ಚೌಕ

ನಾವಾಡುವ ಚೆಸ್ ಆಟದ ಮಣೆ, ಮನೆಯ ಟೈಲ್ಸ್ ಗಳು, ಹಾವು ಏಣಿ ಆಟದ ದಾಳ, ಅಂಚೆ ಚೀಟಿಗಳು ಇವೆಲ್ಲವೂ ‘ಚೌಕ’ಗಳಾಗಿವೆ (Square).

 

dice square-tiles

ನಮ್ಮ ದಿನದ ಬದುಕಿನಲ್ಲಿ ಹಾಸುಹೊಕ್ಕಾಗಿರುವ ಚೌಕದ ಬಗ್ಗೆ ಈ ಬರಹದಲ್ಲಿ ತಿಳಿದುಕೊಳ್ಳೋಣ.

ಚೌಕವು ನಾಲ್ಕು ಸರಿಯಳತೆಯ (Congruent) ಬದಿಗಳನ್ನು ಹೊಂದಿದ ಒಂದು ಆಕೃತಿ.

Image1 sqಮೇಲೆ ತೋರಿಸಿದ ಚೌಕದ ಚಿತ್ರದಲ್ಲಿ ಬದಿಗಳಾದ EF, FG, GH ಮತ್ತು HE ಗೆರೆಗಳೆಲ್ಲವೂ ಸಮ ಉದ್ದವನ್ನು ಹೊಂದಿರುವುದನ್ನು ಕಾಣಬಹುದು. ಹಾಗೆನೇ ಚೌಕವು ಈ ಕೆಳಗಿನ ಗುಣಗಳನ್ನು ಹೊಂದಿದೆ.

  • ಚೌಕವು ಸಮತಟ್ಟಾದ (planar) ಮುಚ್ಚಿದ ಆಕೃತಿಯಾಗಿದೆ (Closed Shape)
  • ಚೌಕವು ನಾಲ್ಬದಿ (Quadrilateral) ಆಕೃತಿಯ ಒಂದು ಬಗೆಯಾಗಿದೆ.
  • ಚೌಕದ ಜೋಡಿ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ನೇರಡ್ಡವಾಗಿರುತ್ತವೆ (Perpendicular to each other)

ಚೌಕದ ಮುಖ್ಯ ಭಾಗಗಳು.

ಬದಿ (Side):  ಚೌಕ ಆಕೃತಿಯನ್ನು ಉಂಟುಮಾಡುವ ಗೆರೆಗಳನ್ನು ಬದಿಗಳು ಎಂದು ಕರೆಯುತ್ತಾರೆ.

ತುದಿ (Vertex): ಚೌಕದ ಎರಡು ಬದಿಗಳು ಸೇರುವೆಡೆಯನ್ನು ತುದಿ ಎಂದು ಕರೆಯುತ್ತಾರೆ.

ಮೂಲೆಗೆರೆ (Diagonal): ಚೌಕದ ಒಂದು ಮೂಲೆಯಿಂದ ಅದರ ಎದುರು ಮೂಲೆಗೆ ಎಳೆದ ಗೆರೆಯೇ ಮೂಲೆಗೆರೆ.

ಸುತ್ತಳತೆ (Perimeter): ನಾಲ್ಕು ಬದಿಗಳ ಒಟ್ಟು ಉದ್ದವನ್ನು ಸುತ್ತಳತೆ ಎಂದು ಕರೆಯುತ್ತಾರೆ.

ಮೂಲೆ (Angle): ಎರಡು ಜೋಡಿ ಗೆರೆಗಳು ಒಂದಕ್ಕೊಂದು ಸೇರಿ ಉಂಟುಮಾಡುವ ಎಡೆಯನ್ನು ಮೂಲೆ ಇಲ್ಲವೇ ಕೋನ ಎಂದು ಕರೆಯುತ್ತಾರೆ.

ನಡು (Centre): ಎರಡು ಮೂಲೆಗೆರೆಗಳು ಸೇರುವ  ಚುಕ್ಕೆಯನ್ನು ನಡು ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಇದು ಚೌಕದ ನಟ್ಟನಡುವಿನ ಭಾಗವಾಗಿದ್ದು, ಎಲ್ಲ ಮೂಲೆಗಳಿಂದ ಸಮದೂರಲ್ಲಿರುತ್ತದೆ.

