ಎಲ್ಲೆ ದಾಟಿದ ವೋಯಜರ್ – 1

ಪ್ರಶಾಂತ ಸೊರಟೂರ.

ಚಿತ್ರ: ವೋಯಜರ್ – 1

12.09.2013, ಅಮೇರಿಕಾ ಕಳುಹಿಸಿದ ಬಾನಬಂಡಿ (space craft) ವೋಯಜರ್–1 ಮೊಟ್ಟಮೊದಲ ಬಾರಿಗೆ ನೇಸರ-ಕೂಟದ (solar system) ಎಲ್ಲೆ ದಾಟುವ ಮೂಲಕ ಮಾನವರು ಮಾಡಿದ ವಸ್ತುಗಳಲ್ಲಿ ಎಲ್ಲಕ್ಕಿಂತ ಹೆಚ್ಚು ದೂರದಲ್ಲಿರುವ ವಸ್ತು ಅನ್ನುವ ಹೆಗ್ಗಳಿಕೆಯನ್ನು ತನ್ನತಾಗಿಸಿಕೊಂಡಿತು.

ಸೆಪ್ಟೆಂಬರ್ 2023 ಕ್ಕೆ ನೇಸರನಿಂದ ವೋಯಜರ್ – 1 ರ ದೂರ 161 AU ಅಂದರೆ ಸುಮಾರು 24 ಬಿಲಿಯನ್ ಕಿಲೋ ಮೀಟರಗಳಷ್ಟು! ನೇಸರ ಮತ್ತು ನಮ್ಮ ಭೂಮಿಗೆ ಇರುವ ದೂರವನ್ನು 1 ಬಾನಳತೆ ಇಲ್ಲವೇ ಅಸ್ಟ್ರೋನಾಮಿಕಲ್ ಯುನಿಟ್ (Astronomical Unit – AU) ಅಂತ ಕರೆಯುತ್ತಾರೆ. ಅಂದರೆ ನಮ್ಮಿಂದ ನೇಸರಕ್ಕೆ ಇರುವ ದೂರದ ಸರಿಸುಮಾರು 161 ಪಟ್ಟು ಹೆಚ್ಚು ದೂರದಲ್ಲಿ ವೋಯಜರ್ ಈಗ ಸಾಗುತ್ತಿದೆ.

ನೇಸರನ ಸುತ್ತ ಸುತ್ತುವ 8 ಗ್ರಹಗಳು (planets) ಮತ್ತು ಅವುಗಳ ಸ್ಯಾಟಲೈಟ್ ಗಳನ್ನ ಒಳಗೊಂಡ ಏರ್ಪಾಟಿಗೆ ‘ನೇಸರ-ಕೂಟ’ (Solar System) ಅಂತ ಕರೆಯಲಾಗುತ್ತದೆ. ನೇಸರನ ಒಂಬತ್ತನೇ ಗ್ರಹ ಎಂದು ಗುರುತಿಸಲಾಗಿದ್ದ ಪ್ಲೂಟೋವನ್ನು 2006 ರಲ್ಲಿ ಪಟ್ಟಿಯಿಂದ ಹೊರಗಿಡಲಾಯಿತು ಹಾಗಾಗಿ ನೇಸರ ಕೂಟದಲ್ಲಿ ಇದೀಗ 8 ಗ್ರಹಗಳನ್ನಷ್ಟೇ ಎಣಿಸಲಾಗುತ್ತದೆ. ಇವೆಲ್ಲವುಗಳನ್ನು ದಾಟಿಕೊಂಡು ವೋಯಜರ್–1 ಮುನ್ನಡೆಯುತ್ತಿದೆ.

ವೋಯಜರ್ – 1 ಇಂದಿಗೆ ಸಾಗಿದ ದೂರ ಹಾಗು ಬಾನಿನ 3D ನೋಟವನ್ನು ನಾಸಾ ಮಿಂದಾಣನದಲ್ಲಿ ನೋಡಬಹುದು, ಕೆಳಗಿನ ಕೊಂಡಿಯನ್ನು ಒತ್ತಿ.

 ವೋಯಜರ್ – 1 ಸಾಗಿದ ದೂರ

ಸಪ್ಟಂಬರ್ 5, 1977 ರಂದು ಅಮೇರಿಕಾದ ಬಾನರಿಮೆಯ ಕೂಟ ನಾಸಾ (NASA), ನೇಸರಕೂಟದ ಆಚೆಗಿನ ಮಾಹಿತಿಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳಲು ವೋಯಜರ್–1 (Voyager-1) ಬಾನಬಂಡಿಯನ್ನು ಹಾರಿಸಿತ್ತು. ಬಾನ ತೆರವು (space) ತಲುಪಿದ ಮೇಲೆ 1979 ರಲ್ಲಿ ಗುರುವಿನ ಏರ್ಪಾಟು (Jovian system) ಮತ್ತು 1980 ರಲ್ಲಿ ಶನಿಯ ಏರ್ಪಾಟಿನ (Saturnine system) ಕುರಿತು ಹಲವಾರು ವಿಷಯಗಳನ್ನು ವೋಯಜರ್–1 ತಿಳಿಸಿಕೊಟ್ಟಿತ್ತು.

ವೋಯಜರ್ – 1 ತೆಗೆದ ಗುರು ಮತ್ತು ಶನಿಯ ಚಿತ್ರಗಳು

        

 ವೋಯಜರ್ – ಏರ್ಪಾಟುಗಳು.

ಬಾನಾಡಿರುವಿನಲ್ಲಿ (ಸ್ಪೇಸ್) ದೊರೆಯುವ ಮಾಹಿತಿಗಳನ್ನು ಕಲೆಹಾಕಲು ವೋಯಜರ್–1 ಹಲವು ಬಗೆಯ ಸಲಕರಣೆಗಳನ್ನು ಹೊಂದಿದೆ. ಚಿತ್ರಗಳನ್ನು ಸೆರೆಹಿಡಿಯಲು ಕ್ಯಾಮೆರಾಗಳ ಏರ್ಪಾಟು, ಸುತ್ತಣದ ಗುಣಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳಲು ನೆರವಾಗುವು ರೆಡಿಯೋ ಅಲೆಗಳ ಸಲಕರಣೆಗಳು, ಸೆಳೆತದ ಹರವನ್ನು (magnetic field) ಅಳೆಯುವ ಸೆಳೆಯಳಕಗಳು (magnetometers), ಸಲಕರಣೆಗಳನ್ನು ಹಿಡಿತದಲ್ಲಿಡುವ ಕಂಪ್ಯೂಟರ್ ಮುಂತಾದವುಗಳನ್ನು ವೋಯಜರ್ ಒಳಗೊಂಡಿದೆ. ಸಲಕರಣೆಗಳಿಗೆ ಕಸುವು ನೀಡಲು ವೋಯಜರಿನಲ್ಲಿ ಪ್ಲುಟೋನಿಯಮ್-238 ಆಕ್ಸಾಯಡ್ಸನಿಂದ ಮಾಡಿದ ಬ್ಯಾಟರಿಗಳಿವೆ.

ವೋಯಜರ್ – 1 ರ 3D ಚಿತ್ರಣ

ಬಾನಾಚೆಗೆ ಸಾಗುತ್ತಿರುವ ವೋಯಜರ್–1 ಬಾನಬಂಡಿಗೆ ಯಾವುದಾದರೂ (ಯಾರಾದರೂ!) ಜಾಣ್ಮೆ, ತಿಳುವಳಿಕೆ ಹೊಂದಿದ ಜೀವಿಗಳು ಎದುರಾದರೆ ನಮ್ಮ ಕುರಿತು, ನಾವಿರುವ ನೆಲದ ಕುರಿತು ತಿಳಿಸಿಕೊಡಲು ಮೇಲಿನ ಸಲಕರಣೆಗಳ ಜೊತೆಗೆ ಚಿನ್ನದ ಹೊದಿಕೆಯಿರುವ ಅಡಕತಟ್ಟೆಯೊಂದನ್ನು ಇರಿಸಲಾಗಿದೆ. ಈ ಅಡಕತಟ್ಟೆಯಲ್ಲಿ ನೆಲದ ತಿಟ್ಟಗಳು, ಜೀವಿಗಳ ಬದುಕು, ಅರಿಮೆಯ ಹಲವಾರು ವಿಷಯಗಳು, ಮುಂದಾಳುಗಳ ಹಾರಯ್ಕೆಗಳು ಅಡಕಗೊಂಡಿವೆ. ’ನೆಲದ ದನಿಗಳು’ (sounds of earth) ಎಂದು ಹೆಸರಿಟ್ಟಿರುವ ಕಡತದಲ್ಲಿ ತಿಮಿಂಗಲಿನ ಕೂಗಾಟ, ಮಗುವಿನ ಅಳುವು, ಕಡಲ ತೆರೆಗಳ ಅಪ್ಪಳಿಸುವ ದನಿ ಮತ್ತು ಹಲವು ಬಗೆಯ ಇನಿತದ (music) ಕಟ್ಟುಗಳಿವೆ.

1977 ಕ್ಕಿಂತ ಮುಂಚೆಯೇ ಬಾನಿನಲ್ಲಿ ತೇಲಿದ ವೋಯಜರ್–1, ತನಗೊಪ್ಪಿಸಿದ ಕೆಲಸವನ್ನು ಕೊರತೆಯಿಲ್ಲದಂತೆ ಮಾಡಿ ತೋರಿಸಿದೆ. ಇಷ್ಟು ವರುಷಗಳ ಬಳಿಕವೂ, ಅಷ್ಟೊಂದು ದೂರ ಸಾಗಿದರೂ ನಮ್ಮೊಡನೆ ಒಡನಾಡುತ್ತಿರುವ ವೋಯಜರ್, ಅರಿಮೆಯ ಹಿರಿಮೆಯನ್ನು ಎತ್ತಿ ತೋರಿಸುತ್ತಿದೆ.

2025 ಕ್ಕೆ ಬ್ಯಾಟರಿಗಳ ಕಸುವು ಕೊನೆಗೊಳ್ಳುವದರಿಂದ ವೋಯೋಜರ್–1, ಭೂಮಿಯ ಒಡನಾಟವನ್ನು ಕಡಿದುಕೊಳ್ಳುತ್ತ ಕೊನೆಯಿರದ ಬಾನಂಗಳದಲ್ಲಿ ಕಣ್ಮರೆಯಾಗಲಿದೆ.

ಮಾಹಿತಿ ಮತ್ತು ಚಿತ್ರ ಸೆಲೆ: ನಾಸಾ

 

ಅಣು ಕೂಡಿಕೆಯಿಂದ ಮಿಂಚು – ಸವಾಲುಗಳೇನು?

ರಘುನಂದನ್.

ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ಅಣುಕೂಡಿಕೆಯಿಂದ ಮಿಂಚನ್ನು ಪಡೆಯುವ ಬಗೆಯನ್ನು ತಿಳಿದೆವು. ಅಣು ಕೂಡಿಕೆಯ ಹೊಲಬಿನಿಂದ ಸುತ್ತಮುತ್ತಲಿನ ಪರಿಸರಕ್ಕೆ ಯಾವುದೇ ತೊಂದರೆಯಿಲ್ಲ(environmental friendly). ಬೂದಿ(ash), ಇಂಗಾಲ (carbon), ಹೊಗೆ(smoke), ಕೊಳಕು ನೀರು(polluted water) ಮತ್ತು ಕೆಟ್ಟಗಾಳಿ ಇಂತಹ ಯಾವುದೇ ಹಾನಿಯಿಲ್ಲ, ಆದರೂ ಅಣು ಕೂಡಿಕೆಯಿಂದ ನಾವು ಮಿಂಚನ್ನು ಯಾಕೆ ಬಳಸುತ್ತಿಲ್ಲ ಎಂಬುದನ್ನು ಈ ಬರಹದಲ್ಲಿ ತಿಳಿಯೋಣ.

ಅಣು ಕೂಡಿಕೆಯನ್ನು ಯಾಕೆ ನಾವು ಯಾಕೆ ಬಳಸುತ್ತಿಲ್ಲ?

1. ಅಣು ಕೂಡಿಕೆಯಲ್ಲಿ ಡ್ಯೂಟಿರಿಯಮ್-ಟ್ರೈಶಿಯಮ್ ಅಣುಗಳು ಒಂದಕ್ಕೊಂದು ಕೂಡಬೇಕಾದರೆ ತುಂಬಾ ಹೆಚ್ಚು ಕಾವಳತೆ (Temperature) ಬೇಕಾಗುತ್ತದೆ, ಅಂದರೆ 100 ಮಿಲಿಯ ಡಿಗ್ರಿಗಳಷ್ಟು (100 million degree centigrade). ಹೆಚ್ಚು ಹರವು ಮತ್ತು ಕಾಲದಲ್ಲಿ ಅಷ್ಟು ಕಾವಳತೆ ಹೇಗೆ ಉಂಟು ಮಾಡಬಹುದೆಂಬುದು ಇನ್ನೂ ಗೊತ್ತಿಲ್ಲ, ನೇಸರನಲ್ಲಿ ಈ ಮಟ್ಟದ ಕಾವಳತೆ ಕಾಣಬಹುದು. ಅಲ್ಲಿ ಕೂಡ ಇದೇ ಅಣು ಕೂಡಿಕೆ ನಡೆಯುತ್ತಿದ್ದು ನಮಗೆ ದಿನಾಲು ಬೆಳಕು ಮತ್ತು ಹುರುಪು ನೇಸರನಿಂದ ದೊರಕುತ್ತಿರುವುದು ಇದೇ ಮಾದರಿಯಲ್ಲಿ. ಅದರಿಂದ ಗಿಡ ಮರಗಳು ಬದುಕುತ್ತಿವೆ. ನಾವು ಬೆಳೆಗಳನ್ನು ಬೆಳೆಯುತ್ತಿದ್ದೇವೆ. ಅದೇ ಮನುಷ್ಯರಿಗೆ ಊಟ ದೊರಕಿಸುತ್ತಿದೆ. ಈ ಭೂಮಿಯ ಮೇಲೆ ಜೀವಿಗಳು ಇರುವುದೇ ಅಣು ಕೂಡಿಕೆಯಿಂದ ಬರುವ ಬೆಳಕು ಮತ್ತು ಹುರುಪಿನಿಂದ ಎಂದು ಹೇಳಬಹುದು.

2. ಅಷ್ಟು ಕಾವಳತೆಯನ್ನು(Temperature) ಉಂಟುಮಾಡಿದೆವು ಎಂದು ಇಟ್ಟುಕೊಳ್ಳೋಣ. ಆಗ ಅದನ್ನು ಹಿಡಿದಿಟ್ಟುಕೊಳ್ಳಬಹುದಾದ ವಸ್ತು ಯಾವುದಾದರು ಇದೆಯೇ? ಏಕೆಂದರೆ ಬರಿಯ ಮೂರು ಸಾವಿರ ಡಿಗ್ರಿಗಳಿಗಷ್ಟೇ ಎಲ್ಲಾ ಗೊತ್ತಿರುವ ವಸ್ತುಗಳು ಕರಗಿ ಹೋಗುತ್ತವೆ. ಇದಕ್ಕೆ ಬಗೆಹರಿಕೆ ಎಂದರೆ ಡ್ಯೂಟಿರಿಯಮ್-ಟ್ರೈಶಿಯಮ್ ಬೆರಕೆಯನ್ನು ಸೆಳೆ-ಸುರುಳಿಗಳ(magnetic coils) ಮೂಲಕ ಎರಕದ ಇರವಿನಲ್ಲಿ ಇರಿಸಬಹುದೇ ಎಂದು ವಿಜ್ಞಾನಿಗಳು ಯೋಚಿಸುತ್ತಿದ್ದಾರೆ. ಹಾಗಾದಾಗ ಹೆಚ್ಚು ಕಾದ ಭಾಗಗಳು ಸುತ್ತಲಿನ ವಸ್ತುವಿಗೆ ತಾಕದಂತೆ ನೋಡಿಕೊಳ್ಳಬಹುದು. ಈ ಬಗೆಯ ಏರ್ಪಾಟಿಗೆ ಟೋಕಾಮಾಕ್ (Tokamak) ಎನ್ನುತ್ತಾರೆ. ಟೋಕಾಮಾಕಿನಲ್ಲಿ ಬಿಡಿ ಎಲೆಕ್ಟ್ರಾನ್ಗಳು ಮತ್ತು ಅಣುಗಳು ಪ್ಲಾಸ್ಮಾ/ಎರಕದ ಇರವಿನಲ್ಲಿ(molten state/plasma) ಇರುವುದರಿಂದ ಒಂದಕ್ಕೊಂದು ಡಿಕ್ಕಿ ಹೊಡೆದಾಗ ಹೀಲಿಯಮ್ ರೂಪುಗೊಳ್ಳುತ್ತದೆ. ಅದರಿಂದ ಉಂಟಾಗುವ ಬಿಸಿ ಕಾವಿನಿಂದ ಮಿಂಚು / ವಿದ್ಯುತ್ ಅನ್ನು ಹುಟ್ಟುಹಾಕಬಹುದು.

