ನಾವು ದಿನಾಲೂ ಒಂದಲ್ಲ ಒಂದು ರೀತಿಯಲ್ಲಿ ಉದ್ದದುಂಡು (Ellipse) ಆಕಾರದ ವಸ್ತುಗಳನ್ನು ನೋಡುತ್ತಿರುತ್ತೇವೆ, ಅವುಗಳು ಉದ್ದದುಂಡು ಆಕಾರದ ಗಡಿಯಾರಗಳು, ಕನ್ನಡಿಗಳು, ಚೆಂಡುಗಳು, ಕಲ್ಲುಗಳು, ತಟ್ಟೆಗಳು, ಕುಂಬಳಕಾಯಿ, ಕ್ಯಾಪ್ಸೂಲ್ ಮಾತ್ರೆಗಳು ಇನ್ನಿತರ ಹತ್ತು ಹಲವಾರು ವಸ್ತುಗಳಾಗಿರಬಹುದು.
ಉದ್ದದುಂಡು ಆಕಾರ ಎಂದರೇನು?.
ಉದ್ದದುಂಡು ಆಕಾರವೆಂದರೆ ನಮ್ಮ ತಲೆಯಲ್ಲಿ ಸಾಮಾನ್ಯವಾಗಿ ಹೊಳೆಯುವುದೇನೆಂದರೆ.
- ಸ್ವಲ್ಪ ಚಪ್ಪಟೆಯಾದ ದುಂಡಾಕಾರದ ವಸ್ತು.
- ಒಂದು ದುಂಡಾಕಾರದ ವಸ್ತುವನ್ನು ಹಿಗ್ಗಿಸಿದಂತೆ ಇಲ್ಲವೇ ಎಳೆದಂತೆ ಕಂಡು ಬರುವ ಆಕಾರ.
- ಸರಿಸುಮಾರಾಗಿ ಮೊಟ್ಟೆಯನ್ನು ಹೋಲುವ ಆಕಾರ.
ಎಣಿಕೆಯರಿಮೆ (ಗಣಿತ) ಯಲ್ಲಿ ಈ ಕೆಳಕಂಡಂತೆ ಹೇಳಬಹುದು.
- ಹೇಳಿಕೆ 1: ಉದ್ದದುಂಡು ಒಂದು ಮುಚ್ಚಿದ ಆಕೃತಿಯಾಗಿದೆ (Closed Shape), ಇದರ ಒಳಗಿನ ಯಾವುದೇ ಎರಡು ನೆಲೆಚುಕ್ಕೆಯಿಂದ (Focus Points) ಅದರ ಮೇಲ್ಮಯ್ಯಿಯ ತಿರುಗುಚುಕ್ಕೆಗೆ (Loucs Points) ಎಳೆದ ಗೆರೆಗಳ ಮೊತ್ತವು ನೆಲೆಬೆಲೆಯಾಗಿರುತ್ತದೆ (Constant value).
ಈ ಕೆಳಗಿನ ಚಿತ್ರದ ಮೂಲಕ ತಿಳಿದುಕೊಳ್ಳೋಣ.
- ಮೇಲಿನ ಚಿತ್ರವು ಒಂದು ಉದ್ದದುಂಡು (ellipse) ಆಗಿದೆ.
- ಉದ್ದದುಂಡು ಆಕಾರದ ಒಳಗೆ F1 ಮತ್ತು F2 ಎಂಬ ಎರಡು ನೆಲೆಚುಕ್ಕೆಗಳಿವೆ (Focal points)
- ಉದ್ದದುಂಡುವಿನ ಮೇಲೆ Q, P ಮತ್ತು C ಎಂಬ ಮೂರು ತಿರುಗುಚುಕ್ಕೆಗಳನ್ನು (Locus Points) ಇಡಲಾಗಿದೆ.
- ತಿರುಗುಚುಕ್ಕೆ Q ಯಿಂದ F1 ಮತ್ತು F2 ನೆಲೆಚುಕ್ಕೆಗಳಿಗೆ ಎಳೆದ ಗೆರೆಗಳು F1Q ಮತ್ತು F2Q ಆಗಿವೆ.