Image2 sqಚೌಕದ ಕೆಲವು ವಿಶೇಷತೆಗಳು:

  • ಎರಡು ಜೋಡಿಗೆರೆಗಳು ಒಂದಕ್ಕೊಂದು ನೇರಡ್ಡವಾಗಿರುವುದರಿಂದ ಅದರ ಮೂಲೆಗಳ ಕೋನ (Angle) 90° ಆಗಿರುತ್ತದೆ.
  • ಮೂಲೆಗೆರೆಗಳು ಒಂದಕ್ಕೊಂದು ನಡುವಿನಲ್ಲಿ ಕತ್ತರಿಸಿದಾಗ ಉಂಟಾಗುವ ಕೋನವೂ (Angle) 90° ಆಗಿರುತ್ತದೆ.
  • ಚೌಕ ಆಕೃತಿಯಲ್ಲಿ ಹೆಚ್ಚೆಂದರೆ ಎರಡು ಮೂಲೆಗೆರೆಗಳನ್ನು ಎಳೆಯಬಹುದು.
  • ಚೌಕ ಆಕೃತಿಯ ಎಲ್ಲಾ ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸರಿಯಳತೆಯಾಗಿರುತ್ತವೆ (congruent).
  • ಚೌಕ ಆಕೃತಿಯಲ್ಲಿ ಬದಿಗಳ ಉದ್ದ ಹೆಚ್ಚಾದಂತೆ ಅದರ ಮೂಲೆಗೆರೆಯ ಉದ್ದವು ಹೆಚ್ಚಾಗುತ್ತದೆ.
  • ಚೌಕದ ಮೂಲೆಗೆರೆಯು ಅದರ ಒಂದು ಬದಿಗಿಂತ 2 ಪಟ್ಟು ಹೆಚ್ಚಿರುತ್ತದೆ. ಅಂದರೆ ಸುಮಾರು 1.414 ಪಟ್ಟಾಗಿರುತ್ತದೆ.
  • ಯಾವುದೇ ನಾಲ್ಬದಿ (Quadrilateral) ಆಕೃತಿಯ ಸುತ್ತಳತೆ ಚೌಕದ ಸುತ್ತಳತೆಗೆ ಸರಿಯಾಗಿದ್ದರೆ, ಚೌಕದ ಹರವು (Area) ನಾಲ್ಬದಿ ಆಕೃತಿಯ ಹರವಿಗಿಂತ ಹೆಚ್ಚಿರುತ್ತದೆ.
  • ಚೌಕ ಆಕೃತಿಯನ್ನು ಸರಿಪಾಲಾಗಿ ಸೀಳಿದಾಗ ಅದರ ಒಳಪಾಲುಗಳೂ ಚೌಕ ಆಕೃತಿಯಾಗಿರುತ್ತವೆ.

ಉದಾಹರಣೆಗೆ ಒಂದು ದೊಡ್ಡ ಚೌಕ EFGH ನ್ನು ಅಡ್ಡ ಮತ್ತು ಉದ್ದವಾಗಿ ಐದು ಪಾಲು ಮಾಡೋಣ. ನಾವೀಗ ಇದರಲ್ಲಿ 25 ಚಿಕ್ಕ ಚಿಕ್ಕ ಚೌಕಗಳನ್ನು ಕಾಣಬಹುದು.

Image3 sq

  • ಚೌಕವು ಆಯತದ (Rectangle) ಒಂದು ಬಗೆಯೂ ಆಗಿದೆ. ಅಂದರೆ ಎಲ್ಲಾ ಬದಿಗಳು ಸರಿಯಳತೆಯಲ್ಲಿರುವ ಆಯತವು ಚೌಕವಾಗಿರುತ್ತದೆ.
  • ಚೌಕವು ಒಂದು ನಾಲ್ಮಟ್ಟವಾಗಿದೆ (Parallelogram), ಅಂದರೆ ಅದರ ಎದುರು ಬದಿಗಳು ಒಂದಕ್ಕೊಂದು ಸಮನಾಂತರವಾಗಿವೆ (Parallel to each other).
  • ಚೌಕವನ್ನು ಓರೆಯಾಗಿ ತಿರುಗಿಸಿದಾಗ ಅದು ಒಂದು ಹರಳಾಕೃತಿಯಾಗುತ್ತದೆ (Rhombus).Image4 sq
  • ನಮಗೆ ಗೊತ್ತಿರುವಂತೆ ಚೌಕದ ಮೂಲೆಯೊಂದರ ಕೋನ 90° ಆಗಿರುತ್ತದೆ ಹಾಗಾಗಿ ಇದರ ಮೂಲೆಗಳ ಒಟ್ಟು ಕೋನ 360° ಆಗಿರುತ್ತದೆ.