ಅಮೇರಿಕಾದ ದೊಡ್ಡ ಕಂಪೆನಿಗಳಲ್ಲಿ ಒಂದಾದ ಲಾಕ್‌ಹೀಡ್ ಮಾರ್ಟಿನ್ (Lockheed Martin) ಅಣು ಕೂಡಿಕೆಯ ಕುರಿತಾಗಿ ಸುದ್ದಿಯೊಂದನ್ನು ಬಿಡುಗಡೆ ಮಾಡಿದೆ. ಲಾಕ್‌ಹೀಡ್ ಮಾರ್ಟಿನ್ ನ ತಾಮಸ್ ಮೆಗ್ವೈರ್ ಕಳೆದ ತಿಂಗಳಿನ ಸುದ್ದಿಕೂಟದಲ್ಲಿ ಹೀಗೆ ಹೇಳಿದ್ದಾರೆ –

“ಹೊಸ ಅಣುವಿನ ಶಕೆಯೊಂದನ್ನು ಮೊದಲು ಮಾಡೋಣ. ಪ್ರಪಂಚಕ್ಕೆ ಹಸನಾದ ಹುರುಪನ್ನು ಕೊಡುವುದು ನಮ್ಮ ಮುಂದಿನ ಗುರಿಯಾಗಿದೆ”.

ಈ ಚಳಕದರಿಮೆಯ ಮೂಲಕ ಮಿಂಚನ್ನು ತಯಾರಿಸಲಾಗುತ್ತದೆ ಎಂದು ಲಾಕ್‌ಹೀಡ್ ಮಾರ್ಟಿನ್ ಹೇಳಿಕೊಂಡಿದೆ. ಇದರಿಂದಾಗಿ ಅರಿಮೆಯ ಕೂಟಗಳಲ್ಲಿ (scientific circles) ಈ ಸುದ್ದಿ ಸಾಕಷ್ಟು ಚರ್ಚೆಗಳನ್ನು ಹುಟ್ಟುಹಾಕಿದೆ. ತಾಮಸ್ ಮೆಗ್ವೈರ್ ಪ್ರಕಾರ ಟೋಕಾಮಾಕ್‌ಗಳ ಒಳಗೆ ಇರುವ ಪ್ಲಾಸ್ಮಾ/ಎರಕದ ಒತ್ತಡ ಹೆಚ್ಚಾದರೆ ಅದರ ಸುತ್ತಲಿನ ವಸ್ತುವಿಗೆ ತೊಂದರೆಯಾಗುತ್ತದೆ. ಅದರ ಬದಲು ಒತ್ತಡವನ್ನು ಕಡಿಮೆ ಮಾಡಿದಲ್ಲಿ ಅಣುಗಳು ಒಂದಕ್ಕೊಂದು ಡಿಕ್ಕಿ ಹೊಡೆಯುವ ಸಲದೆಣಿಕೆ(Frequency) ಕಡಿಮೆಯಾಗುತ್ತದೆ ಮತ್ತು ಟೋಕಾಮಾಕ್ ಗಳನ್ನು ತಯಾರಿಸಿದ ವಸ್ತುವಿನ ಮೇಲೆ ಯಾವುದೇ ತೊಂದರೆಯಾಗುವುದಿಲ್ಲ. ಆದರೆ ಈ ಬಗೆಯಲ್ಲಿ ಮಾಡಿದರೆ, ಹಣಕಾಸಿನ ಲೆಕ್ಕಾಚಾರದಲ್ಲಿ ನೋಡಿದರೆ ಅಷ್ಟು ಗಿಟ್ಟುವ ಏರ್ಪಾಟು (profitable venture) ಎನಿಸುವುದಿಲ್ಲ. ಅದಕ್ಕಾಗಿ ಲಾಕ್‌ಹೀಡ್ ಅವರು ಮೊಗೆಸಿರುವ ಟೋಕಾಮಾಕಿನಲ್ಲಿ ಪ್ಲಾಸ್ಮಾವು ಗೋಡೆಯ ಹತ್ತಿರ ಬರುತ್ತಿದ್ದಂತೆ ಸೆಳೆ-ಸುರುಳಿಗಳ ಹರಹು ಹೆಚ್ಚಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಹಾಗಾಗಿ ಆ ಎಡೆಯಲ್ಲಿ ಒತ್ತಡ ಹೆಚ್ಚಾಗಿರುತ್ತದೆ. ಮತ್ತು ಆ ಭಾಗದಲ್ಲಿ ಹೆಚ್ಚು ಮರುಎಸಕಗಳು ಆಗುತ್ತವೆ,ಹೆಚ್ಚು ಹುರುಪು ದೊರೆಯುತ್ತದೆ.

ತಾಮಸ್ ಮೆಗ್ವೈರ್ ತಂಡವು ತಯಾರಿಸುತ್ತಿರುವ ಟೋಕಾಮಾಕ್‍ಗಳು ಎಷ್ಟು ಚಿಕ್ಕದಾಗಿ ಇರುತ್ತವೆಯೆಂದರೆ ಅದನ್ನು ಒಂದು ಟ್ರಕ್ ಇಲ್ಲವೇ ಲಾರಿಯ ಹಿಂದೆ ಅಳವಡಿಸಬಹುದು, ಹೀಗೆ ಮಾಡುವುದು ಸುಲಭದ ಮಾತಲ್ಲ ಎಂದು ಜಗತ್ತಿನ ವಿಜ್ಞಾನಿಗಳ ಅನಿಸಿಕೆ. ಈ ಹಮ್ಮುಗೆಯ ವಿಷಯವಾಗಿ ಲಾಕ್‌ಹೀಡ್ ಯಾವುದೇ ಗುಟ್ಟುಗಳನ್ನು ಹೊರಹಾಕಿಲ್ಲ. ಈ ಹಮ್ಮುಗೆ ಗೆಲುವು ಕಂಡಲ್ಲಿ ಜಗತ್ತು ಎದುರಿಸುತ್ತಿರುವ ಎಲೆಕ್ಟ್ರಿಸಿಟಿ ತೊಂದರೆ ಕೊನೆಗೊಳ್ಳಬಹುದು. ಇನ್ನೂ ಹಲವು ವರ್ಷ ಕಾದುನೋಡಬೇಕಿದೆ. ಇದರ ಕುರಿತಾಗಿ ಲಾಕ್‌ಹೀಡ್ ಮಾರ್ಟಿನ್ ಬಿಡುಗಡೆ ಮಾಡಿರುವ ಒಂದು ವಿಡಿಯೋ ಇಲ್ಲಿದೆ.

(ಚಿತ್ರ ಸೆಲೆ: chenected.ichewikipediawired.com)

ಅಣು ಕೂಡಿಕೆಯಿಂದ ಮಿಂಚು

ರಘುನಂದನ್.

ನಮ್ಮ ಮನೆಗಳನ್ನು ಬೆಳಗುವ ಕರೆಂಟ್ ಎಲ್ಲಿಂದ ಬರುತ್ತದೆ ಮತ್ತು ಹೇಗೆ ಹುಟ್ಟುತ್ತದೆ ಎಂಬ ಕುತೂಹಲ ಸಾಮಾನ್ಯವಾಗಿ ಎಲ್ಲರಿಗೂ ಇರುತ್ತದೆ. ರಾಯಚೂರು, ಶರಾವತಿ, ಕೈಗಾ ಮತ್ತು ಶಿವನಸಮುದ್ರಗಳಲ್ಲಿ ಪವರ್ ಪ್ಲಾಂಟ್‌ಗಳಿವೆ (ಶಕ್ತಿ ಸ್ಥಾವರಗಳು) ಎಂದು ಕಂಡು ಕೇಳಿರುತ್ತೇವೆ. ಪವರ್ ಪ್ಲಾಂಟ್‍ಗಳಲ್ಲಿ ಅರಿಮೆ ಮತ್ತು ಚಳಕಗಳೆರಡೂ ಬಳಸಿ ಮಿಂಚನ್ನು (electric current) ಹುಟ್ಟಿಸಿ ಮನೆಮನೆಗಳಿಗೆ, ಊರುಗಳಿಗೆ ತಲುಪಿಸುತ್ತಾರೆ. 1902ರಲ್ಲಿ ಏಶಿಯಾದಲ್ಲಿಯೇ ಮೊಟ್ಟಮೊದಲಿಗೆ ಶಿವನಸಮುದ್ರದ ಅಬ್ಬಿಗಳಿಂದ(waterfalls) ಮಿಂಚನ್ನು (electric current) ತಯಾರಿಸಿ ಬೆಂಗಳೂರಿಗೆ ತಲುಪಿಸಲಾಗಿತ್ತು.

ರಾಯಚೂರಿನಲ್ಲಿ ಇದ್ದಿಲಿನಿಂದ ಮಿಂಚನ್ನು ತಯಾರಿಸಲಾಗುತ್ತದೆ. ಅಂದರೆ ಇದ್ದಿಲನ್ನು ಚೆನ್ನಾಗಿ ಕಾಯಿಸಿ ಅದರ ಕಾವಿನಿಂದ ನೀರನ್ನು ದೊಡ್ಡ ಹಂಡೆಗಳಲ್ಲಿ(boiler) ಕುದಿಸಲಾಗುತ್ತದೆ. ನೀರು ಕುದ್ದ ಬಳಿಕ ಅದರಿಂದ ಬರುವ ಆವಿಯ ಒತ್ತಡವನ್ನು ಹೆಚ್ಚಿಸಿ ತಿರುಗಾಲಿಗಳ(turbine) ಮೂಲಕ ಹರಿದುಹೋಗಲು ಬಿಡಲಾಗುತ್ತದೆ. ಒತ್ತಡದ ಆವಿಯಲ್ಲಿ ಅಡಗಿರುವ ಹುರುಪು ಆ ತಿರುಗಾಲಿಗಳನ್ನು ಕಡುಹೆಚ್ಚು ಬಿರುಸಿನಲ್ಲಿ ತಿರುಗಿಸುತ್ತದೆ. ಈ ತಿರುಗಾಲಿಗಳು ಬಳಿಕ ಮಿಂಚುಟ್ಟುಕಗಳನ್ನು(electric generators) ತಿರುಗಿಸುತ್ತವೆ. ಅಲ್ಲಿಂದ ತಂತಿಗಳ ಮೂಲಕ ಮನೆಮನೆಗಳಿಗೆ ಮಿಂಚನ್ನು ತಲುಪಿಸಲಾಗುತ್ತದೆ.

ಶರಾವತಿಯಲ್ಲಿ ನೀರಿನಿಂದ ಮಿಂಚನ್ನು ಉಂಟುಮಾಡಲಾಗುತ್ತದೆ. ಅಂದರೆ ಹೊಳೆಯಿಂದ ಬರುವ ನೀರನ್ನು ಅಣೆಕಟ್ಟುಗಳ ನೆರವಿನಿಂದ ತಡೆದುಹಿಡಿಯಲಾಗುತ್ತದೆ. ಅಣೆಕಟ್ಟುಗಳಲ್ಲಿ ಒಂದು ಎತ್ತರದ ಮಟ್ಟದಲ್ಲಿ ನೀರನ್ನು ಹಿಡಿದಿಡಲಾಗುತ್ತದೆ. ಕೆಳಗಿನ ಮಟ್ಟದಲ್ಲಿ ನೀರು ತಿರುಗಾಲಿಗಳನ್ನು ಅಳವಡಿಸಿರುತ್ತಾರೆ. ಅಣೆಕಟ್ಟುಗಳ ಬಾಗಿಲು ತೆರೆದಾಗ ದುಮ್ಮಿಕ್ಕಿ ಬಿರುಸಿನಿಂದ ಬರುವ ನೀರನ್ನು ತಿರುಗಾಲಿಗಳ ಸುತ್ತಕ್ಕೆ (periphery) ತಾಕುವಂತೆ ಹರಿಸಲಾಗುತ್ತದೆ. ತಿರುಗಾಲಿಗಳು ಹೆಚ್ಚು ಬಿರುಸಿನಲ್ಲಿ ತಿರುಗುತ್ತವೆ . ಈ ತಿರುಗಾಲಿಗಳನ್ನು(turbines) ಮಿಂಚುಟ್ಟುಕಗಳಿಗೆ (electric generators) ತಳುಕಿಸಿದಾಗ ಅವು ಕೂಡ ತಿರುಗುತ್ತವೆ ಮತ್ತು ಮಿಂಚು ತಯಾರಾಗುತ್ತದೆ. ಅದನ್ನು ತಂತಿಗಳ ಮೂಲಕ ಮನೆಗಳಿಗೆ ತಲುಪಿಸುತ್ತಾರೆ.

ನಮ್ಮ ನಾಡಿನ ಕೈಗಾದಲ್ಲಿರುವ ಅಣುಶಕ್ತಿ ಸ್ಥಾವರದ ಬಗ್ಗೆ ಸುದ್ದಿಹಾಳೆಗಳಲ್ಲಿ ಓದಿರುತ್ತೇವೆ. ಅಣುಶಕ್ತಿ ಕುರಿತಾಗಿ ಜಗತ್ತಿನಲ್ಲಿ ಮಾತುಕತೆಗಳು, ವಾದವಿವಾದಗಳು ನಡೆಯುತ್ತಲೇ ಇರುತ್ತವೆ. ಅಣುಗಳ ಮೂಲಕ ಹೇಗೆ ಮಿಂಚಿನ ಶಕ್ತಿಯನ್ನು(electric energy) ತಯಾರಿಸಲಾಗುತ್ತದೆ ಎಂಬುದನ್ನು ನೋಡೋಣ.

ಅಣುಶಕ್ತಿ ತಯಾರಿಸುವಲ್ಲಿ ಎರಡು ಬಗೆಯಿದೆ:

1. ಅಣು ಒಡೆತ (nuclear fission)
2. ಅಣು ಕೂಡಿಕೆ (nuclear fusion)

ಈಗ ಜಗತ್ತಿನಲ್ಲಿರುವ ಎಲ್ಲಾ ಅಣುಶಕ್ತಿ ತಯಾರಿಕೆಯು ಅಣು ಒಡೆತದ ಮೂಲಕವೇ ಆಗುತ್ತಿದೆ. ಅಣು ಒಡೆತದ ಹೊಲಬಿನಲ್ಲಿ(process) ಹೆಚ್ಚು ತೂಕವಿರುವ ಬೇರಡಕವಾದ (ಬೇರು+ಅಡಕ – element) ಯುರೇನಿಯಮ್ ಅನ್ನು ನ್ಯೂಟ್ರಾನ್‌ಗಳ ಮೂಲಕ ಸಿಡಿಸಲಾಗುತ್ತದೆ. ಆಗ ಅದು ಎರಡು ಕಡಿಮೆ ತೂಕವಿರುವ ಬೇರಡಕಗಳಾಗಿ ಮಾರ್ಪಾಟಾಗುತ್ತದೆ. ಅದರ ಜೊತೆ ಇನ್ನೊ ಹೆಚ್ಚು ನ್ಯೂಟ್ರಾನ್‌ಗಳನ್ನು, ಗಾಮಾ ಕದಿರುಗಳನ್ನು(gamma rays) ಹುಟ್ಟಿಸುತ್ತದೆ ಮತ್ತು ಮಿಕ್ಕಿರುವ ತೂಕ ಹುರುಪಾಗಿ(mass to energy) ಮಾರ್ಪಾಟಾಗುತ್ತದೆ. ಅಣು ಒಡೆತದಿಂದ ಬರುವ ಹುರುಪು ತುಂಬಾ ಕಾವನ್ನು(heat energy) ಹೊರಸೂಸುತ್ತದೆ. ಈ ಕಾವನ್ನು ನೀರನ್ನು ಕುದಿಸಲಿಕ್ಕೆ ಬಳಸಲಾಗುತ್ತದೆ. ನೀರು ಕುದ್ದ ಬಳಿಕ ಬರುವ ಆವಿಯನ್ನು(steam) ಮುಂಚೆ ತಿಳಿಸಿದಂತೆ ಮಿಂಚಿನ ಶಕ್ತಿಯನ್ನು (electric energy) ತಯಾರಿಸುವುದಕ್ಕೆ ಬಳಸುತ್ತಾರೆ. ತೋರಿಯಮ್ (Th) ಮತ್ತು ಪ್ಲುಟೋನಿಯಮನ್ನು (Pu) ಕೂಡ ಅಣುಶಕ್ತಿ ಹುಟ್ಟಿಸುವುದಕ್ಕೆ ಬಳಸಲಾಗುತ್ತದೆ.

