿನ್ ಅನ್ನು ಅಣಿಗೊಳಿಸಿ ಬಳಕೆಗೆ ತಂದವರು ಕೆನಡಾದ ಕೆಮಿಸ್ಟ ಜೇಮ್ಸ್ ಕೊಲ್ಲಿಪ್.
ಇನ್ಸುಲಿನ್ ಸಕ್ಕರೆ ಕಾಯಿಲೆಯನ್ನು ವಾಸಿಗೊಳಿಸದೇ ಇದ್ದರೂ ಸಾವಿನಂಚಿನಲ್ಲಿದ್ದ ಎಶ್ಟೋ ಮಂದಿಯನ್ನು ಕಾಪಾಡಿ ಹೊಸ ಬದುಕು ನೀಡಿತು. ಮೊದಲೆಲ್ಲಾ ಹಂದಿ, ಕುರಿ, ದನಗಳ ಸುರಿವೊಯ್ಯುಕಗಳಿಂದ ಇನ್ಸುಲಿನ್ ಹೊರತೆಗೆದು ಚುಚ್ಚುಮದ್ದುಗಳನ್ನು ಮಾಡುತ್ತಿದ್ದರು ಆದರೆ 1980ರ ದಶಕದ ಶುರುವಿನಲ್ಲಿ ಕೆಲವೊಂದು ಬಗೆ ಬ್ಯಾಕ್ಟೀರಿಯಾಗಳು ಪೀಳಿಯಲ್ಲಿ ಮಾರ್ಪಾಟು ಹೊಂದಿ ಮನುಷ್ಯರಂತಹ ಇನ್ಸುಲಿನ್ ಅನ್ನು ಉತ್ಪಾದಿಸ ತೊಡಗಿದವು. ಇಂದಿನ ದಿನಗಳಲ್ಲಿ ಸಕ್ಕರೆ ಕಾಯಿಲೆ ಚಿಕಿತ್ಸೆಯಲ್ಲಿ ಚುಚ್ಚುಮದ್ದಿನ ಮೂಲಕ ಇನ್ಸುಲಿನ್ನ ಬಳಕೆ ತುಂಬಾನೇ ಸಾಮಾನ್ಯವಾಗಿ ನಡೆಯುತ್ತಿದೆ.
1923ರಲ್ಲಿ ಫ್ರೆಡರಿಕ್ ಬ್ಯಾಂಟಿಂಗ್ ಮತ್ತು ಜೆ.ಜೆ.ಆರ್. ಮೆಕ್ಲೊಯ್ಡ ಅವರಿಗೆ ವೈದ್ಯಕೀಯ ಕ್ಷೇತ್ರದಲ್ಲಿ ನೊಬೆಲ್ ಪ್ರಶಸ್ತಿ ಕೊಡಲಾಯಿತು. ಮೆಕ್ಲೊಯ್ಡ ಅವರನ್ನು ಹೆಸರಿಸಿದ್ದಕ್ಕೆ ಮೊದಲು ಬ್ಯಾಂಟಿಂಗ್ ಅವರಿಂದನೇ ವಿರೋಧ ವ್ಯಕ್ತವಾಯಿತು. ತಮ್ಮ ಜೊತೆ ಅರಕೆಯಲ್ಲಿ ತೊಡಗಿಕೊಂಡಿದ್ದ ಚಾರ್ಲ್ಸ್ ಬೆಸ್ಟ್ ಅವರನ್ನು ಸೇರಿಸಬೇಕೆಂದು ಅವರ ವಾದವಾಗಿತ್ತು. ಕಡೆಗೆ ಅವರಿಗೆ ಗೌರವ ಸಲ್ಲಿಸಲು ಪ್ರಶಸ್ತಿಯ ಹಣವನ್ನು ಬ್ಯಾಂಟಿಂಗ್ ಅವರು ಬೆಸ್ಟ್ ಅವರೊಂದಿಗೆ ಹಂಚಿಕೊಂಡರು. ಅದರಂತೆ ಮೆಕ್ಲೊಯ್ಡ ಅವರು ಪ್ರಶಸ್ತಿ ಹಣವನ್ನು ಕೊಲ್ಲಿಪ್ ಅವರೊಂದಿಗೆ ಹಂಚಿಕೊಂಡರು. ಇದೆಲ್ಲದರ ನಡುವೆ ನಿಕೊಲೈ ಪೌಲೆಸ್ಕು ಅವರು ನೊಬೆಲ್ ಕಮಿಟಿಗೆ ಬರೆದು ತಾವು ಮೊದಲೇ ಮಾಡಿದ್ದ ಅರಕೆಯ ಬಗ್ಗೆ ತಿಳಿಸಿ ತಮ್ಮನ್ನು ಪ್ರಶಸ್ತಿಗೆ ಪರಿಗಣಿಸಬೇಕೆಂದು ಕೋರಿಕೊಂಡರೂ ಕಮಿಟಿಯ ಅದನ್ನು ತಿರಸ್ಕರಿಸಿತ್ತು.