1. ಚೌಕದ ಸುತ್ತಳತೆ (perimeter):

ಈಗ ಚೌಕದ ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯುವುದು ಹೇಗೆ ಎಂದು ತಿಳಿದುಕೊಳ್ಳೋಣ.

 ಚೌಕದ ಬದಿ (Side) = a,  ಸುತ್ತಳತೆ (Perimeter) = P ಎಂದಾಗಿರಲಿ,

Image5 sqಮೇಲೆ ತಿಳಿದಿರುವಂತೆ ಚೌಕವು ಒಟ್ಟು ನಾಲ್ಕು ಸರಿಯಳತೆಯುಳ್ಳ ಬದಿಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ ಆದ್ದರಿಂದ ಅದರ ಸುತ್ತಳತೆ

P = ಬದಿ1 + ಬದಿ2 + ಬದಿ3 + ಬದಿ4 = HE + EF + FG + GH = a + a + a + a + a = 4 x a = 4a

ಸುತ್ತಳತೆ  P = 4a

ಉದಾಹರಣೆ:  ಚೌಕ EFGH ಬದಿಯ ಉದ್ದ a = 7cm ಆಗಿರಲಿ, ನಾವೀಗ ಇದರ ಸುತ್ತಳತೆ P ಅನ್ನು ಕಂಡುಹಿಡಿಯೋಣ.

Image6 sqಸುತ್ತಳತೆ P = 4a = 4 x a = 4 x 7 = 28cm;

ಸುತ್ತಳತೆ P = 28cm

 2.ಮೂಲೆಗೆರೆಯ ಉದ್ದವನ್ನು ಕಂಡು ಹಿಡಿಯುವ ಬಗೆ:

Image7 sqಮೂಲೆಗೆರೆ (Diagonal) = EG = d , ಬದಿಗಳು (Sides) = EF + FG = GH = HE = a ಆಗಿರಲಿ.

ಮೂಲೆಗೆರೆ EG ಯು ಚೌಕವನ್ನು ಎರಡು ಮೂರ್ಬದಿಗಳನ್ನಾಗಿ (Triangle) ಕತ್ತರಿಸುತ್ತದೆ, ಹಾಗಾಗಿ ನಮಗೆ EGH ಮತ್ತು EFG ಎಂಬ ಎರಡು ಮೂರ್ಬದಿಗಳು ಕಾಣಸಿಗುತ್ತವೆ.

ನಾವು ಇದರಲ್ಲಿ EFG ಮೂರ್ಬದಿಯನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ, ಈ ಮೂರ್ಬದಿಯ ಬದಿ EF = a, FG = a ಮತ್ತು GE = d ಆಗಿವೆ.

ನಾವಿಲ್ಲಿ ಗಮನಿಸಬೇಕಾದ ಸಂಗತಿ ಏನೆಂದರೆ EF ಮತ್ತು FG ಒಂದಕ್ಕೊಂದು ನೇರಡ್ಡವಾಗಿವೆ (Perpendicular), ಆದ್ದರಿಂದ EFG ಒಂದು ಸರಿಮೂಲೆಯ ಮೂರ್ಬದಿಯಾಗಿದೆ (Right Angle Triangle). ಇದರಲ್ಲಿ GE ಯು ಉದ್ದಬದಿ (Hypotenuse)=d ಆಗಿದೆ.

ಈಗ ಪೈತಾಗೋರಸ್ ಕಟ್ಟಲೆಯ (Pythagoras Theoram) ಮೂಲಕ ಮೂರ್ಬದಿಯ ಉದ್ದಬದಿಯನ್ನು ಕಂಡುಹಿಡಿಯಬಹುದು.