ಈಗ ಮೂರು ಬೇರೆ ಬೇರೆ ಬಗೆಗಳಲ್ಲಿ ಮಿಂಚನ್ನು ತಯಾರಿಸುವದನ್ನು ಮೇಲೆ ಕಂಡಿದ್ದೇವೆ. ಈ ಮೂರು ಬಗೆಗಳಿಗೆ ಅದರದ್ದೇ ಕೊರತೆಗಳಿವೆ.
1. ಮೊದಲಿಗೆ ರಾಯಚೂರಿನಲ್ಲಿ ಇದ್ದಿಲಿನ ಮೂಲಕ ತಯಾರಾಗುವ ಮಿಂಚಿನ ಶಕ್ತಿಯಲ್ಲಿ ಯಾವಾಗಲೂ ಇದ್ದಿಲಿನ ಪೂರೈಕೆಯನ್ನು ನೆಚ್ಚಿರುತ್ತದೆ. ಹಾಗಾಗಿ ಇದ್ದಿಲು ಇಲ್ಲ ಅಂದರೆ ಮಿಂಚನ್ನು ತಯಾರಿಸಲಾಗುವುದಿಲ್ಲ. ಮತ್ತೆ ಇದ್ದಿಲು ನೆಲದಲ್ಲಿ ಸಿಗುವ ಪಳೆಯುಳಿಕೆಯ ಉರವಲಾದ್ದರಿಂದ(fossil fuel) ಹೆಚ್ಚು ದಿನಗಳ ಕಾಲ ಅದನ್ನು ನೆಚ್ಚಿ ಕೂರಲಾಗುವುದಿಲ್ಲ. ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಾಗಿ ಇದ್ದಿಲಿನಿಂದ ಬರುವ ಕಸ ಸುತ್ತಮುತ್ತಲ ಪರಿಸರವನ್ನು ಹಾಳುಗೆಡುವುದರಿಂದ ಈ ಬಗೆಯ ತಯಾರಿಕೆ ಅಂತಹ ಹಸನಾದದುದಲ್ಲ(clean energy) ಎಂಬುದು ಸಾಮಾನ್ಯ ಅನಿಸಿಕೆ.

2. ಶರಾವತಿ, ಶಿವನಸಮುದ್ರದಲ್ಲಿ ತಯಾರಾಗುವ ಮಿಂಚಿನ ಶಕ್ತಿ ಯಾವಾಗಲು ಹರಿಯುವ ಹೊಳೆಯನ್ನು ನೆಚ್ಚಿರುತ್ತದೆ. ಅಂದರೆ ಒಳ್ಳೆ ಮಳೆ ಆದರೆ ಅಣೆಕಟ್ಟುಗಳಿಗೆ ನೀರು ತುಂಬುತ್ತದೆ. ಇಲ್ಲವಾದರೆ ತಿರುಗಾಲಿಗಳಿಗೆ ನೀರು ಒದಗಿಸಲಾಗುವುದಿಲ್ಲ.

3. ಕೈಗಾದಲ್ಲಿ ತಯಾರುಗುವ ಮಿನ್ಕೆ ಅಣು ಒಡೆತದ (nuclear fission) ಮೂಲಕ ತಯಾರಾಗುತ್ತದೆ. ಹೆಚ್ಚು ಅಣುತೂಕವುಳ್ಳ ಯುರೇನಿಯಮ್, ಪ್ಲುಟೋನಿಯಮ್ ಇಲ್ಲವೇ ತೋರಿಯಮನ್ನು ನ್ಯೂಟ್ರಾನ್‌ಗಳ ಮೂಲಕ ಸಿಡಿಸಿ ಎರಡು ಕಡಿಮೆ ಅಣುತೂಕವುಳ್ಳ ಬೇರಡಕಗಳಾಗಿ ಮಾರ್ಪಾಡಾಗುತ್ತದೆ. ಈ ಹೊಲಬಿನಲ್ಲಿ ಆಲ್ಪಾ, ಗಾಮಾ ಕದಿರುಗಳು ಕೂಡ ಹುಟ್ಟಿಕೊಳ್ಳುತ್ತವೆ. ಹೊಸದಾಗಿ ಹುಟ್ಟಿದ ಎರಡು ಬೇರಡಕಗಳೂ ರೇಡಿಯೋಆಕ್ಟಿವ್ ಆಗಿರುತ್ತದೆ. ಅಂದರೆ ಅವು ಕೂಡ ಕದಿರುಗಳನ್ನು ಹೊರಸೂಸುತ್ತಿರುತ್ತವೆ. ಮಿಕ್ಕುಳಿದ ಯುರೇನಿಯಮ್, ಪ್ಲುಟೋನಿಯಮ್ ಗಳೂ ಕೂಡ ಹಾನಿಕಾರಕವೇ. ಒಟ್ಟಾರೆ ಇವೆಲ್ಲವನ್ನು ಅಣುಕಸ(nuclear waste) ಎಂದು ಗುರುತಿಸಲಾಗುತ್ತದೆ. ಇವು ಮಾನವನ ಹದುಳಕ್ಕೆ (human health) ಕುತ್ತನ್ನು(hazardous) ಉಂಟುಮಾಡುವಂತಹ ವಸ್ತುಗಳು.

ಅಣುಕಸವನ್ನು ಹೇಗೆ ಅಡಗಿಸಬೇಕು ಎಂಬುದು ಸಾಕಷ್ಟು ಮಾತುಕತೆಗೆ ಒಳಗಾಗಿರುವ ವಿಷಯವಾಗಿದೆ. ಈ ಮೇಲಿನ ಮೂರು ಕಾರಣಗಳಿಂದಾಗಿ ಈಗ ಸದ್ಯದಲ್ಲಿ ಅಣು ಕೂಡಿಕೆಯ(Nuclear Fusion) ಮೂಲಕ ಮಿಂಚಿನ ಶಕ್ತಿಯನ್ನು ತಯಾರಿಸುವುದು ಹೆಚ್ಚೆಚ್ಚು ಗಮನ ಸೆಳೆಯುತ್ತಿದೆ.

ಅಣು ಕೂಡಿಕೆಯ ಮೂಲಕ ಹೇಗೆ ಮಿಂಚನ್ನು ತಯಾರಿಸಬಹುದು?

ಅಣು ಒಡೆತದ ಹೊಲಬಿನಲ್ಲಿ (process) ಒಂದು ಹೆಚ್ಚು ತೂಕವುಳ್ಳ ಅಣುವನ್ನು ಎರಡು ಕಡಿಮೆ ತೂಕವುಳ್ಳ ಅಣುಗಳಾಗಿ ಒಡೆಯಲಾಗುತ್ತದೆ. ಆದರೆ ಅಣು ಕೂಡಿಕೆಯಲ್ಲಿ ಎರಡು ಚಿಕ್ಕ ಅಣುಗಳು ಕೂಡುತ್ತವೆ. ಹೊಸದಾಗಿ ರೂಪಗೊಂಡ ಅಣುವಿಗೂ ಮೊದಲು ಕೂಡಿಕೆಯಾದ ಎರಡು ಚಿಕ್ಕ ಅಣುಗಳಿಗೂ ಇರುವ ತೂಕದ ವ್ಯತ್ಯಾಸವು (mass deficit) ಶಕ್ತಿಯಾಗಿ ಮಾರ್ಪಾಡಾಗುತ್ತದೆ.

ಈಗ ಹೈಡ್ರೋಜನನ್ನು ಉದಾಹರಣೆಯಾಗಿ ತೆಗೆದುಕೊಂಡು ಅಣು ಕೂಡಿಕೆಯ ಮೂಲಕ ಹೇಗೆ ಶಕ್ತಿಯನ್ನು ಹುಟ್ಟಿಸಬಹುದು ಎಂದು ನೋಡೋಣ. ಹೈಡ್ರೋಜನ್ ಒಂದು ಪ್ರೋಟಾನ್ ಇರುವ ಅಣು. ಆದರೆ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ನ್ಯೂಟ್ರಾನ್‌ಗಳು ಇರಬಲ್ಲವು. ಒಂದು ನ್ಯೂಟ್ರಾನ್ ಇದ್ದರೆ ಡ್ಯೂಟಿರಿಯಮ್ ಮತ್ತು ಎರಡು ನ್ಯೂಟ್ರಾನ್‌ಗಳಿದ್ದರೆ ಟ್ರೈಶಿಯಮ್ ಎನ್ನುತ್ತಾರೆ. ಇವರೆಡನ್ನು ಕೂಡಿದಾಗ ಏನಾಗುತ್ತದೆ ನೋಡೋಣ. ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ಕಾಣುವಂತೆ ಡ್ಯೂಟಿರಿಯಮ್ ಮತ್ತು ಟ್ರೈಶಿಯನ್ ಕೂಡಿದಾಗ ಹೊಸ ಅಣುವಾದ ಹೀಲಿಯಮ್ ರೂಪಗೊಳ್ಳುತ್ತದೆ. ಇದರೊಟ್ಟಿಗೆ ಒಂದು ನ್ಯೂಟ್ರಾನ್ ಕೂಡ ಹೊರಬರುತ್ತದೆ ಮತ್ತು ಹೆಚ್ಚು ಶಕ್ತಿ ಹುಟ್ಟುತ್ತದೆ.

ಈ ಕೂಡಿಕೆಯಿಂದ ಎಷ್ಟು ಶಕ್ತಿ ಹುಟ್ಟುತ್ತದೆ ಎಂದು ಲೆಕ್ಕ ಹಾಕಬಹುದು. ಮೇಲೆ ತೋರಿದ ರಿಯಾಕ್ಷನ್ ಅನ್ನು ಸರಿದೂಗಿಸೋಣ (balancing the reaction).

2D1 + 3T1 -> 4He + 1n0

mD = (2-0.000994) mH

mT = (3-0.006284)mH

mHe = (4-0.027404)mH

mn = (1+0.001378)mH

dm = 0.0187mH

mH = 1.6727. 10-27 kg

E = mc2 = 0.0187mHc2 = 2.8184. 10-12 J

E = 2.8184. 10-12 / 1.6022.10-19 eV = 17.56MeV

ಒಂದು ಕೆಜಿ ಡ್ಯೂಟಿರಿಯಮ್ ಟ್ರೈಶಿಯಮ್ ಬೆರಕೆಗೆ ಒಟ್ಟು ರಿಯಾಕ್ಷನ್ ಗಳ ಎಣಿಕೆ(total number of reactions);

N = (0.5)/2.5 X 1.67 X 10-27 = 1.2 X 1026

E = N 2.8184. 10-12 J = 3.4 X 1014 J

24 ಗಂಟೆಗಳಲ್ಲಿ 4 GW ಶಕ್ತಿ.

ಬರಿ ಒಂದು ಕೆಜಿ ಡ್ಯೂಟಿರಿಯಮ್-ಟ್ರೈಶಿಯಮ್ ಬೆರೆತದಿಂದ ಈ ಮಟ್ಟದಲ್ಲಿ ಶಕ್ತಿಯನ್ನು ಹುಟ್ಟಿಸಬಹುದು. ಅದರ ಜೊತೆ ಅಣು ಕೂಡಿಕೆಯ ಹೊಲಬಿನಿಂದ ಸುತ್ತಮುತ್ತಲಿನ ಪರಿಸರಕ್ಕೆ ಯಾವುದೇ ತೊಂದರೆಯಿಲ್ಲ(environmental friendly). ಬೂದಿ(ash), ಕರ‍್ಪು(carbon), ಹೊಗೆ(smoke), ಕೊಳಕು ನೀರು(polluted water) ಮತ್ತು ಕೆಟ್ಟಗಾಳಿ ಇಂತಹ ಯಾವುದೇ ಹಾನಿಯಿಲ್ಲ.

ಹಾಗಾದರೆ ಅಣು ಕೂಡಿಕೆಯನ್ನು ಯಾಕೆ ನಾವು ಯಾಕೆ ಬಳಸುತ್ತಿಲ್ಲ ಎಂಬುದನ್ನು ಮುಂದಿನ ಬರಹದಲ್ಲಿ ನೋಡೋಣ.

(ಚಿತ್ರ ಸೆಲೆ: wikipediakompulsa.com)

ಏನಿದು ಮೋಡ ಬಿತ್ತನೆ?

ಪ್ರಶಾಂತ ಸೊರಟೂರ.

‘ಮೋಡ ಬಿತ್ತನೆ’, ಕೆಲವು ವರ್ಷಗಳ ಹಿಂದೆ ಹೀಗೊಂದು ಪದ ಒಮ್ಮೆಲೇ ಬೆಳಕಿಗೆ ಬಂತು, ಬರಗಾಲದಿಂದ ತತ್ತರಿಸಿದ್ದ ಕರ್ನಾಟಕಕ್ಕೆ ಮಳೆ ಬರಿಸಲು ಮೋಡದಲ್ಲಿಯೇ ವಿಮಾನದಿಂದ ಬಿತ್ತನೆಯ ಕೆಲಸವಂತೆ, ಅದು ಮಳೆ ತರುತ್ತದಂತೆ ಅನ್ನುವ ಮಾತುಗಳು ಎಲ್ಲೆಡೆ ಹರಡ ತೊಡಗಿದ್ದವು. ನೆಲದಲ್ಲಿ ಬಿತ್ತನೆ ಮಾಡಿದ, ನೋಡಿದ ಕನ್ನಡಿಗರಿಗೆ ಬಾನಿನಲ್ಲಿ ಮಾಡುವ ಇದ್ಯಾವ ಬಗೆಯ ಬಿತ್ತನೆ ಅನ್ನಿಸಿತ್ತು. ಕೆಲ ಊರುಗಳ ಮೇಲೆ ವಿಮಾನಗಳು ಹಾರಾಡಿ ’ಮೋಡ ಬಿತ್ತನೆ’ಯಿಂದ ಮಳೆ ಸುರಿಸಿದ್ದೂ ಸುದ್ದಿಯಾಯಿತು. ಇಡೀ ದೇಶದಲ್ಲಿಯೇ ಈ ತರಹ ಮಳೆ ಸುರಿಸಲು ಮೋಡ ಬಿತ್ತನೆಗೆ ಕೈಹಾಕಿದ ಮೊದಲ ನಾಡು ಕರ್ನಾಟಕ ಅನ್ನುವ ಸುದ್ದಿಯಾಯಿತು.

ಮೋಡ ಬಿತ್ತನೆಯ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳುವ ಮುನ್ನ, ಮೋಡ ಮತ್ತು ಮಳೆಯ ಬಗ್ಗೆ ಒಂಚೂರು ತಿಳಿದುಕೊಳ್ಳೋಣ. ಕಡಲು, ಹೊಳೆ ಮತ್ತು ನೆಲದ ಹಲವೆಡೆ ಇರುವ ನೀರು ಬಿಸಿಲಿಗೆ ಕಾಯ್ದು ಆವಿಯಾಗುತ್ತದೆ. ಹೀಗೆ ಉಂಟಾದ ನೀರಾವಿಯು ಗಾಳಿಯೊಡನೆ ಬೆರೆತು ಬಾನಿನೆಡೆಗೆ ಸಾಗ ತೊಡಗುತ್ತದೆ. ಗಾಳಿಯು ಬಿಸಿಯಾದಷ್ಟು ಅದು ತನ್ನಲ್ಲಿ ಹೆಚ್ಚೆಚ್ಚು ನೀರಾವಿಯನ್ನು ಅಡಗಿಸಿಟ್ಟುಕೊಳ್ಳಬಲ್ಲದು, ಆದರೆ ನೆಲದಿಂದ ಮೇಲೆ-ಮೇಲೆ ಹೋದಂತೆಲ್ಲಾ ಅಲ್ಲಿರುವ ಬಿಸುಪು (temperature) ಕಡಿಮೆಯಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಒಂದು ಹಂತದಲ್ಲಿ ಬಿಸುಪು ತುಂಬಾ ಕಡಿಮೆಯಾಗಿ ಗಾಳಿಗೆ ತನ್ನಲ್ಲಿ ಇನ್ನಷ್ಟು ನೀರಾವಿಯನ್ನು ಹಿಡಿದಿಟ್ಟುಕೊಳ್ಳಲು ಆಗುವುದಿಲ್ಲ. ಈ ಹಂತದ ಗಾಳಿಯನ್ನು ‘ತಣಿದ ಗಾಳಿ’ (saturated air) ಅಂತಾ ಕರೆಯುತ್ತಾರೆ. ಈ ತಣಿದ ಗಾಳಿಯು ತೂಕವಾದ ನೀರಾವಿಯನ್ನು ಹೊತ್ತುಕೊಂಡು ಬಾನಿನಲ್ಲಿ ಒಂದೆಡೆ ನೆಲೆ ನಿಲ್ಲುತ್ತದೆ, ಇವೇ ಮೋಡಗಳು.