- ತಿರುಗುಚುಕ್ಕೆ P ಯಿಂದ F1 ಮತ್ತು F2 ನೆಲೆಚುಕ್ಕೆಗಳಿಗೆ ಎಳೆದ ಗೆರೆಗಳು F1P ಮತ್ತು F2P ಆಗಿವೆ.
- ತಿರುಗುಚುಕ್ಕೆ C ಯಿಂದ F1 ಮತ್ತು F2 ನೆಲೆಚುಕ್ಕೆಗಳಿಗೆ ಎಳೆದ ಗೆರೆಗಳು F1C ಮತ್ತು F2C ಆಗಿವೆ.
- ಮೇಲಿನ ಹೇಳಿಕೆಯಂತೆ F1Q + F2Q = F1P + F2P = F1C + F2C = 2a ಆಗಿರುತ್ತದೆ, ಇಲ್ಲಿ a ಎಂಬುವುದು ಒಂದ್ದು ನೆಲೆಬೆಲೆಯಾಗಿರುತ್ತದೆ (Constant value).
ಹೇಳಿಕೆ 2: ಲಾಳಿಕೆ ಆಕೃತಿಯನ್ನು (Cone shape) ಓರೆಯಾಗಿ ಸೀಳಿದಾಗ ಉಂಟಾಗುವುದೇ ಉದ್ದದುಂಡು. ಹೇಗೆ ಅಂತೀರಾ !?, ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು ನೋಡೋಣ.
ಮೇಲಿನ ಲಾಳಿಕೆಯಾಕೃತಿಯನ್ನು (Cone shape) ಓರೆಯಾಗಿ ಕತ್ತರಿಸಲಾಗಿದೆ, ಅಲ್ಲಿ ಉದ್ದದುಂಡು (Ellipse) ಉಂಟಾಗಿದ್ದನ್ನು ಕಾಣಬಹುದು !.
ಉದ್ದದುಂಡುವಿನ ಭಾಗಗಳು (Parts of Ellipse):
ಹಿರಿನಡುಗೆರೆ (Major axis): ಉದ್ದದುಂಡುವಿನ ನಡುವೆ ಹಾದುಹೊದ ಹಿರಿದಾದ ನಡುಗೆರೆ.
ಕಿರುನಡುಗೆರೆ (Minor axis): ಉದ್ದದುಂಡುವಿನ ನಡುವೆ ಹಿರಿನಡುಗೆರೆಗೆ ನೇರಡ್ಡವಾಗಿ (Perpendicular) ಹಾದುಹೊದ ಕಿರಿದಾದ ನಡುಗೆರೆ.
ನಡು (Centre): ಹಿರಿನಡುಗೆರೆ ಮತ್ತು ಕಿರುನಡುಗೆರೆಗಳು ಸರಿಪಾಲಾಗಿ ಕತ್ತರಿಸುವೆಡೆಯಲ್ಲಿ ನಡು ಉಂಟಾಗುತ್ತದೆ..
ತುದಿ (Vertex): ಉದ್ದದುಂಡುವಿನ ನಡುವಿಂದ ಹಾದುಹೊದ ಹಿರಿನಡುಗೆರೆಯು ಉದ್ದದುಂಡುವಿನ ಕೊನೆಯಲ್ಲಿ ತುದಿಯನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ.
ಒಡತುದಿ (Co-Vertex): ಉದ್ದದುಂಡುವಿನ ನಡುವಿಂದ ಹಾದುಹೊದ ಕಿರುನಡುಗೆರೆಯು ಉದ್ದದುಂಡುವಿನ ಕೊನೆಯಲ್ಲಿ ಒಡತುದಿಯನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ.
ನೆಲೆಚುಕ್ಕೆ (Focus points): ಉದ್ದದುಂಡುವಿನ ಒಳಗೆ ಯಾವುದೇ ನೆಲೆಯಲ್ಲಿರುವ ಚುಕ್ಕೆ, ಉದ್ದದುಂಡುವಿನಲ್ಲಿ ಈ ನೆಲೆಚುಕ್ಕೆಗಳು ಹಿರಿನಡುಗೆರೆಯ (Major axis) ಮೇಲೆ ಇರುತ್ತವೆ ಮತ್ತು ಉದ್ದದುಂಡುವಿನ ನಡುವಿನಿಂದ ಈ ಚುಕ್ಕೆಗಳು ಸರಿದೂರದಲ್ಲಿ ಇರುತ್ತದೆ.