ಪೈತಾಗೋರಸ್ ಕಟ್ಟಲೆ (Pythagoras Theorem):

ಸರಿಮೂಲೆ ಮೂರ್ಬದಿಯ (right angle triangle), ಉದ್ದಬದಿಯ ಇಮ್ಮಡಿಯು (Square of hypotenuse) ಉಳಿದ ಎರಡು ಬದಿಗಳ ಇಮ್ಮಡಿಗಳ ಮೊತ್ತಕ್ಕೆ ಸಮನಾಗಿರುತ್ತದೆ.

 

ಅಂದರೆ GE= EF2 + FG2

d=  a2 + a2   = 2 a2

ಎರಡು ಕಡೆ ಇಮ್ಮಡಿ ಮೂಲವನ್ನು (Square root) ತೆಗೆದಾಗ d = √2 x a=√2a ಆಗುತ್ತದೆ.

ಇಲ್ಲಿ EFG ಮೂರ್ಬದಿಯ ಉದ್ದಬದಿಯು (Hypotenuse of a triangle) ಚೌಕದ ಮೂಲೆಗೆರೆಯಾಗಿರುವುದರಿಂದ (Diagonal of a Square) ಮೂಲೆಗೆರೆ GE ಯ ಉದ್ದ d = √2a ಆಗಿರುತ್ತದೆ.

ಉದಾಹರಣೆ:

EFGH ಎಂಬ ಚೌಕದ ಒಂದು ಬದಿಯ ಉದ್ದ EF = a = 17cm ಆಗಿರಲಿ, ಇದರಿಂದ ಮೂಲೆಗೆರೆ GEಯ ಉದ್ದ d ಯನ್ನು ಕಂಡುಹಿಡಿಯೋಣ.

Image8 sqಮೂಲೆಗೆರೆ GE ಯ ಉದ್ದ d = √2 x a = √2 x 17  = 1.41  x 17= 24.04 cm

 3. ಚೌಕದ ಹರವನ್ನು (area) ಕಂಡುಹಿಡಿಯುವ ಬಗೆ:

ಅಗಲವನ್ನು ಉದ್ದದಿಂದ ಗುಣಿಸಿದಾಗ ಆಯತದ (rectangle) ಹರವು ನಮಗೆ ಸಿಗುತ್ತದೆ. ಚೌಕವೂ ಒಂದು ಆಯತವಾಗಿರುವುದರಿಂದ ಇದನ್ನು ಬಳಸಿಕೊಂಡು ಚೌಕದ ಹರವನ್ನು ಕೆಳಗಿನಂತೆ ಕಂಡುಕೊಳ್ಳಬಹುದು.

Image9 sqಬದಿ EH = a ಚೌಕದ ಅಗಲವಾಗಿರಲಿ , HG = a ಚೌಕದ ಉದ್ದವಾಗಿರಲಿ, ಹರವು (Area)=A ಆಗಿರಲಿ.

ಹರವು (Area) = A = ಉದ್ದ x ಅಗಲ = HG x EH = a x a = a2

ಹರವು A = a2

ಉದಾಹರಣೆ 1:

ಒಂದು ಚೌಕ ಆಕಾರದ ನೀಲಿ ಬಣ್ಣದ ಬಿಡಿ ಹಾಸುಗಲ್ಲಿನ ಬದಿ a = 11mm ಆದಾಗ ಚೌಕದ ಹರವು A ಅನ್ನು ಕಂಡು ಹಿಡಿಯೋಣ.

Image10 sqಹರವು A = a2  = 112   = 121 mm2    

ಉದಾಹರಣೆ 2:

ಚೌಕ ಆಕಾರದ EFGH ಎಂಬ ಒಂದು ಹಸಿರು ಹುಲ್ಲಿನ ಗದ್ದೆಯ ಒಂದು ಮೂಲೆಯಿಂದ ಇನ್ನೊಂದು ಮೂಲೆಗೆ 10 ಮೀಟರ್ ಉದ್ದವಿದೆ, ಇದರಿಂದ ನಾವು ಈ ಗದ್ದೆಯು ಎಷ್ಟು ಹರವಿಕೊಂಡಿದೆ (Area occupied) ಎಂದು ತಿಳಿದುಕೊಳ್ಳೋಣ.