ಹೀಗೆ ನೆಲೆಗೊಂಡ ಮೋಡದಲ್ಲಿ ನೀರ ಹನಿಗಳು ತುಂಬಾ ತಂಪಾಗಿದ್ದು ಅವುಗಳ ಬಿಸುಪು (temperature) ಕೆಲವೊಮ್ಮೆ – 40° ಸೆಲ್ಸಿಯಸ್ ಆಗಿರುತ್ತದೆ. ಇಲ್ಲಿ ಇನ್ನೊಂದು ತಿಳಿದುಕೊಳ್ಳಬೇಕಾದ ವಿಶಯವೆಂದರೆ ಇಷ್ಟು ತಂಪಾಗಿದ್ದರೂ ಎಲ್ಲ ಹನಿಗಳು ಗಟ್ಟಿ ಮಂಜಿನ ರೂಪದಲ್ಲಿರದೇ ಕೆಲವು ಹನಿಗಳು ನೀರಿನ ರೂಪದಲ್ಲೇ ಉಳಿದಿರುತ್ತವೆ. ಇದಕ್ಕೆ ಕಾರಣವೆಂದರೆ ಸಾಮಾನ್ಯ ಒತ್ತಡದಲ್ಲಿ 0° ಸೆ. ಹೆಪ್ಪುಗಟ್ಟುವ ನೀರು ಬಾನಿನಲ್ಲಿ, ಮೇಲೆ ಹೋದಂತೆ ಒತ್ತಡ ಕಡಿಮೆ ಇರುವುದರಿಂದ ಅದರ ಹೆಪ್ಪುಗಟ್ಟುವಿಕೆ ಬಿಸುಪು (freezing temperature) ಕಡಿಮೆಯಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ

ಮೋಡಗಳಲ್ಲಿರುವ ಚಿಕ್ಕ ನೀರಿನ ಹನಿಗಳು ಮತ್ತು ಮಂಜಿನ (ಗಟ್ಟಿ ನೀರು) ಹನಿಗಳು ಒಂದಕ್ಕೊಂದು ಬೆಸೆದು ಇಲ್ಲವೇ ಮೋಡದಲ್ಲಿರುವ ಇತರೆ ಪುಟಾಣಿ ಕಣಗಳನ್ನು ಸುತ್ತುವರೆದು ದೊಡ್ಡದಾಗುತ್ತಾ ಹೋಗುತ್ತವೆ. ಹೀಗೆ ದೊಡ್ಡದಾದ ನೀರಿನ, ಮಂಜಿನ ಹನಿ ಹೊತ್ತುಕೊಂಡಿರುವ ಮೋಡಕ್ಕೆ ಅವುಗಳ ತೂಕ ತಾಳಿಕೊಳ್ಳಲು ಆಗದಂತ ಪರಿಸ್ಥಿತಿ ಬಂದುಬಿಡುತ್ತದೆ. ಆಗಲೇ ಅವು ನೆಲಕ್ಕೆ ಮಳೆಯಾಗಿ ಸುರಿಯ ತೊಡಗುತ್ತವೆ.

ಮೋಡಗಳ ಕುರಿತಾದ ಮೇಲಿನ ವಿಷಯದಲ್ಲಿ ಗಮನಿಸಬೇಕಾದುದೆಂದರೆ, ಮೋಡಗಳು ಮಳೆಯಾಗಬೇಕಾದರೆ ಅವುಗಳಲ್ಲಿರುವ ನೀರಿನ ಹನಿಗಳು ಒಂದೋ ಹೆಚ್ಚಾಗಬೇಕು ಇಲ್ಲವೇ ಆ ನೀರ ಹನಿಗಳು ಒಂದಾಗಿ ದೊಡ್ಡದಾಗಬೇಕು. ಇದರಲ್ಲಿ ಎರಡನೇ ಬಗೆಯನ್ನು ಬಳಸಿ ಮಳೆ ತರಿಸುವುದೇ ‘ಮೋಡ ಬಿತ್ತನೆ’ಯ ಹಿಂದಿರುವ ಚಳಕ. ಮೋಡ ಬಿತ್ತನೆಯಲ್ಲಿ, ಬೆಳ್ಳಿಯ ಆಯೋಡಾಯಡ್ ಇಲ್ಲವೇ ಒಣ ಮಂಜು ಎಂದು ಕರೆಯಲ್ಪಡುವ ಗಟ್ಟಿ ಕಾರ್ಬನ್ ತುಣುಕುಗಳನ್ನು ವಿಮಾನಗಳ ಮೂಲಕ ಮೋಡಗಳ ಮೇಲೆ ಚಿಮುಕಿಸಲಾಗುತ್ತದೆ. ಹೀಗೆ ಚಿಮುಕಿಸಿದ ತುಣುಕುಗಳು ಮೋಡದಲ್ಲಿರುವ ನೀರಿನ, ಮಂಜಿನ ಹನಿಗಳನ್ನು ತನ್ನೆಡೆಗೆ ಸೆಳೆದು ದೊಡ್ಡದಾಗಿಸುತ್ತವೆ. ಹೀಗೆ ಒಂದುಗೂಡಿ ದೊಡ್ಡದಾದ ನೀರ ಹನಿಗಳ ಬಾರ ತಾಳಲಾಗದೇ ಮೋಡಗಳು, ಮಳೆಯಾಗಿ ಸುರಿಯ ತೊಡಗುತ್ತವೆ.

‘ಮೋಡ ಬಿತ್ತನೆ’ಯ ಕೆಲಸ ಯಾವಾಗಲೂ ಗೆಲುವು ಕಾಣುತ್ತದೆ ಅನ್ನಲಾಗದು, ಮೋಡದಲ್ಲಿರುವ ನೀರ ಹನಿಗಳ ಗಾತ್ರ, ಅವುಗಳ ಸುತ್ತಿರುವ ವಾತಾವರಣ ಇದರ ಮೇಲೆ ಹೆಚ್ಚಿನ ಪರಿಣಾಮ ಬೀರುತ್ತದೆ. ಜಗತ್ತಿನ ಹಲವೆಡೆ ಮೋಡ ಬಿತ್ತನೆಯ ಕೆಲಸವನ್ನು ಕೈಗೊಂಡರೂ ಎಲ್ಲಾ ಕಡೆ ಇದಕ್ಕೆ ಒಪ್ಪಿಗೆ ಪಡೆಯಲು ಇನ್ನೂ ಆಗಿಲ್ಲ. ಆದರೆ ಚೀನಾ ದೇಶ ಯಾವುದೇ ಅನುಮಾನಗಳನ್ನು ಇಟ್ಟುಕೊಳ್ಳದೇ ’ಮೋಡ ಬಿತ್ತನೆ’ಯಲ್ಲಿ ಪ್ರತಿ ವರ್ಷ ಹೆಚ್ಚಿನ ದುಡ್ಡು ತೊಡಗಿಸುತ್ತಾ ಹೊರಟಿದೆ. ಬೀಜಿಂಗ್ ಒಲಂಪಿಕ್ಸಿನಲ್ಲಿ ಮಳೆಯಿಂದ ಆಟ ಹಾಳಾಗಬಾರದೆಂದು, ಮೋಡ ಬಿತ್ತನೆ ಮಾಡಿ ಆಟಕ್ಕಿಂತ ಹಲವು ದಿನಗಳ ಮೊದಲೇ ಮೋಡಗಳನ್ನು ಮಳೆಯಾಗಿಸಿದ್ದು ಇಲ್ಲಿ ನೆನಪಿಸಿಕೊಳ್ಳಬಹುದು. ಕರ್ನಾಟಕದಲ್ಲಿ 2003 ರಿಂದ ಮೋಡಬಿತ್ತನೆಯನ್ನು ಕೈಗೊಳ್ಳಲಾಗಿದೆ .

ಮಾಹಿತಿ ಸೆಲೆ:

 

ಕಡಲ ತೆರೆಗಳಿಂದ ಮಿಂಚು

ಪ್ರಶಾಂತ ಸೊರಟೂರ.

ಕಲ್ಲಿದ್ದಲು, ಪೆಟ್ರೋಲಿಯಂ ಮುಂತಾದ ಮುಗಿದು ಹೋಗಬಹುದಾದಂತಹ ಉರುವಲುಗಳ ಬದಲಾಗಿ ಮುಗಿದು ಹೋಗಲಾರದಂತಹ ಮತ್ತು ಸುತ್ತಣಕ್ಕೆ ಕಡಿಮೆ ತೊಂದರೆಯನ್ನುಂಟು ಮಾಡುವಂತಹ ಕಸುವಿನ ಸೆಲೆಗಳ ಅರಕೆ ಜಗತ್ತಿನೆಲ್ಲೆಡೆ ಎಡೆಬಿಡದೇ ಸಾಗಿದೆ.

ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಗುಡ್ಡ-ಬೆಟ್ಟದ ಮೇಲೆ ಬೀಸುವ ಗಾಳಿ ಇಲ್ಲವೇ ನೇಸರನ ಬೆಳಕಿನಿಂದ ಮಿಂಚು (ಕರೆಂಟ್) ಉಂಟುಮಾಡುವ ಹೊಸ ಸಲಕರಣೆಗಳನ್ನು ಹಲವಾರು ಕಡೆ ಅಳವಡಿಸಲಾಗುತ್ತಿದೆ. ಇದರಂತೆ ಇತ್ತೀಚಿಗೆ ಬಳಕೆಗೆ ತರಲಾಗುತ್ತಿರುವ ಕಸುವಿನ ಇನ್ನೊಂದು ಸೆಲೆಯೆಂದರೆ ಕಡಲ ತೆರೆಗಳನ್ನು ಬಳಸಿ ಕರೆಂಟ್ ಉಂಟುಮಾಡುವುದು.

ದಂಡೆಯಲ್ಲಿ ಹೊಯ್ದಾಡುವ ತೆರೆಗಳನ್ನು ಇಲ್ಲವೇ ಕಡಲ ನಡುವೆ ಏಳುವ ದೊಡ್ಡ ಅಲೆಗಳು ಹೊಮ್ಮಿಸುವ ಕಸುವನ್ನು ಸರಿಯಾಗಿ ಬಳಕೆ ಮಾಡಿಕೊಳ್ಳುವಂತಾದರೆ ಜಗತ್ತಿನ ಹಲವು ನಾಡುಗಳಿಗೆ ಯಾವುದೇ ಅಡೆತಡೆ ಇಲ್ಲದೇ ಮಿಂಚು (ಕರೆಂಟ್) ನೀಡಬಹುದೆಂದು ಎಣಿಕೆಮಾಡಲಾಗಿದೆ. ಆದರೆ ಬಿರುಸಾಗಿ ಅಪ್ಪಳಿಸುವ ಕಡಲ ಅಲೆಗಳನ್ನು ತಡೆದುಕೊಂಡು ಮಿಂಚು ಉಂಟಮಾಡಬಲ್ಲ ಗಟ್ಟಿಯಾದ ಮಿಂಚುಟ್ಟುಕಗಳನ್ನು (electric generators) ತಯಾರಿಸುವುದು ಇಂದು ದೊಡ್ಡ ತೊಡಕಾಗಿದೆ. ಹಾಗಾಗಿ ಕಡಲ ತೆರೆಯ ಕರೆಂಟ್ ಸಲಕರಣೆಗಳು ಇನ್ನೂ ಹೆಚ್ಚಾಗಿ ಬಳಕೆಯಾಗುತ್ತಿಲ್ಲ.

ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಅಮೇರಿಕಾದ ‘Ocean Renewable Power Company’ ಹಲವಾರು ಹೊಸ ಅರಕೆಯ ಕೆಲಸಗಳನ್ನು ನಡೆಸುತ್ತಿದ್ದು, ಇತ್ತೀಚಿಗೆ ಕಡಲೊಳಗೆ 150 ಅಡಿ ಆಳದಲ್ಲಿ ಹೊಸದೊಂದು ಮಿಂಚುಟ್ಟುಕವನ್ನು ಅಣಿಗೊಳಿಸಿದೆ. 98 ಅಡಿ ಅಗಲ ಮತ್ತು 31 ಅಡಿ ಎತ್ತರ ಇರುವ ಅಡಿಪಾಯದ ಮೇಲೆ ಅಲೆಗಳಿಂದ ತಿರುಗುವ ಮಿಂಚುಟ್ಟುಕವನ್ನು ಅಳವಡಿಸಲಾಗಿದೆ.

ಮೊದಲ ಹಂತದಲ್ಲಿ ಕಡಲ ಅಲೆಗಳಿಂದ 150 ಕಿಲೋ ವ್ಯಾಟ್ ಕರೆಂಟಿನ ಕಸುವನ್ನು ಉಂಟುಮಾಡಬಲ್ಲ ಈ ಮಿಂಚುಟ್ಟುಕವು ಮುಂದಿನ ಕೆಲವು ವರುಶಗಳಲ್ಲಿ 5 ಮೆಗಾ ವ್ಯಾಟ್ ಕಸುವನ್ನು ಉಂಟು ಮಾಡುವಷ್ಟು ದೊಡ್ಡದಾಗಿಸಲು ಅಮೇರಿಕಾದ ಕೂಟವು ಗುರಿ ಇಟ್ಟುಕೊಂಡಿದೆ.

ಕರ್ನಾಟಕ ಸೇರಿದಂತೆ ಹಲವು ರಾಜ್ಯಗಳಲ್ಲಿ ಕಡಲ ತೆರೆಯ ಕಸುವು ಹೇರಳವಾಗಿ ದೊರೆಯುವಂತದು. ಅಮೇರಿಕಾದಂತೆ ಈ ಕಸುವನ್ನು ನಾವು ಕೂಡ ಸರಿಯಾಗಿ ಬಳಸಿಕೊಳ್ಳಬೇಕಾಗಿದೆ.

(ಸುದ್ದಿಸೆಲೆ: popsci)

ಬಣ್ಣಗಳ ಬದುಕು

ಪ್ರಶಾಂತ ಸೊರಟೂರ.

“ಕೆಂಕಿಹಹನೀನೇ

ಕಾಮನಬಿಲ್ಲಿನ ಬಣ್ಣಗಳನ್ನು ನೆನಪಿಟ್ಟುಕೊಳ್ಳಲು ಶಾಲೆಯಲ್ಲಿ ಹೇಳಿಕೊಡಲಾಗುತ್ತಿದ್ದ ಈ ಸಾಲು ನಿಮಗೆ ನೆನಪಿರಬಹುದು. ಕೆಂಪುಕಿತ್ತಳೆ, ಹಳದಿಹಸಿರುನೀಲಿನೇರಳೆ ಬಣ್ಣಗಳನ್ನು ಒಳಗೊಂಡ ಕಾಮನಬಿಲ್ಲಿನ ಸೊಬಗನ್ನು ಯಾರು ತಾನೇ ಮರೆಯಬಲ್ಲರು? ಬಣ್ಣಗಳು ನಮ್ಮ ಬದುಕಿನಲ್ಲಿ ತುಂಬುವ ಚೆಲುವನ್ನು ಯಾರು ತಾನೇ ಅಲ್ಲಗಳೆದಾರು? ನಮ್ಮ ಬದುಕಿಗೆ ನಲಿವಿನ ಬಣ್ಣ ತುಂಬುವ, ಬಣ್ಣಗಳ ಬದುಕಿನ ಬಗ್ಗೆ ನಿಮಗೆ ಗೊತ್ತೆ? ಬಣ್ಣಗಳು ಹೇಗೆ ಉಂಟಾಗುತ್ತವೆ? ಬೆಳಕಿಗೂ ಬಣ್ಣಕ್ಕೂ ಇರುವ ನಂಟೇನು? ಮುಂತಾದ ಪ್ರಶ್ನೆಗಳ ಜಾಡು ಹಿಡಿದುಕೊಂಡು ಬಣ್ಣಗಳ ಬದುಕಿನಲ್ಲಿ ಇಣುಕೋಣ ಬನ್ನಿ.

ನೀಲಿ, ಕೆಂಪು, ಹಸಿರು, ಕಡುಗೆಂಪು, ಕಂದು, ಕಪ್ಪು, ಬಿಳಿ ಹೀಗೆ ಹಲವಾರು ಬಗೆಯಲ್ಲಿರುವ ಬಣ್ಣಗಳಿಗೆ ಕಾರಣವೇನು? ಮೊದಲಿಗೆ ಕೆಲವು ಹೇಳಿಕೆಗಳನ್ನು ಮುಂದಿಡೋಣ.

1) ಬಣ್ಣಗಳಿಗೆ ಕಾರಣ ಬೆಳಕು.

2) ವಸ್ತುಗಳ ಗುಣಗಳಿಂದಾಗಿ (characteristics) ಬಣ್ಣಗಳು ನಮಗೆ ಕಾಣುತ್ತವೆ.

3) ಬಣ್ಣಗಳು ನಮಗೆ ಕಾಣಲು ನಮ್ಮ ಕಣ್ಣಿನ ಮತ್ತು ಮಿದುಳಿನ ಕಟ್ಟಣೆ ಕಾರಣ.