ತಿರುಗು ಚುಕ್ಕೆ (Locus Points): ಉದ್ದದುಂಡುವಿನ ಸುತ್ತ ಸುತ್ತುತ್ತಿರುವ ಯಾವುದೇ ಚುಕ್ಕೆ,
ಸುತ್ತಳತೆ (Perimeter)
ನಾವು ಹಲವಾರು ಆಕೃತಿಗಳಿಗೆ ಸುಲಭವಾಗಿ ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯಬಹುದು ಆದರೆ ಉದ್ದದುಂಡುವಿನ ಸುತ್ತಳತೆಯನ್ನು ಅಷ್ಟು ಸುಲಭವಾಗಿ ಕಂಡುಹಿಡಿಯಲು ಬರುವುದಿಲ್ಲ. ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯುವ ಸರಿಹೊಂದಿಕೆಗಳು ಈ ಕೆಳಕಂಡಂತೆ ಇವೆ.
ಸರಿಹೊಂದಿಕೆ 1:
- ಇಲ್ಲಿ h = (a – b)2 /(a + b)2
- ಇಲ್ಲಿ a ಅರೆ ಹಿರಿನಡುಗೆರೆಯಾಗಿದೆ (Semi Major axis line)
- ಇಲ್ಲಿ b ಅರೆ ಕಿರುನಡುಗೆರೆಯಾಗಿದೆ (Semi Minor axis line)
- π = 3.14159.
ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಕೆಳಗಿನಂತೆ ಬಿಡಿಸಿ ಬರೆಯಬಹುದು.
ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಎಲ್ಲೆಯಿಲ್ಲದ ಮೊತ್ತದ ಸರಿಹೊಂದಿಕೆ (Infinite Sum formula) ಎಂದು ಕರೆಯುವರು,ಇದು ಹೆಚ್ಚು ದಿಟವಾದ ಸುತ್ತಳತೆಯ ಬೆಲೆಯನ್ನು ನೀಡುತ್ತದೆ.
ಸರಿಹೊಂದಿಕೆ 2:
ಉದ್ದದುಂಡುವಿನ ಸುತ್ತಳತೆಯನ್ನು ಈ ಕೆಳಗಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಕಂಡುಹಿಡಿಯಬಹುದು, ಇದನ್ನು ಎಣಿಕೆಯರಿಗ (Mathematician) ಶ್ರೀನಿವಾಸ ರಾಮಾನುಜನ್ ಅವರು ಕಂಡುಹಿಡಿದಿದ್ದರು.
- ಇಲ್ಲಿ a ಅರೆ ಹಿರಿನಡುಗೆರೆಯಾಗಿದೆ (Semi Major axis line)
- ಇಲ್ಲಿ b ಅರೆ ಕಿರುನಡುಗೆರೆಯಾಗಿದೆ (Semi Minor axis line)
- π = 3.14159.
ಸರಿಹೊಂದಿಕೆ 3:
ಈ ಸರಿಹೊಂದಿಕೆಯು ಉದ್ದದುಂಡುವಿನ ಹೆಚ್ಚು ದಿಟವಾದ ಸುತ್ತಳತೆಯ ಬೆಲೆಯನ್ನು ನೀಡುತ್ತದೆ.
- ಇಲ್ಲಿ a ಅರೆ ಹಿರಿನಡುಗೆರೆಯಾಗಿದೆ (Semi Major axis line)
- ಇಲ್ಲಿ b ಅರೆ ಕಿರುನಡುಗೆರೆಯಾಗಿದೆ (Semi Minor axis line)
- π = 3.14159.
