ಹರಿಯುವ ಕರೆಂಟ್

ಕರೆಂಟ್ ಕುರಿತಾದ ಕಳೆದ ಬರಹವನ್ನು ಮೆಲುಕು ಹಾಕುತ್ತಾ,

  • ವಸ್ತುಗಳು ಕೋಟಿಗಟ್ಟಲೇ ಅಣುಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿರುತ್ತವೆ. ಅಣುಗಳ ನಡುವಣದಲ್ಲಿ (Nucleus) ಪ್ರೋಟಾನ್ಗಳು ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ಗಳು ಇದ್ದರೆ, ನಡುವಣದ ಸುತ್ತ ಎಲೆಕ್ಟ್ರಾನ್ಗಳು ಇರುತ್ತವೆ.
  • ಪ್ರೋಟಾನ್ಗಳು (ಕೂಡುವಣಿಗಳು) ‘+’ (ಕೂಡು) ಗುರುತಿನ ಹುರುಪು ಹೊಂದಿದ್ದರೆ, ಎಲೆಕ್ಟ್ರಾನ್ಗಳು (ಕಳೆವಣಿಗಳು)  ‘–’  (ಕಳೆ) ಗುರುತಿನ ಹುರುಪು ಹೊಂದಿರುತ್ತವೆ. ಇಲ್ಲಿ ‘+’ ಮತ್ತು ‘–’ ಗುರುತುಗಳನ್ನು ತಳುಕುಹಾಕಿರುವುದು ತಿಳುವಳಿಕೆಯನ್ನು ಸುಲಭವಾಗಿಸಲಷ್ಟೇ ಅನ್ನುವುದನ್ನು ನೋಡಿದೆವು.
  • ಕೆಲವು ವಸ್ತುಗಳನ್ನು ಒಂದಕ್ಕೊಂದು ಉಜ್ಜಿದಾಗ ಒಂದರಿಂದ ಇನ್ನೊಂದು ವಸ್ತುವಿಗೆ ಎಲೆಕ್ಟ್ರಾನ್ಗಳು ಸಾಗಿ ‘ಹುರುಪು’ (charge) ಉಂಟಾಗುತ್ತದೆ. ಈ ಬಗೆಯಲ್ಲಿ ಎಲೆಕ್ಟ್ರಾನ್ಗಳ ಕೊಡುಕೊಳ್ಳುವಿಕೆಯಿಂದ ಉಂಟಾದ ಕಸುವನ್ನು ‘ನೆಲಸಿದ ಮಿಂಚು’ (static current) ಎಂದು ಕರೆಯುತ್ತಾರೆ.

‘ಕರೆಂಟ್’ ಎಂದು ಕರೆಯಲಾಗುವ ‘ಕಸುವು’ ನಮಗೆ ದೊರಕುವುದು ಮುಖ್ಯವಾಗಿ ಎಲೆಕ್ಟ್ರಾನ್ಗಳ ಹರಿಯುವಿಕೆಯಿಂದ. ಹಾಗಾದರೆ ಎಲೆಕ್ಟ್ರಾನ್ಗಳು ಯಾಕೆ ಹರಿಯುತ್ತವೆ, ಹರಿಯುವಂತೆ ಹೇಗೆ ಮಾಡಬಹುದು? ಎಲ್ಲಾ ವಸ್ತುಗಳ ಅಣುಗಳಲ್ಲಿನ ಎಲೆಕ್ಟ್ರಾನ್ಗಳು ಹೀಗೇ ಹರಿಯಬಲ್ಲವೇ? ಮುಂತಾದ ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಗಳನ್ನು ಹುಡುಕುತ್ತಾ ಈಗ ಮುಂದುವರೆಯೋಣ.

ಅಣುವಿನ ನಡುವಣದ (nucleus) ಸುತ್ತ ಗೊತ್ತಾದ ಸುತ್ತುಗಳಲ್ಲಿರುವ ಎಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ಅವುಗಳ ಸುತ್ತುಗಳಲ್ಲಿಯೇ ಇರುವಂತೆ ಒಂದು ಬಗೆಯ ‘ಕಸುವು’ ಹಿಡಿದಿಟ್ಟಿರುತ್ತದೆ. ಎಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ಹಿಡಿದಿಡುವ ಈ ಕಸುವಿನ ಮಟ್ಟ ವಸ್ತುವಿನಿಂದ ವಸ್ತುವಿಗೆ ಬೇರೆ-ಬೇರೆಯಾಗಿರುತ್ತದೆ.