ಇವುಗಳಲ್ಲಿ ಯಾವುದು ಸರಿ? ಎಲ್ಲವೂ ಸರಿ! ಹೌದು, ಬಣ್ಣಗಳ ಇರುವಿಕೆಗೆ, ನಾವು ಅವುಗಳನ್ನು ಕಾಣುವಂತಾಗಲೂ ಈ ಮೇಲಿನ ಮೂರು ಅಂಶಗಳೂ ಕಾರಣ.

ಬೆಳಕಿನಲ್ಲಿ ಏನಿದೆ ಅಂತಾ ತಿಳಿದುಕೊಳ್ಳುವುದು ಬಣ್ಣಗಳ ಬದುಕನ್ನು ಅರಿಯುವಲ್ಲಿ ನಮ್ಮ ಮುಂದಿನ ಹೆಜ್ಜೆಯಾಗುತ್ತದೆ. ನಮಗೆ ಬೆಳಕಿನ ಮುಖ್ಯ ಸೆಲೆಯಾಗಿರುವುದು ನೇಸರ (sun). ನೇಸರಿನಿಂದ ಸೂಸುವ ಶಕ್ತಿ (energy) ಅಲೆಗಳ ರೂಪದಲ್ಲಿರುತ್ತದೆ. ಈ ಅಲೆಗಳು ವಿದ್ಯುತ್ (electric) ಮತ್ತು ಸೆಳೆತದ (magnetic) ರೂಪದಲ್ಲಿರುವುದರಿಂದ ಇವುಗಳನ್ನು ವಿದ್ಯುತ್ಕಾಂತೀಯ ಸೂಸುವಿಕೆ (electromagnetic radiation) ಎಂದು ಕರೆಯುತ್ತಾರೆ. ನೇಸರಿನಿಂದ  ವಿದ್ಯುತ್ಕಾಂತೀಯ ಸೂಸುವಿಕೆಯ ಮೂಲಕ ಹೊಮ್ಮುವ ಶಕ್ತಿ (energy) ಅಲೆಗಳ ರೂಪದಲ್ಲಿದ್ದರೂ, ಆ ಶಕ್ತಿ ಒಂದೇ ಬಗೆಯ ಅಲೆಯಲ್ಲಿ ಹರಡುವುದಿಲ್ಲ. ಬೇರೆ ಬೇರೆ ಉದ್ದ (length) ಮತ್ತು ಕಡುತನ (intensity) ಹೊಂದಿರುವ ಅಲೆಗಳ ರೂಪದಲ್ಲಿ ಶಕ್ತಿ ಸಾಗುತ್ತದೆ.

ಕೆಲವು ಶಕ್ತಿಯ ಅಲೆಗಳು ತುಂಬಾ ಉದ್ದವಾಗಿದ್ದರೆ, ಕೆಲವು ಅಲೆಗಳು ತುಂಬಾ ಚಿಕ್ಕದಾಗಿರುತ್ತವೆ. ಉದ್ದ ಹೆಚ್ಚಿರುವ ಅಲೆಗಳನ್ನು ಉದ್ದಲೆಗಳು (long waves) ಮತ್ತು ಉದ್ದ ಕಡಿಮೆಯಿರುವ ಅಲೆಗಳನ್ನು ಚಿಕ್ಕಲೆಗಳು (short waves) ಅನ್ನುತ್ತಾರೆ. ತುಂಬಾ ಉದ್ದವಾದ ಅಲೆಗಳಿಂದ ಹಿಡಿದು ತುಂಬಾ ಚಿಕ್ಕದಾದ ಅಲೆಗಳನ್ನು ಒಳಗೊಂಡ ಕಟ್ಟನ್ನು ಅಲೆಪಟ್ಟಿ ಇಲ್ಲವೇ ಅಲೆಸಾಲು (spectrum) ಎನ್ನುತ್ತಾರೆ.

ಬೇರೆ ಬೇರೆ ಅಲೆಯುದ್ದ (wave length) ಹೊಂದಿರುವ ಅಲೆಪಟ್ಟಿಯಲ್ಲಿ ಸುಮಾರು 390 nm (ನ್ಯಾನೋ ಮೀಟರ‍್) ನಿಂದ 700 nm ಉದ್ದವನ್ನು ಹೊಂದಿರುವ ಅಲೆಗಳನ್ನು ನಾವು ಕಾಣಬಲ್ಲೆವು. ಹೀಗಾಗಿಯೇ ನಡು ಉದ್ದದ ಈ ಅಲೆಗಳ ಗೊಂಚಲನ್ನು ಕಾಣಿಸುವ ಬೆಳಕು (visible light) ಇಲ್ಲವೇ ಬೆಳಕು (light) ಎನ್ನುತ್ತಾರೆ.

ಬೆಳಕಿನ ಅಲೆಗಳನ್ನು ಮತ್ತಷ್ಟು ಗುಂಪಿಸಿದಾಗ ಅಂದರೆ 390 nm ನಿಂದ 700 nm ಅಲೆಗಳ ನಡುವಿರುವ ಅಲೆಗಳನ್ನು ಹಿಗ್ಗಿಸಿ ನೋಡಿದಾಗ ಅದರಲ್ಲಿ ಮತ್ತಷ್ಟು ಒಳಗುಂಪುಗಳು ಕಾಣಿಸುತ್ತವೆ. ಬೆಳಕಿನಲ್ಲಿರುವ ಅಲೆಗಳ ಈ ಒಳಗುಂಪುಗಳೇ ’ಬಣ್ಣದ ಅರಿವು’ (colour sensation) ಹೊಮ್ಮಿಸಲು ಕಾರಣ. ಬೆಳಕಿನ ಅಲೆಪಟ್ಟಿಯಲ್ಲಿ ಕಡಿಮೆ ಉದ್ದ ಹೊಂದಿರುವ ಅಲೆ ನೇರಳೆ ಮತ್ತು ಹೆಚ್ಚು ಉದ್ದ ಇರುವ ಅಲೆ ಕೆಂಪು ಬಣ್ಣದ ಅರಿವನ್ನು ಹೊಮ್ಮಿಸುತ್ತವೆ. ನೇರಳೆ ಮತ್ತು ಕೆಂಪು ಅಲೆಗಳ ನಡುವಿರುವ ಅಲೆಗಳು ನೀಲಿ, ಹಸಿರು, ಹಳದಿ, ಕಿತ್ತಳೆ ಹೀಗೆ ತಮ್ಮ ಅಲೆಯುದ್ದಕ್ಕೆ ತಕ್ಕಂತೆ ಬಣ್ಣದ ಅರಿವನ್ನು ಹೊಮ್ಮಿಸುತ್ತವೆ.

ಮೇಲಿನ ಪ್ಯಾರಾಗಳಿಂದ ನೇಸರನು ಹೊರಸೂಸುವ ಬೆಳಕಿನ ಬಣ್ಣಗಳ ಬಗ್ಗೆ ತಿಳಿದುಕೊಂಡೆವು. ಇದೇ ಬಗೆಯಲ್ಲಿ ಇರುಳು ಹೊತ್ತಿನಲ್ಲಿ ನಮಗೆ ಬೆಳಕು ನೀಡುವ ವಿದ್ಯುತ್ ಸೆಲೆಗಳೂ (electric source) ಕೂಡ ಕೆಲಸ ಮಾಡುತ್ತವೆ. ವಿದ್ಯುತ್ ಸೆಲೆಗಳು ಯಾವ ಉದ್ದದ ಅಲೆಗಳನ್ನು ಸೂಸುತ್ತವೋ ಆ ಬಣ್ಣದಲ್ಲಿ ಬೆಳಕು ನಮಗೆ ದೊರೆಯುತ್ತದೆ. ಎತ್ತುಗೆಗೆ: ಸಾಮಾನ್ಯ ಬಳಕೆಯ ಬಲ್ಬ್ ಹಳದಿ ಬಣ್ಣದ ಅಲೆಗಳನ್ನು ಹೆಚ್ಚು ಸೂಸುವುದರಿಂದ ಅದರಿಂದ ಹೊಮ್ಮುವ ಬೆಳಕು ಹಳದಿ ಬಣ್ಣದಲ್ಲಿರುತ್ತದೆ. ಅದೇ ಟ್ಯೂಬ್ ಲೈಟ್ ಬಿಳಿಬಣ್ಣದ ಅಲೆಯನ್ನು ಹೆಚ್ಚು ಹೊಮ್ಮಿಸುವುದರಿಂದ ನಮಗೆ ಅದರ ಬೆಳಕು ಬಿಳಿಯಾಗಿ ಕಾಣಿಸುತ್ತದೆ. [ಗಮನಕ್ಕೆ: ಎಲ್ಲ ಬಣ್ಣಗಳ ಅಲೆಗಳು ಸಮನಾಗಿ ಬೆರೆತಾಗ ನಮಗೆ ಬಿಳಿಯ ಬಣ್ಣದ ಅನುಭವವಾಗುತ್ತದೆ.]

ವಿದ್ಯುತ್ ಸಲಕರಣೆಗಳಲ್ಲಿ ವಿದ್ಯುತ್ ಕಸುವನ್ನು ಬೆಳಕಾಗಿ ಬದಲಾಯಿಸಲಾಗುತ್ತದೆ. ಹೀಗೆ ಬದಲಾಯಿಸಲು ಸಲಕರಣೆಯಲ್ಲಿ ಬಳಸಿದ ವಸ್ತುವನ್ನು ಯಾವ ಬಿಸುಪಿಗೆ (temperature) ಉರಿಸಲಾಗಿದೆ ಅನ್ನುವುದರ ಮೇಲೆ ಅದರಿಂದ ಹೊಮ್ಮುವ ಬೆಳಕಿನ ಬಣ್ಣ ತೀರ್ಮಾನವಾಗುತ್ತದೆ. ಎತ್ತುಗೆಗೆ: ಸಾಮಾನ್ಯ ಬಳಕೆಯ ಬಲ್ಬ್ ನಲ್ಲಿ ಮಿಂಚು ಹರಿಸಿ ಟಂಗ್‍ಸ್ಟನ್ ತಂತಿಯನ್ನು ಸುಮಾರು 2130-3130 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್‍ವರೆಗೆ ಕಾಯಿಸಲಾಗುತ್ತದೆ. ಈ ಬಿಸುಪಿನಲ್ಲಿ ಕಾದಾಗ ವಸ್ತುವೊಂದು ಹಳದಿ ಹರವಿನಲ್ಲಿ (yellow range) ಅಲೆಗಳನ್ನು ಸೂಸುತ್ತದೆ ಹಾಗಾಗಿ ಅದು ಹಳದಿ ಬಣ್ಣದಲ್ಲಿ ಕಾಣಿಸುತ್ತದೆ. ಅದೇ ಪ್ಲೋರೆಸೆಂಟ್ ಬಲ್ಬ್ ಸುಮಾರು 4700 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್‍ವರೆಗೆ ಬಿಸುಪು ಏರಬಲ್ಲದು. ಈ ಬಿಸುಪಿನಲ್ಲಿ ಬಿಳುಪಿಗೆ ಹತ್ತಿರವೆನಿಸುವ ತಿಳಿನೀಲಿ ಬಣ್ಣದಲ್ಲಿ ಬೆಳಕಿನ ಅಲೆಗಳು ಸೂಸಲ್ಪಡುತ್ತವೆ.

ಸರಿ. ಬೆಳಕಿನಲ್ಲಿರುವ ಅಲೆಗಳು ತಮ್ಮ ಅಲೆಯುದ್ದಕ್ಕೆ ತಕ್ಕಂತೆ ಬಣ್ಣದ ಅರಿವು ಹೊಮ್ಮಿಸುತ್ತವೆ ಎಂದು ತಿಳಿದುಕೊಂಡೆವು ಆದರೆ ನಮಗೆ ನೇಸರಿನಿಂದ ದೊರೆಯುವ ಬೆಳಕಿನಲ್ಲಿ ಈ ಎಲ್ಲ ಬಣ್ಣಗಳಿದ್ದರೂ ವಸ್ತುಗಳು ಬೇರೆ ಬೇರೆ ಬಣ್ಣದಲ್ಲೇಕೆ ಕಾಣುತ್ತವೆ? ಅನ್ನುವ ಪ್ರಶ್ನೆ ನಮಗೀಗ ಎದುರಾಗುತ್ತದೆ. ಹಾಗಾದರೆ ಈಗ ವಸ್ತುಗಳ ಗುಣಗಳು ಬಣ್ಣಗಳ ಮೇಲೆ ಹೇಗೆ ಪರಿಣಾಮ ಬೀರುತ್ತವೆ ಎಂದು ನೋಡೋಣ.

ತನ್ನ ಮೇಲೆ ಬೀಳುವ ಬೆಳಕನ್ನು ವಸ್ತುವೊಂದು ಹೇಗೆ ಹಿಂಪುಟಿಸುತ್ತದೆ (reflects), ಚದುರಿಸುತ್ತದೆ (scatters), ಹೀರಿಕೊಳ್ಳುತ್ತದೆ (absorbs) ಇಲ್ಲವೇ ಸೂಸುತ್ತದೆ (radiates) ಅನ್ನುವುದರ ಮೇಲೆ ಆ ವಸ್ತು ಯಾವ ಬಣ್ಣದಲ್ಲಿ ಕಾಣುತ್ತದೆ ಅನ್ನುವುದನ್ನು ತೀರ್ಮಾನಿಸುತ್ತದೆ. ವಸ್ತುವೊಂದು ತನ್ನ ಗುಣಕ್ಕೆ (characteristics) ತಕ್ಕಂತೆ ಬೆಳಕಿನಲ್ಲಿರುವ ಬೇರೆ ಬೇರೆ ಅಲೆಯುದ್ದದ ಅಲೆಗಳಲ್ಲಿ ಕೆಲವನ್ನು ಹೀರಿಕೊಳ್ಳಬಹುದು ಮತ್ತು ಕೆಲವನ್ನು ಚದುರಿಸಬಹುದು. ಯಾವ ಅಲೆಯುದ್ದದ ಬೆಳಕಿನ ಅಲೆಯನ್ನು ಆ ವಸ್ತು ಹೆಚ್ಚು ಚದುರಿಸುವುದೋ, ಆ ಅಲೆಯ ಬಣ್ಣದಲ್ಲಿ ವಸ್ತು ನಮಗೆ ಕಾಣಿಸುತ್ತದೆ.

ಎತ್ತುಗೆಗೆ:

  • ಕಿತ್ತಳೆ ಹಣ್ಣು ತನ್ನ ಮೇಲೆ ಬೀಳುವ ಬೆಳಕಿನ ಅಲೆಗಳಲ್ಲಿ 590 nm ನಿಂದ 620 nm ಉದ್ದದ ಅಲೆಗಳನ್ನು ಹೆಚ್ಚು ಚದುರಿಸುತ್ತದೆ. 590-620 nm ಅಲೆಗಳು ಕಿತ್ತಳೆ ಬಣ್ಣದ ಅರಿವನ್ನು ಹೊಮ್ಮಿಸುವ ಅಲೆಗಳು ಹಾಗಾಗಿ ನಮಗೆ ಕಿತ್ತಳೆ ಹಣ್ಣು ’ಕಿತ್ತಳೆ’ ಬಣ್ಣದಲ್ಲಿ ಕಾಣಿಸುತ್ತದೆ!
  • ಕ್ರಿಕೆಟ್ ಚೆಂಡು 620-740 nm ಅಲೆಗಳನ್ನು ಹೆಚ್ಚು ಚದುರಿಸುವುದರಿಂದ ಮತ್ತು ಈ ಅಲೆಗಳು ’ಕೆಂಪು’ ಬಣ್ಣದ ಅರಿವನ್ನು ಹೊಮ್ಮಿಸುವುದರಿಂದ ಕ್ರಿಕೆಟ್ ಚೆಂಡು ನಮಗೆ ಕೆಂಪು ಬಣ್ಣದಲ್ಲಿ ಕಾಣುತ್ತದೆ.
  • ಗಾಳಿಪಾಡಿನಲ್ಲಿರುವ ತುಣುಕುಗಳು ಹಗಲಲ್ಲಿ ಅಲೆಗಳನ್ನು ಹೆಚ್ಚು ಚದುರಿಸುವುದರಿಂದ ಬಾನು ನೀಲಿ ಬಣ್ಣದಲ್ಲಿ ಕಾಣುತ್ತದೆ.