ಸರಿಹೊಂದಿಕೆ 4:
- ಅರೆ-ಹಿರಿನಡುಗೆರೆ (Semi Major axis) ಉದ್ದವು ಅರೆ-ಕಿರುನಡುಗೆರೆಯ (Semi Minor axis) ಮೂರುಪಟ್ಟಿಗಿಂತ ಕಡಿಮೆಯಿದ್ದರೆ ಕೆಳಗಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹುದು. i.e a < 3b, ಈ ಸರಿಹೊಂದಿಕೆಯು ಸುಲಭವಾಗಿ ಉದ್ದ ದುಂಡುವಿನ ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯಲು ಅನುವುಮಾಡಿಕೊಡುತ್ತದೆ, ಆದರೆ ಇದು ಸುತ್ತಳತೆಯ ದಿಟಬೆಲೆಗಿಂತ 5% ಹೆಚ್ಚು-ಕಡಿಮೆ ಬೆಲೆಯನ್ನು ಹೊಂದಿರುತ್ತದೆ.
- ಇಲ್ಲಿ a ಅರೆ ಹಿರಿನಡುಗೆರೆಯಾಗಿದೆ (Semi Major axis line)
- ಇಲ್ಲಿ b ಅರೆ ಕಿರುನಡುಗೆರೆಯಾಗಿದೆ (Semi Minor axis line)
- a < 3b
- π = 3.14159.
- e a < 3b
- ಉದಾಹರಣೆಗೆ: b = 5, a = 10 => 10 < 3 x 5 => 10 < 15 ಆದಾಗ ಸುಲಭವಾಗಿ ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯಲು ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹುದು.
ಉದಾಹರಣೆ : ಒಂದು ಉದ್ದದುಂಡುವಿನ ಅರೆ-ಹಿರಿನಡುಗೆರೆಯು (Semi Major Axis) 19 ft ಮತ್ತು ಅರೆ-ಕಿರುನಡುಗೆರೆಯು (Semi Minor Axis) 9 ft ಆದಾಗ ಅದರ ಸುತ್ತಳತೆಯನ್ನು (Perimeter) ಕಂಡುಹಿಡಿಯಿರಿ.
ಉದ್ದದುಂಡುವಿನ ಸುತ್ತಳತೆಯನ್ನು ಕಂಡುಹಿಡಿಯಲು ಮೇಲಿನ ಯಾವುದಾರೂ ಒಂದು ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳಬಹುದು, ಇಲ್ಲಿ ನಾವು ಮೇಲೆ ಹೇಳಿದ ಸರಿಹೊಂದಿಕೆಯ ಬಗೆ 2 ನ್ನು ಬಳಸಿಕೊಳ್ಳೋಣ.
- ಇಲ್ಲಿ a = 19ft ಅರೆ ಹಿರಿನಡುಗೆರೆಯಾಗಿದೆ (Semi Major axis line)
- ಇಲ್ಲಿ b = 9 ft ಅರೆ ಕಿರುನಡುಗೆರೆಯಾಗಿದೆ (Semi Minor axis line)
- π = 3.14159.
- ಸುತ್ತಳತೆ p = 14159 [ 3(19 + 9) – √(3 x 19 + 9)(19 + 3 x 9)]
p = 3.14159 [84 – √(66)(46)]
p = 3.14159 [84 -√3036]
p = 3.14159 [84 – 55.1] = 3.14159 x 28.9 = 90.791951 ft
ಕೊಟ್ಟಿರುವ ಉದ್ದದುಂಡುವಿನ ಸುತ್ತಳತೆ 90.791951 ft ಆಗಿದೆ
ಉದ್ದದುಂಡುವಿನ ಹರವು(Area of an Ellipse):
ಉದ್ದದುಂಡುವಿನ ಹರವನ್ನು A = πab ಎಂದು ಕಂಡುಕೊಳ್ಳಲಾಗಿದೆ.
ಕೆಳಗಿನ ಉದಾಹರಣೆಯಲ್ಲಿ ಹರವನ್ನು ಕಂಡುಕೊಳ್ಳುವ ಈ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಳಸಿಕೊಳ್ಳೋಣ.