ಕಟ್ಟಿಗೆ, ಕಲ್ಲಿನಂತಹ ವಸ್ತುಗಳ ಅಣುಗಳಲ್ಲಿ ಈ ‘ಕಸುವಿನ ಮಟ್ಟ’ ತುಂಬಾ ಹೆಚ್ಚಾಗಿದ್ದರೆ, ಕಬ್ಬಿಣ, ತಾಮ್ರದಂತಹ ವಸ್ತುಗಳಲ್ಲಿ ಇದು ಕಡಿಮೆಯಾಗಿರುತ್ತದೆ. ಅಂದರೆ ತಾಮ್ರ ಮತ್ತು ಕಬ್ಬಿಣದಂತಹ ವಸ್ತುಗಳಲ್ಲಿ ಎಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ತನ್ನ ಅಣುವಿನಿಂದ ಹೊರತಂದು, ವಸ್ತುವಿನೆಲ್ಲೆಡೆ ಬಿಡುವಾಗಿ ಹರಿದಾಡುವಂತೆ ಮಾಡುವುದಕ್ಕೆ ಕಡಿಮೆ ಕಸುವು ಬೇಕು. ಅದೇ ಕಟ್ಟಿಗೆಯಲ್ಲಿ ಹೆಚ್ಚಿನ ಕಸುವು ಕೊಟ್ಟರೂ ಎಲೆಕ್ಟ್ರಾನ್ಗಳು ಅದರ ಅಣುಗಳಿಂದ ಹೊರಬಂದು ಹರಿಯಲಾರವು.

ಈಗ ನಿಮಗೆ ಗೊತ್ತಾಗಿರಬಹುದು ಕರೆಂಟ್ ತಂತಿಗಳು ತಾಮ್ರದಂತಹ ವಸ್ತುಗಳಿಂದ ಏಕೆ ಮಾಡಿರುತ್ತವೆ ಮತ್ತು ಕಟ್ಟಿಗೆಯಲ್ಲಿ ಏಕೆ ಕರೆಂಟ್ ಹರಿಯುವುದಿಲ್ಲವೆಂದು! ತಾಮ್ರದಲ್ಲಿ ಕಡಿಮೆ ಕಸುವು ಕೊಟ್ಟು ಕರೆಂಟ್ (ಕಳೆವಣಿಗಳನ್ನು) ಹರಿಸಬಹುದು.

ಕರೆಂಟ್ (ಎಲೆಕ್ಟ್ರಾನ್ಗಳು) ಹರಿಯಲು ಅನುವು ಮಾಡಿಕೊಡುವ ವಸ್ತುಗಳನ್ನು ‘ಬಿಡುವೆಗಳು’ (Conductors) ಎಂದು ಕರೆದರೆ, ಕರೆಂಟ್ ಹರಿಯಗೊಡದ ವಸ್ತುಗಳನ್ನು ‘ತಡೆವೆಗಳು’ (Insulators) ಅಂತಾ ಕರೆಯುತ್ತಾರೆ. ತಾಮ್ರ ‘ಬಿಡುವೆ’ಯಾದರೆ, ಕಟ್ಟಿಗೆ ಕರೆಂಟಿಗೆ ‘ತಡೆವೆ’ ಆಗುತ್ತದೆ.

 

Conductors

ಹಾ! ಎಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ತಾಮ್ರದಂತಹ ಬಿಡುವೆಗಳಲ್ಲಿ (conductors) ಕಡಿಮೆ ಕಸುವು ನೀಡಿ ಹರಿಯುವಂತೆಯೂ ಮಾಡಬಹುದು ಆದರೆ ಹೋಲಿಕೆಯಿಂದ ಕಡಿಮೆಯಾದರೂ ವಸ್ತುಗಳಲ್ಲಿ ಎಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ಹರಿಯುವಂತೆ ಮಾಡುವ ಈ ‘ಕಸುವು’ ದೊರೆಯುವುದೆಲ್ಲಿಂದ ?  ಇದನ್ನು ಅರಿತುಕೊಳ್ಳಲು ಮಯ್ಕಲ್ ಪಾರಡೆ ಅವರು ತೋರಿಸಿಕೊಟ್ಟ ದಿಟವನ್ನು ಈಗ ತಿಳಿಯೋಣ.