ವಸ್ತುವೊಂದು ಬೆಳಕಿನ ಎಲ್ಲ ಅಲೆಗಳನ್ನು ಸಮನಾಗಿ ಚದುರಿಸಿದರೆ ಆ ವಸ್ತು ಬಿಳಿ ಬಣ್ಣದಲ್ಲಿ ಕಾಣುತ್ತದೆ ಅದೇ ವಸ್ತುವೊಂದು ಬೆಳಕಿನ ಎಲ್ಲ ಅಲೆಗಳನ್ನು ಹೀರಿಕೊಂಡು ಯಾವುದೇ ಅಲೆಗಳನ್ನು ಚದುರಿಸದಿದ್ದರೆ ಆ ವಸ್ತು ನಮಗೆ ’ಕಪ್ಪು’ ಬಣ್ಣದಲ್ಲಿ ಕಾಣುತ್ತದೆ. ಹೀಗೆ ಬಿಳಿ ಮತ್ತು ಕಪ್ಪು ಬಣ್ಣಗಳ ಅರಿವಿನ ನಡುವೆ, ಅಲೆಗಳ ಚದುರುವಿಕೆಗೆ ತಕ್ಕಂತೆ ವಸ್ತುಗಳು ಬೇರೆ ಬೇರೆ ಬಣ್ಣಗಳನ್ನು ಪಡೆದುಕೊಳ್ಳುತ್ತವೆ.

ಬೆಳಕಿನ ಅಲೆಗಳಲ್ಲಿರುವ ಬಣ್ಣದ ಅರಿವು ಮತ್ತು ವಸ್ತುಗಳ ಗುಣಗಳು ಅವುಗಳ ಬಣ್ಣಗಳನ್ನು ತೀರ್ಮಾನಿಸುವುದರ ಬಗ್ಗೆ ತಿಳಿದುಕೊಂಡೆವು ಈಗ ನಮ್ಮ ಕಣ್ಣು ಮತ್ತು ಮಿದುಳು ಬಣ್ಣಗಳ ಬದುಕಿನಲ್ಲಿ ಏನು ಪಾತ್ರ ವಹಿಸುತ್ತವೆ ಎಂದು ಅರಿಯೋಣ.

ನಿಮಗಿದು ಗೊತ್ತೆ?, ಸಾವಿರಾರು ಬಣ್ಣಗಳನ್ನು ಗುರುತಿಸುವ ನಮ್ಮ ಕಣ್ಣುಗಳು ಮುಖ್ಯವಾಗಿ ಬರೀ ಮೂರು ಬಣ್ಣಗಳನ್ನು ಗುರುತಿಸುವ ಸೂಲುಗಳನ್ನು (cells) ಹೊಂದಿರುತ್ತವೆ. ಆ ಮೂರು ಬಣ್ಣಗಳೆಂದರೆ ಕೆಂಪು, ಹಸಿರು ಮತ್ತು ನೀಲಿ. ಈ ಮೂರು ಬಣ್ಣಗಳ ಕಡುತನದ (intensity) ಮಟ್ಟವನ್ನು ಹೊಂದಿಸುತ್ತಾ ಸಾವಿರಾರು ಬಣ್ಣಗಳನ್ನು ನಮ್ಮ ಕಣ್ಣುಗಳಲ್ಲಿರುವ ಸೂಲುಗಳು ಗುರುತಿಸಬಲ್ಲವು. ಮೂರು ಬಣ್ಣಗಳ ನೆರವಿನಿಂದ ಉಳಿದೆಲ್ಲ ಬಣ್ಣಗಳನ್ನು ಗುರುತಿಸುವ ನಮ್ಮ ಕಣ್ಣಿನ ಬಗೆಯನ್ನು ಮೂರ್ಬಣ್ಣತನ (trichromatic) ಎನ್ನುತ್ತಾರೆ.

ನಮ್ಮ ನೋಟಕ್ಕೆ ಕಾರಣವಾದ ಕಣ್ದೆರೆಯಲ್ಲಿ (retina) ಮುಖ್ಯವಾಗಿ ಎರಡು ಬಗೆಯ ಸೂಲುಗಳು (cells) ಇರುತ್ತವೆ. ಒಂದು, ಶಂಕದ ಆಕಾರದಲ್ಲಿರುವ ಸೂಲುಗಳು ಮತ್ತು ಎರಡು, ಸರಳಿನ ಆಕಾರದಲ್ಲಿರುವ ಸೂಲುಗಳು. ಆಕಾರಗಳಿಗೆ ತಕ್ಕಂತೆ ಅವುಗಳನ್ನು ಶಂಕಸೂಲುಗಳು (cone cells) ಮತ್ತು ಸರಳುಸೂಲುಗಳು (rod cells) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ನಮ್ಮ ಕಣ್ಣಿನಲ್ಲಿ ಸುಮಾರು 45 ಲಕ್ಷ ಶಂಕಸೂಲುಗಳು ಮತ್ತು ಸುಮಾರು 9 ಕೋಟಿ ಸರಳುಸೂಲುಗಳಿರುತ್ತವೆ.

ಶಂಕಸೂಲುಗಳು ನಮ್ಮ ಬಣ್ಣದ ಅರಿವಿಗೆ ಕಾರಣವಾಗಿವೆ. ಶಂಕಸೂಲುಗಳಲ್ಲಿ ಕೆಂಪು, ಹಸಿರು ಮತ್ತು ನೀಲಿ ಬಣ್ಣಗಳಿಗೆ ಹುರುಪುಗೊಳ್ಳುವ ಮೂರು ಬಗೆಯ ಸೂಲುಗಳಿರುತ್ತವೆ. ಅಂದರೆ ಶಂಕಸೂಲುಗಳಲ್ಲಿ ಒಂದು ಬಗೆಯ ಸೂಲುಗಳು ಕೆಂಪು ಬಣ್ಣದ ಬೆಳಕಿಗೆ (ಅಲೆಗಳಿಗೆ) ಹೆಚ್ಚು ಹುರುಪುಗೊಂಡರೆ, ಇನ್ನೊಂದು ಬಗೆಯ ಸೂಲುಗಳು ಹಸಿರು ಬಣ್ಣಕ್ಕೂ, ಮತ್ತೊಂದು ಬಗೆಯ ಸೂಲುಗಳು ನೀಲಿ ಬಣ್ಣಕ್ಕೆ ಹೆಚ್ಚು ಹುರುಪುಗೊಳ್ಳುತ್ತವೆ.

ನಮ್ಮ ಕಣ್ಣಿನಲ್ಲಿ ಬರೀ ಮೂರು ಬಗೆಯ ಬಣ್ಣದ ಸೂಲುಗಳಿದ್ದರೂ, ನಾವು ಬೇರೆ ಬಣ್ಣಗಳನ್ನು ಹೇಗೆ ಗುರುತಿಸಬಲ್ಲೆವು ಅನ್ನುವುದು ಪ್ರಶ್ನೆಯಲ್ಲವೇ? ಈ ಮುಖ್ಯ ಮೂರು ಬಣ್ಣಗಳನ್ನು ಹೊರತುಪಡಿಸಿ ಬೇರೆ ಬಣ್ಣದ ಬೆಳಕು (ಅಲೆಗಳು) ನಮ್ಮ ಕಣ್ದೆರೆಯ ಮೇಲೆ ಬಿದ್ದಾಗ, ಕೆಂಪು, ಹಸಿರು ಮತ್ತು ನೀಲಿ ಬಣ್ಣದ ಶಂಕಸೂಲುಗಳು ಬೇರೆ ಬೇರೆ ಕಡುತನದಲ್ಲಿ (intensity) ಹುರುಪುಗೊಳ್ಳುತ್ತವೆ. ಎತ್ತುಗೆಗೆ: ನಮ್ಮ ಕಣ್ಣಿನ ಮೇಲೆ ಹಳದಿ ಬೆಳಕು ಬಿದ್ದಾಗ ಕೆಂಪು ಮತ್ತು ಹಸಿರು ಸೂಲುಗೂಡುಗಳೆರಡೂ ಹುರುಪುಗೊಳ್ಳುತ್ತವೆ ಮತ್ತು ನೀಲಿ ಬಣ್ಣದ ಸೂಲುಗಳು ಹುರುಪುಗೊಳ್ಳುವುದಿಲ್ಲ.

ಹುರುಪುಗೊಂಡ ಕೆಂಪು ಮತ್ತು ಹಸಿರು ಬಣ್ಣದ ಸೂಲುಗಳು ಮಿದುಳಿಗೆ ತಮ್ಮ ಈ ಅರಿವನ್ನು ಸಾಗಿಸುತ್ತವೆ. ಹೀಗೆ ಕೆಂಪು ಮತ್ತು ಹಸಿರು ಬಣ್ಣದ ಬೆರಕೆಯಿಂದ ನಮಗೆ ಹಳದಿ ಬಣ್ಣದ ಅನುಭವವಾಗುತ್ತದೆ. ಕೆಳಗಿನ ತಿಟ್ಟದಲ್ಲಿ ನಮ್ಮ ಕಣ್ಣು ಹಳದಿ ಬಣ್ಣವನ್ನು ಗುರುತಿಸುವ ಈ ಬಗೆಯನ್ನು ತೋರಿಸಲಾಗಿದೆ. ನಿಮಗೆ ಬೆರಗೆನಿಸಬಹುದು, ಕೆಂಪು ಮತ್ತು ಹಸಿರು ಬಣ್ಣದ ಬೆಳಕು ಒಟ್ಟಾಗಿ ನಮ್ಮ ಕಣ್ಣಿನ ಮೇಲೆ ಬಿದ್ದಾಗಲೂ ಹಳದಿ ಬೆಳಕಶ್ಟೇ ಬಿದ್ದಾಗ ಅನುಭವವಾದಂತೆ ಹಳದಿ ಬಣ್ಣವೇ ನಮಗೆ ಕಾಣುತ್ತದೆ.

ಬರೀ ಮೂರು ಬಗೆಯ ಬಣ್ಣಗಳ ಹೊಂದಾಣಿಕೆಯಿಂದ ನಮ್ಮ ಕಣ್ಣು ಸಾವಿರಾರು ಬಣ್ಣಗಳನ್ನು ಬೇರೆಯಾಗಿ ಗುರುತಿಸಬಲ್ಲದು. ನಮ್ಮ ಕಣ್ಣಿನ ಈ ಗುಣದಿಂದಾಗಿ ಕಂಪ್ಯೂಟರ್, ಟಿವಿ ಮುಂತಾದ ತೆರೆಗಳನ್ನು ಬರೀ ಕೆಂಪು, ಹಸಿರು ಮತ್ತು ನೀಲಿ ಬಣ್ಣಗಳನ್ನು ಗುರುತಿಸಲು ಮತ್ತು ಒಂದಕ್ಕೊಂದು ಹೊಂದಿಸಲು ಅಣಿಗೊಳಿಸಿರುತ್ತಾರೆ. ಇದನ್ನು ಕೆನೀ ಬಣ್ಣ ಮಾದರಿ (RGB colour model) ಎಂದು ಕರೆಯಬಹುದು.

ಶಂಕಸೂಲುಗಳಂತೆ ಸರಳುಸೂಲುಗಳಲ್ಲಿ ಬಗೆಗಳಿಲ್ಲ. ಅವುಗಳ ಕೆಲಸ ಕಡಿಮೆ ಬೆಳಕಿನಲ್ಲಿ ನಮಗೆ ನೋಟವನ್ನು ಒದಗಿಸುವುದು. ಕಡಿಮೆ ಬೆಳಕು ಇದ್ದಾಗ ಶಂಕಸೂಲುಗಳು ಹುರುಪುಗೊಳ್ಳುವುದಿಲ್ಲ ಹಾಗಾಗಿಯೇ ನಾವು ಕಡಿಮೆ ಬೆಳಕಿನಲ್ಲಿ ಬಣ್ಣಗಳನ್ನು ಸರಿಯಾಗಿ ಗುರುತಿಸಲಾರೆವು ಆದರೆ ಕಡಿಮೆ ಬೆಳಕಿನಲ್ಲಿ ಸರಳುಸೂಲುಗಳು ತಮ್ಮ ಕೆಲಸ ಮಾಡುವುದರಿಂದ ಕಂದು, ಕಪ್ಪು, ತಿಳಿ ನೋಟದ ಅರಿವು ನಮಗಾಗುತ್ತದೆ. ಕಡಿಮೆ ಬೆಳಕಿನಲ್ಲಿ ಸರಳುಸೂಲುಗಳು ಹುರುಪುಗೊಳ್ಳುವುದನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ.

ಹೀಗೆ ಬೆಳಕು, ವಸ್ತುಗಳ ಗುಣ ಮತ್ತು ನಮ್ಮ ಕಣ್ಣು, ಮಿದುಳಿನ ಕಟ್ಟಣೆಯಿಂದಾಗಿ ನಮಗೆ ಬಣ್ಣಗಳ ಅರಿವಾಗುತ್ತದೆ.

 

ಭೂಮಿಯ ತೂಕ

ಪ್ರಶಾಂತ ಸೊರಟೂರ.

ಕಳೆದ ಬರಹವೊಂದರಲ್ಲಿ ಭೂಮಿಯ ದುಂಡಗಲವನ್ನು (Diameter) ಮೊಟ್ಟಮೊದಲ ಬಾರಿಗೆ ಅಳೆದವರಾರು ಮತ್ತು ಹೇಗೆ ಅಳೆದರು ಅಂತಾ ತಿಳಿದುಕೊಂಡೆವು. ಬಾನರಿಮೆ ಇಲ್ಲವೇ ಅದಕ್ಕೆ ಹೊಂದಿಕೊಂಡಂತ ವಿಷಯಗಳನ್ನು ಓದುವಾಗ ನೆಲ, ನೇಸರ, ಮಂಗಳ ಮುಂತಾದವುಗಳ ತೂಕ ’ಇಂತಿಷ್ಟು ’ ಅಂತಾ ಓದಿದೊಡನೆ, ಇಂತ ದೊಡ್ಡದಾದ ವಸ್ತುಗಳನ್ನು ಹೇಗೆ ತೂಗುತ್ತಾರೆ ಅನ್ನುವಂತ ಕೇಳ್ವಿಯೊಂದು ನಿಮ್ಮ ತಲೆಗೆ ಹೊಕ್ಕಿರಬಹುದು.

ಅರಿಮೆಯ ಹೆಚ್ಚುಗಾರಿಕೆ ಇದರಲ್ಲೇ ಅಡಗಿರುವುದು, ನೇರವಾಗಿ ಕಂಡುಹಿಡಿಯಲು ಆಗದಂತಹ ವಿಷಯಗಳನ್ನು ನೇರವಲ್ಲದ ಹೊಲಬು (Method) ಬಳಸಿ ಎಣಿಕೆಹಾಕಬಹುದು. ಬನ್ನಿ, ಈ ಬರಹದಲ್ಲಿ ಭೂಮಿಯ ತೂಕವನ್ನು ಹೇಗೆ ನೇರವಾಗಿ ತೂಗದೆ, ಬೇರೊಂದು ಗೊತ್ತಿರುವ ಅರಿಮೆಯ ನಂಟುಗಳಿಂದ ಎಣಿಕೆಹಾಕಬಹುದು ಅಂತಾ ತಿಳಿದುಕೊಳ್ಳೋಣ.

ನಮ್ಮ ದಿನದ ಬದುಕಿನಲ್ಲಿ ರಾಶಿಯನ್ನೇ ತೂಕ ಅನ್ನುವ ಹುರುಳಿನಿಂದ ನಾವು ಬಳಸುತ್ತೇವೆ. ಆದರೆ ಅರಿಮೆಯ ಕಣ್ಣಿನಲ್ಲಿ ತೂಕ (weight) ಮತ್ತು ರಾಶಿಗಳಲ್ಲಿ (Mass) ಬೇರ್ಮೆಯಿದೆ .

ವಸ್ತು ಎಷ್ಟು’ಅಡಕವಾಗಿದೆ’ ಅನ್ನುವುದನ್ನು ರಾಶಿ (Mass) ಅಂತಾ ಮತ್ತು ವಸ್ತು ಬೇರೊಂದರ ನೆಲೆಯಲ್ಲಿ ಎಷ್ಟು ’ಸೆಳೆಯಲ್ಪಡುತ್ತದೆ’ ಅನ್ನುವುದನ್ನು ತೂಕ (Weight) ಅಂತಾ ಕರೆಯುತ್ತಾರೆ. ರಾಶಿಯನ್ನು ಕೆಜಿ (kg) ಎಂಬ ಅಳತೆಗೋಲಿನಿಂದ ಅಳೆದರೆ ತೂಕಕ್ಕೆ ನ್ಯೂಟನ್ (N) ಎಂಬ ಅಳತೆಗೋಲು ಬಳಸಲಾಗುತ್ತದೆ.

ಉದಾಹರಣೆಗೆ : ಭೂಮಿಯ ಮೇಲೆ ವಸ್ತುವೊಂದರ ರಾಶಿ 70 kg ಆಗಿದ್ದರೆ ಚಂದ್ರನ ಮೇಲೂ ಅದರ ರಾಶಿ ಅಷ್ಟೇ ಆಗಿರುತ್ತದೆ ಆದರೆ ಅದೇ ವಸ್ತುವಿನ ತೂಕ ಭೂಮಿಯ ಮೇಲೆ 70 x 9.81 = 686.7 N (ನ್ಯೂಟನ್) ಆಗಿದ್ದರೆ, ಚಂದ್ರನ ಮೇಲೆ ಅದು 70 x 1.62 = 113.4 N ಆಗಿರುತ್ತದೆ.