- ಉದಾಹರಣೆ : ಕೆಳಗಡೆ ಉದ್ದದುಂಡು ಆಕಾರದ ಸ್ನಾನ ಮಾಡಲು ಬಳಸುವ ಒಂದು ಸೋಪನ್ನು ಕೊಡಲಾಗಿದೆ, ಅದರ ಅರೆ ಹಿರಿನಡುಗೆರೆ (Semi Major axis line) a = 10cm ಮತ್ತು ಅರೆ ಕಿರುನಡುಗೆರೆ (Semi Minor axis line) b = 7cm ಆಗಿದೆ, ಹಾಗಾದರೆ ಅದರ ಉದ್ದದುಂಡು ಆಕಾರದ ಸೋಪಿನ ಮೇಲ್ಮಯ್ಯಿಯ ಹರವೆಷ್ಟು?
ಉದ್ದದುಂಡುವಿನ ಹರವು A = πab.
A = 3.14159 x 10 x 7 = 219.911 cm2
ಸೋಪಿನ ಮೇಲ್ಮಯ್ಯಿಯ ಉದ್ದದುಂಡು ಆಕಾರದ ಹರವು 219.911 cm2 ಆಗಿದೆ.
ಉದ್ದದುಂಡುವಿನ ಸರಿಹೊಂದಿಕೆ (Equation of ellipse):
ಯಾವುದೇ ಒಂದು ಮುಚ್ಚಿದ ಆಕಾರವು ತನ್ನದೇ ಆದ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಹೊಂದಿರುತ್ತದೆ, ಕೆಳಗಿನ ಸರಿಹೊಂದಿಕೆಯು ಉದ್ದದುಂಡು ಆಕಾರವನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ. ಈ ಆಕಾರವನ್ನು ಉಂಟುಮಾಡಲು ನಾವು ಚುಕ್ಕೆಗುರುತನ್ನು(Coordinate system) ಬಳಸಿಕೊಳ್ಳಬೇಕಾಗುತ್ತದೆ.
ಕೆಳಗಿನ ಉದಾಹರಣೆಯೊಂದಿಗೆ ಮೇಲಿನ ಸರಿಹೊಂದಿಕೆಯನ್ನು ಬಿಡಿಸೋಣ.
- ಮೇಲಿನ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿರುವಂತೆ ಉದ್ದದುಂಡುವಿನ ಅರೆ-ಹಿರಿನಡುಗೆರೆ (Semi Major axis line) a = 2 ಮತ್ತು ಅರೆ-ಕಿರುನಡುಗೆರೆ (Semi Minor axis line) b = 1 ಆಗಿದೆ.
- ಇದನ್ನು ಬಿಡಿಸಿ ಬರೆದಾಗ y = (1/a) x √ (a2 b2 – x2 b2) ಆಗುತ್ತದೆ.
- ಸರಿಹೊಂದಿಕೆಯಲ್ಲಿ x ಮತ್ತು y ಮಾರ್ಪುಕಗಳಾಗಿವೆ (Variables).
- ಚುಕ್ಕೆಗುರುತಿನ (Coordinates graph) ಪಟ್ಟಿಯಲ್ಲಿ a=2, b=1 ಆದಾಗ x = [ -2, -1, 0, 1, 2 ] ಬೆಲೆಗಳನ್ನು y = (1/a) x √ (a2 b2 – x2 b2) ಯಲ್ಲಿ ಹಾಕಿ y ನ್ನು ಕಂಡುಕೊಂಡು ಮೇಲಿನ ಉದ್ದದುಂಡುಕವನ್ನು ಪಡೆಯಬಹುದು.
ದುಂಡುತನ (Eccentricity):
ಒಂದು ಬಾಗಿದ ಆಕೃತಿಯು (Curved shapes) ಎಷ್ಟು ದುಂಡಾಗಿದೆ ಎಂಬುವುದನ್ನು ದುಂಡುತನ (Eccentricity) ತಿಳಿಸುತ್ತದೆ, ಇದನ್ನು ನಡುಬೇರ್ಮೆಯಳತೆ ಎಂದೂ ಕರೆಯಬಹುದು.