Image11 sqಮೂಲೆಗೆರೆ GE = d = 10m ಆಗಿದೆ.

ನಮಗೆ ತಿಳಿದಿರುವಂತೆ ಮೂಲೆಗೆರೆಯ ಉದ್ದ d = √2a ಆಗಿರುತ್ತದೆ

ಮೇಲಿನ ಪೈತಾಗೋರಸ್ ಕಟ್ಟಲೆಯಿಂದ GE= EF2 + FG2  = d= 2 a2    ಆಗುತ್ತದೆ.

ಅಂದರೆ a= d2 /2 , ನಮಗೆ ಗೊತ್ತಿರುವಂತೆ ಚೌಕದ ಹರವು A = a2

ಆದ್ದರಿಂದ ಹಸಿರು ಹುಲ್ಲಿನ ಗದ್ದೆಯ ಹರವು A = a= d2 /2   = 102 /2 = 100/2 = 50 m2  ಗಳು.

ಉದಾಹರಣೆ 3:

EFGH ಚೆಸ್ ಆಟದ ಮಣೆಯ ಒಂದು ಮನೆಯ ಬದಿಯ ಉದ್ದ 2cm, ಇದರಿಂದ ನಾವು ಇಡೀ ಚೆಸ್ ಆಟದ ಮಣೆಯ ಹರವನ್ನು (Area) ಕಂಡು ಹಿಡಿಯೋಣ.

Image12 sqಮನೆಯ ಒಂದು ಬದಿ = a = 2cm ಹರವು  = A ಆಗಿರಲಿ.

ಚೆಸ್ ಮಣೆಯಲ್ಲಿನ ಎಲ್ಲಾ ಮನೆಗಳು ಮತ್ತು ಇಡೀ ಚೆಸ್ ಮಣೆ ಚೌಕ ಆಕಾರದಲ್ಲಿದೆ. ಚೆಸ್ ಮಣೆಯ ಒಂದು ಬದಿಯು ಒಟ್ಟು 8 ಮನೆಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ. ಹಾಗಾಗಿ ಚೌಕದ ಒಟ್ಟು ಉದ್ದ ಎಲ್ಲಾ ಎಂಟು ಮನೆಗಳ ಒಂದು ಬದಿಗಳ ಮೊತ್ತಕ್ಕೆ ಸರಿಯಾಗಿರುತ್ತದೆ.

ಬದಿ EF = FG = GH = HE = 8 x a =  8a =  8 x 2 = 16 cm  ಆಗಿರುತ್ತವೆ.

ನಮಗೆ ಗೊತ್ತಿರುವಂತೆ ಚೌಕದ ಹರವು A = (ಬದಿ) 2 = 162 = 256 cm2

ಆದ್ದರಿಂದ ಚೌಕದ ಹರವು A = 256 cm2

ಚೌಕ ಬಿಡಿಸುವ ಆಟ:

ನೀವು ಚಂದವಾದ ಮತ್ತು ಕರಾರುವಕ್ಕಾದ ಒಂದು ಚೌಕವನ್ನು ಬಿಡಿಸಬೇಕೇ? ಹಾಗಾದರೆ ಈ ಕೆಳಗಿನ ಚಿತ್ರದಂತೆ ಒಂದು ಚೌಕವನ್ನು ಮೂಡಿಸಿ ನೋಡಿ.

Image13 sqಮೂಡಿಸುವ ಬಗೆ:

  1. ಕಯ್ವಾರವನ್ನು (Geometric Compass) ಒಂದು ಸುತ್ತುಹಾಕಿ ಒಂದು ದುಂಡುಕವನ್ನು ಬಿಡಿಸಿ, ನಂತರದಲ್ಲಿ ಅಳತೆಪಟ್ಟಿಯಿಂದ ಒಂದು ದುಂಡಗಲದ (Diameter) ಗೆರೆಯನ್ನು ಎಳೆಯಿರಿ. ಅದರ ನಡು (ಕೈವಾರದ ಮುಳ್ಳು ಚುಚ್ಚಿಸಿದ ಚುಕ್ಕೆ) O ಆಗಿರಲಿ, ದುಂಡಗಲದ ಒಂದು ಬದಿಗಳು A ಮತ್ತು B ಆಗಿರಲಿ. (ದುಂಡುಕ1 ನೋಡಿ)
  2. ಕಯ್ವಾರದ ಮುಳ್ಳನ್ನು A ಚುಕ್ಕೆಯಲ್ಲಿಟ್ಟು ಕಯ್ವಾರದ ಪೆನ್ಸಿಲ್ಲಿನಿಂದ ದುಂಡುಕದ ನಡುವಿನ ನಂತರದ ಮೇಲ್ಬಾಗದಲ್ಲಿ ಮತ್ತು ಕೆಳಬಾಗದಲ್ಲಿ ಎಲ್ಲಾದರೂ ಒಂದು ಕಮಾನನ್ನು (Arc) ಎಳೆಯಿರಿ. ಕಯ್ವಾರದ ಅದೇ ಅಳತೆಯನ್ನು ಇಟ್ಟುಕೊಂಡು ಅದೇ ರೀತಿ ಎದುರುಬದಿ C ಯಿಂದ ಮೇಲೆಕೆಳೆಗೆ ಇನ್ನೆರಡು ಕಮಾನುಗಳನ್ನು ಎಳೆಯಿರಿ. (ದುಂಡುಕ2, ದುಂಡುಕ3, ದುಂಡುಕ4 ನೋಡಿ)
  3. ಕಮಾನು ಕತ್ತರಿಸುವ ನಡುವಿಂದ ಅಳತೆಪಟ್ಟಿಯಲ್ಲಿ ಮೇಲಿಂದ ಕೆಳಗೆ ಒಂದು ಗೆರೆಯನ್ನು ಎಳೆಯಿರಿ. ಈಗ ನಮಗೆ ದುಂಡುಕದ ಮೇಲೆ A,B,C,D ನಾಲ್ಕು ಚುಕ್ಕೆಗಳು ಮೂಡಿವೆ, ನಂತರದಲ್ಲಿ ದುಂಡುಕದ ಮೇಲಿನ ಒಂದು ಚುಕ್ಕೆಯಿಂದ ಇನ್ನೊಂದು ಚುಕ್ಕೆಗೆ ಅಳತೆಪಟ್ಟಿಯಿಂದ ಗೆರೆಗಳನ್ನು ಎಳೆಯಿರಿ. ಹೀಗೆ ನಮಗೊಂದು ಚೆಂದವಾದ ಚೌಕವು ಸಿಗುತ್ತದೆ. (ದುಂಡುಕ5, ದುಂಡುಕ6, ದುಂಡುಕ7 ನೋಡಿ)

ಚೌಕದ ಹಳಮೆ:

  • ಸುಮಾರು 4000 ವರ್ಷಗಳ ಹಿಂದೆ ಈಜಿಪ್ಟಿಯನ್ನರು ಹಲಾವಾರು ಮಟ್ಟಾಕೃತಿಯ (Frustum) ಪಿರಮಿಡ್ ಗಳನ್ನು ಕಟ್ಟುತ್ತಿದ್ದರು, ಮಟ್ಟಾಕೃತಿ ಅಂದರೆ ಬುಡದಲ್ಲಿ ಯಾವ ಆಕಾರವಿರುತ್ತದೋ ತಲೆಯಲ್ಲಿ ಮಟ್ಟವಾದ ಅದೇ ಆಕಾರವಿರುತ್ತದೆ. ಇದರಲ್ಲಿ ಮುಖ್ಯವಾದುದು ಚೌಕದ ಮಟ್ಟಾಕೃತಿ (Square Frustum).Image14 sq
  • ಪೈತಾಗೋರಸ್ ಗ್ರೀಕಿನ ಒಬ್ಬ ಎಣಿಕೆಯರಿಗರು, ಅವರ ಕಾಲ ಸುಮಾರು 500 BC. ಅವರು ತಮ್ಮ ಸರಿಮೂಲೆ ಮೂರ್ಬದಿಯ (Right Angle Triangle) ಕಟ್ಟಲೆಯನ್ನು ಒರೆಹಚ್ಚಲು ಚೌಕಗಳನ್ನು ಬಳಸಿಕೊಂಡಿದ್ದರು.Image15 sq

(ಮಾಹಿತಿ ಮತ್ತು ಚಿತ್ರ ಸೆಲೆಗಳು: mathopenref.comWikipedianewworldencyclopedia.org)