ಇದಕ್ಕೆ ಕಾರಣವೆಂದರೆ, ಇಂತಿಷ್ಟು ಅಡಕವಾಗಿರುವ (ರಾಶಿ) ವಸ್ತುವನ್ನು ಭೂಮಿಯು ತನ್ನೆಡೆಗೆ ಹೆಚ್ಚು ಸೆಳೆದರೆ, ಚಂದ್ರನಿಗೆ ಆ ಸೆಳೆಯುವ ಕಸುವು ನೆಲಕ್ಕಿಂತ ಸುಮಾರು 83% ಕಡಿಮೆಯಿದೆ. ಅಂದರೆ ಭೂಮಿಯ ಮೇಲೆ ಗಟ್ಟಿಯಾಗಿ ನೆಲೆಯೂರಿರುವ ವಸ್ತು, ಚಂದ್ರನ ಮೇಲೆ ಕಡಿಮೆ ಸೆಳೆತದಿಂದಾಗಿ ತೇಲಾಡಬಹುದು.

(ರಾಶಿ ಮತ್ತು ತೂಕದ ಬೇರ್ಮೆ ತೋರಿಸುತ್ತಿರುವ ತಿಟ್ಟ)

 

ಇದರಿಂದ ಇನ್ನೊಂದು ತಿಳಿದುಕೊಳ್ಳುವ ವಿಷಯವೆಂದರೆ ವಸ್ತುವಿನ ತೂಕ ಇಂತಿಷ್ಟಿದೆ ಎಂದರೆ ಅದನ್ನು ಯಾವ ಸೆಳೆತದ ನೆಲೆಯಲ್ಲಿ (ನೆಲ, ಚಂದಿರ, ನೇಸರ ಮುಂತಾದವು) ಅಳೆಯಲಾಯಿತು ಅನ್ನುವುದನ್ನೂ ತಿಳಿಸಬೇಕಾಗುತ್ತದೆ ಆದರೆ ರಾಶಿ ಹಾಗಲ್ಲ, ಎಲ್ಲೆಡೆಯೂ ಅದು ಒಂದೇ ಆಗಿರುತ್ತದೆ. (ಯಾರಾದರೂ ನನ್ನ ತೂಕ ಇಂತಿಶ್ಟಿದೆ ಅಂದರೆ ಎಲ್ಲಿ ಅಳೆದದ್ದು ಭುವಿಯಲ್ಲೋ , ಚಂದಿರನಲ್ಲೋ ಅಂತಾ ಕೇಳುವುದು ಅರಿಮೆಯ ಕಣ್ಣಲ್ಲಿ ಸರಿಯಾದ ಕೇಳ್ವಿಯೇ)

ಅರಿಮೆಯ ಈ ಹಿನ್ನೆಲೆಯಲ್ಲಿ ಭೂಮಿಯ ’ತೂಕ’ (Weight) ಕಂಡುಹಿಡಿಯುವ ಬಗೆಯನ್ನು ತಿಳಿಯಲು ಹೊರಟಿರುವ ನಾವು ಅದು ಭೂಮಿಯ ’ರಾಶಿ’ (Mass) ಅಂತಾ ಹುರುಳಿಸಿಕೊಳ್ಳಬೇಕಾಗುತ್ತದೆ. ಹಾಗಾಗಿ ಬರಹದ ಮುಂದಿನ ಕುರುಳುಗಳಲ್ಲಿ ’ತೂಕ’ ಅನ್ನುವ ಬದಲಾಗಿ ’ರಾಶಿ’ ಅಂತಾ ಬಳಸಲಾಗಿದೆ.

ನಿಮಗೆ ಶಾಲೆಯ ಪಾಟವೊಂದರಲ್ಲಿ ಈ ಆಗುಹವನ್ನು ಓದಿದ ನೆನಪಿರಬಹುದು,

“ಮರವೊಂದರಿಂದ ಬೇರ್ಪಟ್ಟ ಸೇಬಿನ ಹಣ್ಣು ನೆಟ್ಟಗೆ ನೆಲಕ್ಕೇ ಏಕೆ ಬಿದ್ದಿತು? ಅದ್ಯಾಕೆ ಮೇಲೆ ಹಾರಲಿಲ್ಲ? ಅನ್ನುವಂತ ಕೇಳ್ವಿಗಳು ಆ ಮರದ ಕೆಳಗೆ ಕುಳಿತಿದ್ದ ಹುಡುಗ ಐಸಾಕ್‍ನನ್ನು ಕಾಡತೊಡಗಿದವು. ಮುಂದೆ ಆ ಕುತೂಹಲಗಳೇ ಜಗತ್ತಿನ ಅರಿಮೆಯ ನಾಳೆಗಳನ್ನು ಬೆಳಗಿಸಿದವು. ಐಸಾಕ್ ನ್ಯೂಟನ್ನರ ತಿಳಿವು, ಕಟ್ಟಲೆಗಳು ಹಲವು ವಿಷಯಗಳಿಗೆ ಅಡಿಪಾಯವಾದವು”

ಭೂಮಿಯ ರಾಶಿಯನ್ನೂ ಐಸಾಕ್ ನ್ಯೂಟನ್ನರು ತಿಳಿಸಿಕೊಟ್ಟ ’ಕದಲಿಕೆಯ ಕಟ್ಟಲೆ’ (Law of motion) ಮತ್ತು ’ಹಿರಿಸೆಳೆತದ ಕಟ್ಟಲೆ’ (Law of gravitation) ಬಳಸಿ ಎಣಿಕೆಹಾಕಲಾಗುತ್ತದೆ. ನ್ಯೂಟನ್ನರು ತೋರಿಸಿಕೊಟ್ಟ ಕಟ್ಟಲೆಗಳು ಹೀಗಿವೆ,

 

ಅ) ಕದಲಿಕೆಯ ಕಟ್ಟಲೆ (law of motion):

ಒಂದು ವಸ್ತುವಿನ ಮೇಲೆ ಬೀಳುವ ಕಸುವು, ಆ ವಸ್ತುವಿನ ರಾಶಿ (Mass) ಮತ್ತು ಅದರ ವೇಗಮಾರ್ಪಿನ (acceleration) ಗುಣಿತಕ್ಕೆ ಸಾಟಿಯಾಗಿರುತ್ತದೆ.
F = m x a

ಇಲ್ಲಿ, F = ಕಸುವು, m = ವಸ್ತುವಿನ ರಾಶಿ, a = ವೇಗಮಾರ್ಪು

ಆ) ಹಿರಿಸೆಳೆತದ ಕಟ್ಟಲೆ (law of gravitation):

ಎರಡು ವಸ್ತುಗಳ ನಡುವೆ ಅವುಗಳ ರಾಶಿಗೆ ತಕ್ಕಂತೆ ಮತ್ತು ಅವುಗಳ ನಡುವಣಗಳ ದೂರಕ್ಕೆ ಎದುರಾಗಿ ಸೆಳೆತದ ಕಸುವಿರುತ್ತದೆ, ಅದನ್ನು ಹಿರಿಸೆಳೆತ (Gravitation) ಎನ್ನುತ್ತಾರೆ. (ಹಿರಿಸೆಳೆತ = ರಾಶಿಯಲ್ಲಿ ಹಿರಿದಾದ ವಸ್ತುವು ಕಿರಿದಾದ ವಸ್ತುವನ್ನು ತನ್ನೆಡೆಗೆ ಸೆಳೆಯುವ ಕಸುವು)

F = G (m1 x m2 / r2)

ಇಲ್ಲಿ, F = ವಸ್ತುಗಳ ನಡುವಿರುವ ಹಿರಿಸೆಳೆತದ ಕಸುವು, m1, m2 = ವಸ್ತುಗಳ ರಾಶಿಗಳು, r = ವಸ್ತುಗಳ ನಡುವಣದ ದೂರ, G = ನೆಲೆಬೆಲೆ (Constant).

ಈಗ, ಕಂಡುಹಿಡಿಯಲು ಹೊರಟಿರುವ ಭೂಮಿಯ ರಾಶಿ ‘M’ ಮತ್ತು ಭೂಮಿಯ ಮೇಲ್ಮೈಯಲ್ಲಿರುವ ವಸ್ತುವೊಂದರ ರಾಶಿ ’m’ ಅಂತಾ ತಿಳಿದುಕೊಳ್ಳೋಣ. ಮೇಲಿನ ನ್ಯೂಟನ್ನರ ಕಟ್ಟಲೆಗಳನ್ನು ಹೀಗೆ ಹೊಂದಿಸಿಕೊಳ್ಳಬಹುದು,

F = m x a = G (M x m / r2)
>> M = (a x r2)/G

ಈ ಮೇಲಿನ ನಂಟಿನಲ್ಲಿ ನಮಗೆ ಕೆಳಗಿನವುಗಳು ಗೊತ್ತಿರುವಂತವು,
i) a = g = 9.81 m/sec2

ಭೂಮಿಯ ಸೆಳೆತಕ್ಕೆ ಒಳಪಟ್ಟ ವಸ್ತುವೊಂದರ ವೇಗವು ಪ್ರತಿ ಸೆಕೆಂಡಿಗೆ 9.81 ಮೀಟರ್ನಷ್ಟು ಮಾರ್ಪಡುತ್ತದೆ (Acceleration due to gravity)

ii) G = 6.67 x 10-11  m3/(kg sec2)

ಈ ಬೆಲೆಯನ್ನು ಕೆವೆಂಡಿಶ್ ಹೆನ್ರಿ ತಮ್ಮ ಅರಕೆಯಿಂದ ಕಂಡುಹಿಡಿದಿದ್ದರು

iii) r = 6378000‍ ಮೀಟರ್ = ಭೂಮಿಯ  ಮೇಲ್ಮೈಯಿಂದ ನಡುವಣದವರೆಗೆ (Center) ಇರುವ ದೂರ = ಭೂಮಿಯ ದುಂಡಿ (Radius)

ಕಳೆದ ಬರಹದಲ್ಲಿ ಇದನ್ನು ಹೇಗೆ ಅಳೆಯಲಾಯಿತು ಅಂತಾ ತಿಳಿದುಕೊಂಡಿದ್ದೆವು (ದುಂಡಿ=ದುಂಡಗಲ/2, radius = diameter / 2)

ಆದುದರಿಂದ,
ಭೂಮಿಯ ರಾಶಿ = M = (a x r2)/G = (9.81 x 6378000‍ 2) / 6.67 x 10-11

5.98 x 1024 Kg

ಗೊತ್ತಾಯಿತಲ್ಲ, ಭೂಮಿಯ ತೂಕವನ್ನು (ರಾಶಿಯನ್ನು) ತಕ್ಕಡಿಯಿಲ್ಲದೇ ಹೇಗೆ ಕಂಡುಹಿಡಿಯಬಹುದಂತ !.

 

(ತಿಳಿವಿನ ಮತ್ತು ತಿಟ್ಟಗಳ ಸೆಲೆಗಳು: enchantedlearningwikipedia.orgbbc.co.uk, cnx.org )

ಹಿಗ್ಸ್ ಬೋಸಾನ್ ಎಂಬ ಕಾಣದ ತುಣುಕುಗಳು

ಪ್ರಶಾಂತ ಸೊರಟೂರ.

1964, ಹೊಸಗಾಲದ ಭೌತಶಾಸ್ತ್ರದಲ್ಲಿ (modern physics) ಅಚ್ಚಳಿಯದ ಹೊತ್ತು. ಇಂಗ್ಲೆಂಡಿನ ಪೀಟರ್ ಹಿಗ್ಸ್ (Peter Higgs) ತಮ್ಮ ಒಡ ಸಂಶೋಧಕರಾದ ರಾಬರ್ಟ್ ಬ್ರಾಟ್ (Robert Brout) ಮತ್ತು ಪ್ರಾಂಕ್ವಾಯ್ಸ್ ಎಂಗ್ಲರ್ಟ್ (François Englert) ಗಣಿತದ ನೆಲೆಯಲ್ಲಿ ಹೊಸ ಅರಿವನ್ನು ಮುಂದಿಟ್ಟರು. ಅದೆಂದರೆ,

ವಸ್ತುಗಳು ರಾಶಿಯನ್ನು (mass) ಪಡೆಯಲು ಕೆಲವು ಕಿರುತುಣುಕುಗಳು ಏರ್ಪಡಿಸುವ ಬಯಲು ಕಾರಣವಾಗಿದ್ದು, ಬಯಲು (field) ಎಲ್ಲೆಡೆ ಹರಡಿಕೊಂಡಿದೆ.”

ನಮ್ಮ ಸುತ್ತಣದ ಹಲವು ಆಗುಹೋಗುಗಳಲ್ಲಿ ರಾಶಿ (mass), ತೂಕ (weight) ತಮ್ಮದೇ ಆದ ಹಿರಿಮೆಯನ್ನು ಹೊಂದಿವೆ. ರಾಶಿ ಹೊಂದಿರುವ ಎರಡು ವಸ್ತುಗಳ ನಡುವೆ ಉಂಟಾಗುವ ಸೆಳೆತದಿಂದಾಗಿ ’ತೂಕ’ ಉಂಟಾಗುತ್ತದೆ ಎಂಬುದು ಅರಿತಿದ್ದರೂ, ವಸ್ತುಗಳು ರಾಶಿಯನ್ನು ಹೇಗೆ ಪಡೆದುಕೊಳ್ಳುತ್ತವೆ? ಅನ್ನುವುದು ಕಗ್ಗಂಟಾಗಿಯೇ ಉಳಿದಿದ್ದ ವಿಷಯ. ಈ ಹಿನ್ನೆಲೆಯಲ್ಲಿ ಪೀಟರ್ ಹಿಗ್ಸ್ ಅವರು ಮುಂದಿಟ್ಟ ಅರುಹು (hypothesis) ವಿಜ್ಞಾನಿಗಳಲ್ಲಿ ಹೆಚ್ಚು ಚರ್ಚೆಗೆ ಒಳಪಟ್ಟ, ಒಳಪಡುತ್ತಿರುವ ಅರಿವು ಎನ್ನಬಹುದು.

ಹಿಗ್ಸ್ ಅವರ ತಿಳಿವಿನ ಮಹತ್ವವನ್ನು ಮನಗಾಣುವ ಮುನ್ನ ಅಣುಗಳ ಒಳರಚನೆಯ ಬಗ್ಗೆ ತುಸು ತಿಳಿದುಕೊಳ್ಳೋಣ.

ನಮಗೆ ಗೊತ್ತಿರುವಂತೆ ಪ್ರತಿಯೊಂದು ವಸ್ತುವು ಕೋಟಿಗಟ್ಟಲೆ ಅಣುಗಳಿಂದ ಕೂಡಿರುತ್ತದೆ. ಅಣುಗಳ ಒಳಹೊಕ್ಕಾಗ ಅದರಲ್ಲಿ ಇನ್ನು ಕಿರಿದಾದ ತುಣುಕುಗಳಿರುತ್ತವೆ. ಅಣುವಿನ ನಡುವಣದಲ್ಲಿ (nucleus) ಪ್ರೋಟಾನ್ ಗಳು ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ ಗಳ ನಡುವಣದ ಸುತ್ತ ಗೊತ್ತುಪಡಿಸಿದ ದಾರಿಯಲ್ಲಿ ಎಲೆಕ್ಟ್ರಾನ್ ಗಳು ಸುತ್ತುತ್ತಿರುತ್ತವೆ.

ಹೊಸಗಾಲದ ಭೌತಶಾಸ್ತ್ರದಲ್ಲಿ ಅಣುಗಳ ಒಳರಚನೆಯು ಹಂತ-ಹಂತವಾಗಿ ಅರಿವಿಗೆ ಬಂತು ಎನ್ನಬಹುದು. ಮೊದ-ಮೊದಲಿಗೆ ಕೂಡುವಣಿಗಳು (Protons), ನೆಲೆವಣಿಗಳು (Neutrons) ಅಣುಗಳ ಕಿರಿದಾದ ಭಾಗಗಳಾಗಿದ್ದು, ಅವುಗಳನ್ನು ಮತ್ತಷ್ಟು ಒಡೆಯಲು ಆಗುವುದಿಲ್ಲ ಅನ್ನುವಂತ ತಿಳುವಳಿಕೆ ಇತ್ತು. ಅರಿಮೆ ಮುಂದುವರೆಯುತ್ತಾ, ಅವುಗಳು ಇನ್ನೂ ಕಿರಿದಾದ ಭಾಗಗಳನ್ನು ಹೊಂದಿವೆ ಅನ್ನುವುದು ಗೊತ್ತಾಯಿತು.