ಪೆನಿಸಿಲಿನ್ (Penicillin) ಎಂಬುದು ಜಗತ್ತಿನ ಮೊದಲ ಮತ್ತು ಈಗಲೂ ಹೆಚ್ಚು ಬಳಕೆಯಲ್ಲಿರುವ ಎದುರುಜೀವಕ (Antibiotic). ಪೆನಿಸಿಲಿನ್ ದೊರಕಿದ್ದು ಪೆನಿಸಿಲಿಯಮ್ ಎಂಬ ಬೂಸ್ಟಿನಿಂದ (Mold). 1928 ರಲ್ಲಿ ಸ್ಕಾಟ್ಲೆಂಡಿನ ವೈದ್ಯ ಮತ್ತು ಅರಕೆಗಾರ ಅಲೆಕ್ಸಾಂಡರ್ ಪ್ಲೆಮಿಂಗ್ ಬ್ಯಾಕ್ಟೀರಿಯಾದ ಅರಕೆ ಮಾಡುವಾಗ ಸ್ಟೆಪಯ್ಲೊಕಾಕಸ್ ಆರಿಯಸ್ (Staphylococcus aureus) ಎಂಬ ಬ್ಯಾಕ್ಟೀರಿಯಾ ಕೆಲವು ಕಡೆ ಬೆಳೆಯದಿರುವುದನ್ನು ಗಮನಿಸಿದರು.
(ಅಲೆಕ್ಸಾಂಡರ್ ಪ್ಲೆಮಿಂಗ್)
ಹೀಗೇಕೆ ಎಂದು ಹೆಚ್ಚು ಗಮನಿಸಿ ನೋಡಿದಾಗ ಆ ಬಾಗವೆಲ್ಲವೂ ಆಕಸ್ಮಿಕವಾಗಿ ಪೆನಿಸಿಲಿಯಮ್ ನೊಟೆಟಮ್ (Penicillium Notatum) ಎಂಬ ಬೂಸ್ಟಿನಿಂದ ಸೊಂಕಿತವಾಗಿದೆ ಎಂದು ತಿಳಿದು ಬಂತು. ಆಮೇಲೆ ಆ ಬೂಸ್ಟನ್ನು ಬೇರ್ಪಡಿಸಿ ನೀರಿನ ಮಾದ್ಯಮದಲ್ಲಿ ಬೆಳೆಸಿದಾಗ ಅದು ಮಂದಿಯನ್ನು ಕಾಡುವ ಅನೇಕ ಬ್ಯಾಕ್ಟೀರಿಯಗಳನ್ನು ಕೊಲ್ಲುವ ಒಂದು ಬಗೆಯ ಸತ್ವವನ್ನು ಬಿಡುಗಡೆಗೊಳಿಸುತ್ತದೆಂದು ಗೊತ್ತಾಯಿತು.
(ಪೆನಿಸಿಲಿಯಮ್ ನೊಟೆಟಮ್)
ಮುಂದೆ 1930ರ ದಶಕದ ಕೊನೆಯಲ್ಲಿ ಆಸ್ಟ್ರೇಲಿಯಾದ ಬೇನೆಯರಿಗ ಹೊವಾರ್ಡ್ ಫ್ಲೋರೆ ಮತ್ತು ಬ್ರಿಟನ್ನ ಬಯೋಕೆಮಿಸ್ಟ್ ಅರ್ನಸ್ಟ್ ಬೋರಿಸ್ ಚೈನ್ ಎಂಬುವವರು ಆ ಸತ್ವವನ್ನು ಬೇರ್ಪಡಿಸಿ ಹಸನುಗೊಳಿಸಿದರು. ಬ್ಯಾಕ್ಟೀರಿಯಾದಿಂದ ಉಂಟಾಗುವ ಹಲವಾರು ರೋಗಗಳಿಗೆ ಮುಂದಿನ ವರುಶಗಳಲ್ಲಿ ಪೆನ್ಸಿಲಿನ್ ಬಳಕೆ ಸಾಮಾನ್ಯವಾಯಿತು. ಬರಬರುತ್ತಾ ಬ್ಯಾಕ್ಟೀರಿಯಾಗಳು ಪೆನ್ಸಿಲನ್ಗೆ ಎದುರು ಶಕ್ತಿಯನ್ನು ಬೆಳೆಸಿಕೊಂಡವಾದರೂ ಇಂದಿಗೂ ಪೆನ್ಸಿಲನ್ ತಕ್ಕಮಟ್ಟಿಗೆ ಬ್ಯಾಕ್ಟೀರಿಯಾಗಳನ್ನು ಹತೋಟಿಯಲ್ಲಿಡಲು ನೆರವಾಗುತ್ತಲೇ ಇದೆ.
1941 ರಲ್ಲಿ ಪೆನಿಸಿಲಿನ್ ಚುಚ್ಚುಮದ್ದು ರೂಪದಲ್ಲಿ ಬಳಕೆಗೆ ಬಂತು. ಪೆನಿಸಿಲಿನ್ ಮೇಲೆ ಮಾಡಿದ ಅರಕೆಗಾಗಿ 1945 ರಲ್ಲಿ ಅಲೆಕ್ಸಾಂಡರ್ ಪ್ಲೆಮಿಂಗ್, ಹೊವಾರ್ಡ್ ಫ್ಲೋರೆ ಮತ್ತು ಅರ್ನಸ್ಟ್ ಬೋರಿಸ್ ಚೈನ್ ಈ ಮೂವರಿಗೂ ನೊಬೆಲ್ ಪ್ರಶಸ್ತಿಯನ್ನು ಕೊಡಲಾಯಿತು.