ಮಯ್ಕಲ್ ಪಾರಡೆ (Michel Faraday, 1791-1867) ಅವರು ತಮ್ಮ ಸಂಶೋಧನೆಯಿಂದ ಈ ಕೆಳಗಿನ ವಿಷಯಗಳನ್ನು ತೋರಿಸಿಕೊಟ್ಟಿದ್ದರು,

1)   ಮಾರ್ಪಡುವ ಸೆಳೆತದ ಬಯಲಿನಲ್ಲಿ (changing magnetic field) ತಾಮ್ರದಂತಹ ಬಿಡುವೆ ವಸ್ತುಗಳನ್ನು ಇಟ್ಟರೆ ಅದರಲ್ಲಿ ಕರೆಂಟ್ (ಎಲೆಕ್ಟ್ರಾನ್ಗಳು) ಹರಿಯತೊಡುಗುತ್ತದೆ. ಅಂದರೆ ಸೆಳೆಗಲ್ಲುಗಳ (magnets) ನೆರವಿನಿಂದ ಕಸುವು ಉಂಟುಮಾಡಿ, ಆ ಕಸುವನ್ನು ಬಿಡುವೆಗಳಲ್ಲಿ ಸಾಗಿಸಿ, ಎಲೆಕ್ಟ್ರಾನ್ಗಳು ಹರಿಯುವಂತೆ ಅಂದರೆ ಕರೆಂಟ್ ದೊರೆಯುವಂತೆ ಮಾಡಬಹುದು.

2)   ಬಿಡುವೆಗಳಲ್ಲಿ ಕರೆಂಟ್ ಹರಿಯುತ್ತಿರುವಾಗ ಅದರ ಸುತ್ತ ‘ಸೆಳೆತದ ಬಯಲು’ (magnetic field) ಉಂಟಾಗುತ್ತದೆ. ಅಂದರೆ ಇದು ಮೇಲಿನ ದಿಟವನ್ನು ಇನ್ನೊಂದು ಬಗೆಯಲ್ಲಿ ಹೇಳಿದಂತೆ. ಒಗ್ಗೂಡಿಸಿ ಹೇಳಬೇಕೆಂದರೆ,

“ಮಾರ್ಪಡುವ ಸೆಳೆತದ ಬಯಲಿನಿಂದ ಕರೆಂಟ್ ಪಡೆಯುವಂತಾದರೆ, ಕರೆಂಟ್ ಹರಿದಾಗ ಸೆಳೆತದ ಬಯಲು ಉಂಟಾಗುತ್ತದೆ “.

ಮಿಂಚು (ಕರೆಂಟ್) ಮತ್ತು ಸೆಳೆತನದ (magnetism) ಈ ನಂಟನ್ನು ‘ಮಿಂಚು-ಸೆಳೆತನ’ ಇಲ್ಲವೇ ‘ಮಿನ್ಸೆಳೆತನ’ (electromagnetism) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ನೆಲಸೆಳೆತದಂತೆ (gravitation) ಮಿನ್ಸೆಳೆತನವು (electromagnetism) ಜಗತ್ತಿನ ಹಲವಾರು ಅರಿಮೆಯ ವಿಷಯಗಳಿಗೆ ಇಂದು ಅಡಿಪಾಯವಾಗಿದೆ.

ಮುಂದಿನ ಬರಹದಲ್ಲಿ ಸೆಳೆತದ ಬಯಲಿನಿಂದ (magnetic field) ಕರೆಂಟ್ ಅನ್ನು ಹೇಗೆ ಪಡೆಯಲಾಗುತ್ತದೆ? ವೋಲ್ಟೇಜ್ ಅಂದರೇನು? ಹೀಗೆ ಕರೆಂಟಿನ ಇನ್ನೊಂದಿಷ್ಟು ವಿಷಯಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳೋಣ.