ಕೂಡುವಣಿಗಳು ಮತ್ತು ನೆಲೆವಣಿಗಳು ಹೊಂದಿರುವ ಕಿರುತುಣುಕುಗಳನ್ನು ಕ್ವಾರ್ಕ್ಸ್ (Quarks) ಎನ್ನುತ್ತಾರೆ. ಕನ್ನಡದಲ್ಲಿ ಇವುಗಳನ್ನು ಕಿರಿಗಳು ಇಲ್ಲವೇ ಕಿರಿವಣಿಗಳು ಅನ್ನೋಣ. ಪ್ರತಿಯೊಂದು ಕೂಡುವಣಿ ಮತ್ತು ನೆಲೆವಣಿಗಳಲ್ಲಿ ತಲಾ ಮೂರು ಕಿರಿವಣಿಗಳಿರುತ್ತವೆ. ಈ ಕಿರುತುಣುಕುಗಳ ರಾಶಿಯನ್ನು ಹೋಲಿಸಿದಾಗ, ಕಳೆವಣಿಗಳ(Electrons) ರಾಶಿಯು ಕಿರುವಣಿಗಳಿಂದ ಕೂಡಿರುವ ಕೂಡುವಣಿಗಳು ಮತ್ತು ನೆಲೆವಣಿಗಳ ರಾಶಿಗಳಿಗಿಂತ ಹಲವು ಪಟ್ಟು ಕಡಿಮೆ ಇರುವುದು ಗೊತ್ತಾಯಿತು.

ಇನ್ನು, ಅಣುಗಳ ಕಿರುತುಣುಕುಗಳ ನಡುವೆ ಏರ್ಪಡುವ ಬಲಗಳು ಎರಡು ಬಗೆಯವು. ಮೊದಲನೆಯದು, ನಡುವಣದಲ್ಲಿ ಹಲವು ಕೂಡುವಣಿಗಳನ್ನು, ನೆಲೆವಣಿಗಳನ್ನು ಹಿಡಿದಿಡುವ ಗಟ್ಟಿ ಬಲ (strong force). ಎರಡನೆಯದು, ಕೂಡುವಣಿಗಳು ಮತ್ತು ಕಳೆವಣಿಗಳ ನಡುವಿರುವ ಸಡಿಲ ಬಲ (weak force).

ರಾಶಿ ಹೊಂದಿರದ ಒಂದು ಬಗೆಯ ತುಣುಕುಗಳು ಏರ್ಪಡಿಸುವ ಬಯಲಿನಿಂದಾಗಿ ಗಟ್ಟಿಬಲವು ಉಂಟಾಗುತ್ತದೆ. ರಾಶಿಯಿರದ ಈ ತುಣುಕುಗಳನ್ನು ಅಂಟುವಣಿಗಳು (gluons) ಎನ್ನುತ್ತಾರೆ. ಅಂಟುವಣಿಗಳು ಕಿರಿವಣಿಗಳನ್ನು ಪರಸ್ಪರ ಹಿಡಿದಿಟ್ಟಿರುತ್ತವೆ. ಅದೇ, ಸಡಿಲ ಬಲವು ನಡುವಣದಲ್ಲಿರುವ ಕೂಡುವಣಿಗಳ ಮತ್ತು ಅದರ ಸುತ್ತ ಸುತ್ತುವ ಕಳೆವಣಿಗಳ ನಡುವೆ ಏರ್ಪಡುವ ಬಲ. ಈ ಬಲವು ಇನ್ನೊಂದು ಬಗೆಯ ತುಣುಕುಗಳು ಉಂಟುಮಾಡುವ ಬಯಲಿನಿಂದಾಗಿ ಉಂಟಾಗುತ್ತದೆ. ಈ ತುಣುಕುಗಳನ್ನು W, Z ಗೇಜ್ ಬೋಸಾನ್ಸ್ (gauge bosons) ಎನ್ನುತ್ತಾರೆ.

ಸಡಿಲ ಬಲವನ್ನು ಏರ್ಪಡಿಸುವ W, Z ಗೇಜ್ ಬೋಸಾನ್ಸ್ ತುಣುಕುಗಳು ರಾಶಿಯನ್ನು ಹೊಂದಿರುವುದು ವಿಜ್ಞಾನಿಗಳನ್ನು ಬಿಡಿಸಲಾಗದ ಕಗ್ಗಂಟಿನಂತೆ ಕಾಡಿತು. ಈ ತುಣುಕುಗಳು ಕೂಡ ಗಟ್ಟಿಬಲವನ್ನು ಉಂಟುಮಾಡುವ ಅಂಟುವಣಿಗಳಂತೆ ರಾಶಿಯನ್ನು ಹೊಂದಿರಬಾರದಲ್ಲ, ಇವ್ಯಾಕೇ ರಾಶಿಯನ್ನು ಹೊಂದಿವೆ? ಮುಂದುವರೆಯುತ್ತಾ, ಎಲ್ಲ ಕಿರು ತುಣುಕುಗಳು, ಅಣುಗಳು, ವಸ್ತುಗಳು ರಾಶಿಯನ್ನು ಹೇಗೆ ಹೊಂದುತ್ತವೆ? ಅನ್ನುವಂತ ಪ್ರಶ್ನೆಗಳು ಭೌತಶಾಸ್ತ್ರಜ್ಞರ (physicist) ತಲೆ ಕೊರೆಯತೊಡಗಿದವು. ಈ ಕಗ್ಗಂಟನ್ನು ಬಿಡಿಸುವತ್ತ ಇಟ್ಟ ಹೆಜ್ಜೆಯೇ ಪೀಟರ್ ಹಿಗ್ಸ್ ತಮ್ಮ ಒಡ ಅರಕೆಗಾರರೊಂದಿಗೆ ಮುಂದಿಟ್ಟ ಹಿಗ್ಸ್ ನಡಾವಳಿ (Higgs mechanism) ಎಂಬ ಅರುಹು (hypothesis).

ಹಿಗ್ಸ್ ನಡಾವಳಿಯ ಪ್ರಕಾರ,

ಜಗದೆಲ್ಲೆಡೆ ಸಾಮಾನ್ಯ ಅರಿವಿಗೆ ಎಟುಕದಂತಹ ರೀತಿಯಲ್ಲಿ ಒಂದು ಬಗೆಯ ತುಣುಕುಗಳು ಹರಡಿಕೊಂಡಿವೆ. ತುಣುಕುಗಳು ಏರ್ಪಡಿಸುವ ಬಯಲಿನಿಂದಾಗಿ W, Z ಗೇಜ್ ಬೋಸಾನ್ಸ್ ತುಣುಕುಗಳು ರಾಶಿಯನ್ನು ಹೊಂದುವಂತಾಗಿದೆ. ಇದೇ ತುಣುಕುಗಳು ಅಣುವೊಂದರ ಕಳೆವಣಿಗಳು, ಕೂಡುವಣಿಗಳು ನೆಲೆವಣಿಗಳು ಮತ್ತು ಒಟ್ಟುನೋಟದಲ್ಲಿ ವಸ್ತುವೊಂದು ರಾಶಿಯನ್ನು ಹೊಂದಿರಲು ಕಾರಣವಾಗಿವೆ.

ತುಣುಕುಗಳು ಏರ್ಪಡಿಸುವ ಬಯಲಿಗೆ ಯಾವ ವಸ್ತುವು ಹೆಚ್ಚು ತಡೆಯನ್ನು ಒಡ್ಡುತ್ತದೋ ವಸ್ತು ಹೆಚ್ಚು ರಾಶಿಯನ್ನು ಹೊಂದಿರುತ್ತದೆ. ಅದೇ, ಬಯಲಿಗೆ ತುಂಬಾ ಕಡಿಮೆ ತಡೆಯನ್ನು ಒಡ್ಡುವ ವಸ್ತುಗಳ ರಾಶಿ ಕಡಿಮೆಯಾಗಿರುತ್ತದೆ ಮತ್ತು ಬಯಲಿಗೆ ತಡೆಯೊಡ್ಡದ ವಸ್ತುಗಳು ರಾಶಿಯನ್ನು ಹೊಂದಿರುವುದಿಲ್ಲ.”

ಈ ಅರಿಮೆಯನ್ನು ಒಂದು ಹೋಲಿಕೆಯೊಂದಿಗೆ ಇನ್ನಷ್ಟು ತಿಳಿದುಕೊಳ್ಳಲು ಪ್ರಯತ್ನಿಸೋಣ. ಕೆರೆಯೊಂದರಲ್ಲಿ ನೀರಿಗೆ ಹೆಚ್ಚು ತಡೆಯನ್ನು ಒಡ್ದದೆ ಮೀನು ಸುಳುವಾಗಿ ಈಜಬಲ್ಲದು ಅದೇ ಮನುಷ್ಯರು ನೀರಿಗೆ ಹೆಚ್ಚು ತಡೆಯನ್ನು ಒಡ್ಡುವುದರಿಂದ ಈಜಲು ಹೆಚ್ಚು ಶ್ರಮ ಪಡಬೇಕಾಗುತ್ತದೆ. ಇಲ್ಲಿ ನೀರಿನ ಕಣಗಳು ತನ್ನ ಸುತ್ತ ಬಯಲೊಂದನ್ನು ಏರ್ಪಡಿಸುತ್ತವೆ. ಈ ಬಯಲಿಗೆ ಮೀನು ಕಡಿಮೆ ತಡೆಯನ್ನು ಒಡ್ದುತ್ತದೆ ಮತ್ತು ಮನುಷ್ಯರು ಹೆಚ್ಚಿನ ತಡೆಯನ್ನು ಒಡ್ಡುತ್ತಾರೆ. ಇದನ್ನು ಹಿಗ್ಸ್ ನಡಾವಳಿಗೆ ಹೋಲಿಸಿದಾಗ, ನೀರಿನ ಕಣಗಳಂತೆ ಹಿಗ್ಸ್ ಕಣಗಳು ಬಯಲೊಂದನ್ನು ಏರ್ಪಡಿಸಿರುತ್ತವೆ. ಈ ಬಯಲಿಗೆ ಕೆಲವೊಂದು ವಸ್ತುಗಳು ಹೆಚ್ಚಿನ ತಡೆಯೊಡ್ಡುತ್ತವೆ ಅಂತಹ ವಸ್ತುಗಳು ಹೆಚ್ಚಿನ ರಾಶಿಯನ್ನು ಹೊಂದಿರುತ್ತವೆ. ಅದೇ ಕೆಲವು ವಸ್ತುಗಳು ಕಡಿಮೆ ತಡೆಯನ್ನು ಒಡ್ಡುವುದರಿಂದ ಕಡಿಮೆ ರಾಶಿಯನ್ನು ಹೊಂದುತ್ತವೆ.

ಹಿಗ್ಸ್ ನಡಾವಳಿಯನ್ನು ತಿಳಿಸಲು ಸಾಮಾನ್ಯವಾಗಿ ನೀಡುವ ಇನ್ನೊಂದು ಹೋಲಿಕೆ ಎಂದರೆ ಜನಸಂದಣಿಯಲ್ಲಿ ಸಿಲುಕಿದ ಪೀಟರ್ ಹಿಗ್ಸ್. ಕೆಳಗಿನ ಚಿತ್ರ-1 ರಲ್ಲಿ ತೋರಿಸಿರುವಂತೆ ಜನಸಂದಣಿಯಿರುವ ಕಾರ್ಯಕ್ರಮವೊಂದಕ್ಕೆ ಪೀಟರ್ ಹಿಗ್ಸ್ ಬರುತ್ತಾರೆ ಅಂದುಕೊಳ್ಳೋಣ. ಆಗ ಅವರು ಸಾಗುವ ದಾರಿಯಲ್ಲಿ ಚಿತ್ರ -2 ರಲ್ಲಿ ತೋರಿಸಿರುವಂತೆ ಮಂದಿ ಅವರ ಸುತ್ತ ಮುತ್ತಿಕೊಳ್ಳುತ್ತಾರೆ. ಅದೇ ಈ ಕಾರ್ಯಕ್ರಮಕ್ಕೆ  ಅಶ್ಟೇನು ಹೆಸರು ಗಳಿಸಿರದ ಜಾನ್ ಎಂಬುವರು ಬಂದರೆ ಅವರ ಪರಿಚಯದ ಕೆಲವರಷ್ಟೇ ಅವರನ್ನು ಸುತ್ತುವರೆಯುತ್ತಾರೆ. ಈ ಹೋಲಿಕೆಯಲ್ಲಿ ಜನಸಂದಣಿಯನ್ನು ಹಿಗ್ಸ್ ಬಯಲು ಮತ್ತು ಜನರನ್ನು ಹಿಗ್ಸ್ ಬೋಸಾನ್ ತುಣುಕುಗಳು ಎಂದುಕೊಂಡರೆ ಪೀಟರ್ ಹಿಗ್ಸ್ ಮುಂದೆ ಸಾಗಲು ಜನಸಂದಣಿಯಿಂದ ಅಂದರೆ ಹಿಗ್ಸ್ ಬಯಲಿಂದ ಹೆಚ್ಚು ತಡೆತಕ್ಕೆ ಒಳಗಾಗುತ್ತಾರೆ. ಮೇಲೆ ತಿಳಿದುಕೊಂಡಂತೆ ಹೆಚ್ಚು ತಡೆಗೆ ಒಳ್ಳಪಟ್ಟಿರುವ ವಸ್ತು ಹೆಚ್ಚು ರಾಶಿಯನ್ನು ಹೊಂದುತ್ತದೆ. ಅದೇ, ಕಡಿಮೆ ತಡೆತಕ್ಕೆ ಒಳಪಟ್ಟ ಜಾನ್ ಕಡಿಮೆ ರಾಶಿಯನ್ನು ಹೊಂದುತ್ತಾರೆ.

ಪೀಟರ್ ಹಿಗ್ಸ್ ಗೆಳೆಯರ ಬಳಗ ಮುಂದಿಟ್ಟ ಹಿಗ್ಸ್ ನಡಾವಳಿಯ ಅರುಹು ಇರುವರಿಗರಲ್ಲಿ ಸಾಕಷ್ಟು ಚರ್ಚೆಗೆ ಒಳಪಟ್ಟಿತು. ಇದು ಹೀಗೆ ಆಗಿರಲಿಕ್ಕಿಲ್ಲ ಅಂತಾ ಕೆಲವರೆಂದರೆ, ಗಣಿತದ ನೆಲೆಯಲ್ಲಿ ತೋರಿಸಿರುವುದರಿಂದ ಹಿಗ್ಸ್ ನಡಾವಳಿ ನಿಜವಿರಬಹುದು ಅಂತಾ ಇನ್ನು ಹಲವರೆಂದರು.

ವಸ್ತುಗಳಿಗೆ ರಾಶಿಯನ್ನು ಒದಗಿಸುತ್ತವೆ ಎಂದು ಊಹಿಸಿದ ಆ ತುಣುಕುಗಳನ್ನು ಮುಂದಿನ ದಿನಗಳಲ್ಲಿ ಹಿಗ್ಸ್ ಬೋಸಾನ್ (Higgs boson) ಎಂದು ಕರೆಯಲಾಯಿತು. ಕಾಣದಂತೆ ಜಗದೆಲ್ಲೆಡೆ ಹರಡಿರಬಹುದಾದ ಈ ತುಣುಕುಗಳನ್ನು ಕೆಲವರು ದೇವರ ಕಣಗಳು (god’s particles) ಎಂದು ಕರೆದರು. ಆದರೆ ಈ ಹೆಸರು ಪೀಟರ್ ಹಿಗ್ಸ್ ಸೇರಿಸಿ ಹಲವು ಅರಿಗರಿಗೆ ಹಿಡಿಸದಿದ್ದ ಕಾರಣ, ’ಹಿಗ್ಸ್ ಬೋಸಾನ್’ ಎಂಬ ಹೆಸರೇ ಹೆಚ್ಚು ಬಳಕೆಗೆ ಬಂತು.

ಮಾಹಿತಿ: ಸತ್ಯೇಂದ್ರ ಬೋಸ್ ಅವರು ಕಿರುತುಣುಕುಗಳ ಕುರಿತು ಹೊಮ್ಮಿಸಿದ ತಿಳುವಳಿಕೆಯನ್ನು ನೆನೆಯಲು, ಬಲವನ್ನು ಉಂಟುಮಾಡುವ ಕಿರುತುಣುಕುಗಳನ್ನು ಅವರ ಹೆಸರಿನಲ್ಲಿ ಬೋಸಾನ್ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

(ಚಿತ್ರಮತ್ತು ತಿಳುವಳಿಕೆಯ ಮಾಹಿತಿಗಳು: ವಿಕಿಪೀಡಿಯಾ, ಯುಟ್ಯೂಬ್ ಓಡುತಿಟ್ಟಗಳು, relevancy22.blogspot.comboldimagination.hubpages.comcds.cern.ch)

http://www.whoinventedfirst.com/who-discovered-the-atom/