ಉದ್ದದುಂಡುವಿನ ದುಂಡುತನವನ್ನು (Eccentricity of the Ellipse) ಈ ಕೆಳಕಂಡಂತೆ ಬರೆಯಬಹುದು,
e = c/a
- e ಎಂಬುವುದು ದುಂಡುತನದ ಗುರುತಾಗಿದೆ.
- c ಎಂಬುವುದು ನೆಲೆಚುಕ್ಕೆಯಿಂದ (Focus) ಉದ್ದದುಂಡುವಿನ ನಡುವಿಗೆ (Centre of the Ellipse) ಇರುವ ದೂರ
- a ಎಂಬುವುದು ನೆಲೆಚುಕ್ಕೆಯಿಂದ (Focus) ಉದ್ದದುಂಡುವಿನ ತುದಿಗೆ ಇರುವ, ಇಲ್ಲಿ ತುದಿಗೆ (Vertex) ಇರುವ ದೂರ.
- ನೆನಪಿಟ್ಟುಕೊಳ್ಳಿ: ದುಂಡುಕದಲ್ಲಿ (Circle) ದುಂಡುತನವು ಯಾವಾಗಲೂ ಸೊನ್ನೆಯಾಗಿರುತ್ತದೆ (e = 0), ಆದರೆ ಉದ್ದದುಂಡುವಿನ ದುಂಡುತನವು ಸೊನ್ನೆಗಿಂತ ಜಾಸ್ತಿ ಇದ್ದು, ಒಂದಕ್ಕಿಂತ ಕಮ್ಮಿ ಇರುತ್ತದೆ. 1 > e > 0.
ಉದ್ದದುಂಡುವಿನ ಹಳಮೆ:
- 380–320 BCE ಹೊತ್ತಿನ ಮೆನಚ್ಮ್ಯಾಸ್ (Menaechmus) ಎಂಬ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗ ಉದ್ದ ದುಂಡುವಿನ ಬಗ್ಗೆ ಅರಕೆಮಾಡಿದ್ದನು.
- ಸುಮಾರು 300 BCE ಹೊತ್ತಿನ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗರಾದ ಯೂಕ್ಲಿಡ್ ಮತ್ತು ಅಪೊಲೊನಿಯಸ್ ಉದ್ದದುಂಡುವಿನ ಬಗ್ಗೆ ಹಲವಾರು ಅರಕೆಗಳನ್ನುಮಾಡಿದ್ದರು.
- 290 -.350 BCE ಹೊತ್ತಿನ ಗ್ರೀಕ್ ಎಣಿಕೆಯರಿಗ ಪಾಪಸ್ (Pappus) ಉದ್ದದುಂಡುವಿನ ನೆಲೆಚುಕ್ಕೆಯ (Foci of the Ellipse) ಬಗ್ಗೆ ಅರಕೆ ಮಾಡಿದ್ದನು.
- 1602 CE ಯಲ್ಲಿ ಜೋಹಾನ್ಸ್ ಕೆಪ್ಲರ್ (Johannes Kepler) ನೇಸರನ ಸುತ್ತ ಸುತ್ತುವ ಮಂಗಳ ಗ್ರಹದ ಸುತ್ತುದಾರಿಯು (Orbit) ಉದ್ದದುಂಡು ಆಕಾರದಲ್ಲಿದೆ ಎಂದು ಹೇಳಿದ್ದನು.
ಚಟುವಟಿಕೆ:
- ಮೊಟ್ಟೆಯಾಕಾರ (Oval shape) ಮತ್ತು ಉದ್ದದುಂಡು Ellipse shape) ಆಕಾರಕ್ಕೂ ಇರುವ ವ್ಯತ್ಯಾಸವನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
- ದುಂಡುಕದಲ್ಲಿ (Circle) ದುಂಡುತನವು (Eccentricity) ಏಕೆ ಸೊನ್ನೆಯಾಗಿದೆ ಎಂದು ಕಂಡುಕೊಳ್ಳಿ.
(ಸೆಲೆ: askiitians.com, mathsisfun.com, mathopenref.com/ellipseeccentricity, mathsisfun.com/geometry, Wikipedia)