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಕರೆಂಟ್ ಮತ್ತು ಅಣುಗಳ ನಂಟು

ಕರೆಂಟ್ ಅಂದರೇನು ? ಕರೆಂಟನ್ನು ತಾಮ್ರ, ಕಬ್ಬಿಣದಂತಹ ವಸ್ತುಗಳಷ್ಟೇ ಏಕೆ ತನ್ನ ಮೂಲಕ ಹಾಯ್ದು ಹೋಗಲು ಬಿಡುತ್ತವೆ ? ವೋಲ್ಟೇಜ್ ಅಂದರೇನು ? ಹೀಗೆ ಹಲವು ಪ್ರಶ್ನೆಗಳು ನಮ್ಮಲ್ಲಿ ಮೂಡಬಹುದು. ಮುಂದಿನ ಕೆಲವು ಬರಹಗಳಲ್ಲಿ ‘ಮೊದಲ’ ಹಂತದಿಂದ ವಿಷಯವನ್ನು ಅರಿಯಲು ಪ್ರಯತ್ನಿಸೋಣ.

 

comb-static-electricity

ಮೊದಲಿಗೆ ನಮ್ಮ ಎಂದಿನ ಬದುಕಿನಲ್ಲಿ ಕಂಡುಬರುವ ಈ ಉದಾಹರಣೆಗಳನ್ನು ನೋಡಿ,

  • ಬಾಚಣಿಗೆಯಿಂದ ಕೂದಲು ಬಾಚಿ, ಅದೇ ಬಾಚಣಿಗೆಯನ್ನು ಹಾಳೆಯ ತುಂಡುಗಳೆಡೆಗೆ ಹಿಡಿದಾಗ ಹಾಳೆಯ ತುಂಡುಗಳು ಬಾಚಣಿಗೆಯತ್ತ ಸೆಳೆಯಲ್ಪಡುತ್ತವೆ.
  • ರೇಷ್ಮೆ ಬಟ್ಟೆಗೆ ಮಯ್ಯಿ ತಾಕಿದಾಗ ಕೆಲವು ಸಲ ಚುರುಕೆನ್ನುವಂತ ಅನುಭವವಾಗುತ್ತದೆ.

ಮೇಲಿನ ಎರಡು ಉದಾಹರಣೆಗಳ ಹಿಂದೆ ಇರುವುದು ವಸ್ತುಗಳ ನಡುವೆ ಆಗುವ ಮಿಂಚಿನಂತಹ ಅಂದರೆ ಕರೆಂಟನಂತಹ ಕಸುವಿನ ಸಾಗಾಟ. ಇದನ್ನು ಇಂಗ್ಲೀಶಿನಲ್ಲಿ ‘ಚಾರ್ಜ್’ (Charge) ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಕನ್ನಡದಲ್ಲಿ ಇದಕ್ಕೆ ‘ಹುರುಪು’ ಎನ್ನಬಹುದು. ಬಾಚಣಿಗೆಯಲ್ಲಿದ್ದ ಒಂದು ಬಗೆಯ ಮಿಂಚಿನ ‘ಹುರುಪು’ (electric charge) ಹಾಳೆಯಲ್ಲಿದ್ದ ಇನ್ನೊಂದು ಬಗೆಯ ಮಿಂಚಿನ ಹುರುಪನ್ನು ತನ್ನೆಡೆಗೆ ಸೆಳೆಯುವುದರಿಂದ ನಮಗೆ ಮಿಂಚು ಹರಿವಿನ ಅನುಭವಾಗುತ್ತದೆ. ಇದೇನಿದು ‘ಒಂದು ಬಗೆ’ ಮತ್ತು ‘ಇನ್ನೊಂದು ಬಗೆ’ಯ ಹುರುಪು (charge) ? ಹಾಗಾದರೆ ಬನ್ನಿ ಈಗ ಕರೆಂಟ್ ಹೊರತಾದ ವಸ್ತುಗಳ ಒಳಗಡೆ ಇಣುಕೋಣ.

1) ವಸ್ತುಗಳ ಒಳಗಡೆಯ ಕಿರಿದಾದ ರೂಪಕ್ಕೆ ‘ಅಣು’/’ಸೀರು’ (atom) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಕಬ್ಬಿಣ, ಕಟ್ಟಿಗೆ, ನೀರು, ಹಾಳೆ ಮುಂತಾದ ಎಲ್ಲಾ  ವಸ್ತುಗಳೂ ಕೋಟಿಗಟ್ಟಲೇ ಕಿರಿದಾದ ಅಣುಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿರುತ್ತವೆ. ವಸ್ತುವಿನ ಅಣುಗಳು ಅವುಗಳ ಗುಣವನ್ನು ತೀರ್ಮಾನಿಸುತ್ತವೆ.

Atom

 

2) ವಸ್ತುಗಳ ಅಣುವಿನಲ್ಲಿ ಈ ಕೆಳಗಿನ ಭಾಗಗಳಿರುತ್ತವೆ.

  •  ನಡುವಣ (nucleus): ಇದು ಅಣುವಿನ ನಟ್ಟ ನಡುವಿನ ಭಾಗವಾಗಿದ್ದು ಇದರಲ್ಲಿ ಪ್ರೋಟಾನ್ ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ಗಳು ಇರುತ್ತವೆ.
  • ಪ್ರೋಟಾನ್ಗಳನ್ನು ‘ಸೆಳೆತದ ಬಯಲಿಗೆ’ (magnetic field) ಒಳಪಡಿಸಿದಾಗ ಅವುಗಳು ಬಯಲಿಗೆ ಎದುರಾಗಿ ಸಾಗುವುದರಿಂದ ಅವುಗಳು ಒಂದು ಬಗೆಯ ‘ಹುರುಪು’ (charge) ಹೊಂದಿವೆ ಎಂದು ಗುರುತಿಸಲಾಗುತ್ತದೆ. ತಿಳುವಳಿಕೆಯನ್ನು ಸುಲಭವಾಗಿಸಲು ಪ್ರೋಟಾನ್ಗಳು ತೋರುವ ಈ ಎದುರು ಬಗೆಯ ಹುರುಪಿಗೆ (charge) ‘ಕೂಡು’ ಅಂದರೆ + (positive) ಗುರುತನ್ನು ತಳುಕುಹಾಕಲಾಗಿದೆ, ಹಾಗಾಗಿ ಪ್ರೋಟಾನ್ಗಳನ್ನು ‘ಪಾಸಿಟಿವಲಿ ಚಾರ್ಜ್ಡ್’ (positively charged) ಅನ್ನಲಾಗುತ್ತದೆ. ಈ ಗುಣವನ್ನು ಬಳಸುತ್ತಾ ಕನ್ನಡದಲ್ಲಿ ಪ್ರೋಟಾನ್ಗಳನ್ನು ‘ಕೂಡು-ಹುರುಪಿನವು’ ಇಲ್ಲವೇ ‘ಕೂಡುವಣಿಗಳು’ ಎಂದು ಕರೆಯಬಹುದು.
  • ಅದೇ ನ್ಯೂಟ್ರಾನ್ಗಳನ್ನು ‘ಸೆಳೆತದ ಬಯಲಿಗೆ’  (magnetic field) ಒಳಪಡಿಸಿದಾಗ ಅವುಗಳು ಯಾವುದೇ ಒಂದು ಬಗೆಯ ಹುರುಪು (charge) ತೋರಗೊಡುವುದಿಲ್ಲ (ಒಂದು ಬಗೆಯ ಹುರುಪಿಲ್ಲದೇ ನೆಲೆಗೊಂಡಿರುವುದರಿಂದ ಕನ್ನಡದಲ್ಲಿ ನ್ಯೂಟ್ರಾನ್ಗಳನ್ನು ‘ನೆಲೆವಣಿಗಳು’ ಅನ್ನಬಹುದು).
  • ನಡುವಣದ (nucleus) ಸುತ್ತ ಸುತ್ತುವ ತುಣುಕುಗಳೇ ಇಲೆಕ್ಟ್ರಾನ್ಸ್.  ಇವುಗಳನ್ನು ‘ಸೆಳೆತದ ಬಯಲಿಗೆ’  (magnetic field) ಒಳಪಡಿಸಿದಾಗ, ಬಯಲಿನೆಡೆಗೆ ಸಾಗುವುದರಿಂದ ಇವುಗಳು ಪ್ರೋಟಾನ್ಗಗಿಂತ ಬೇರೆ ಬಗೆಯ ಹುರುಪನ್ನು (charge) ಹೊಂದಿವೆ ಎಂದು ತಿಳಿದುಕೊಳ್ಳಲಾಗಿದೆ. ಆದ್ದರಿಂದ ಪ್ರೋಟಾನ್ಗಳಿಗೆ ‘ಕೂಡು’ (+) ಗುರುತು ತಳುಕುಹಾಕಿದಂತೆ ಇಲೆಕ್ಟ್ರಾನ್ಗಳಿಗೆ ಕಳೆ (-) ಗುರುತು ತಳುಕಿಸಲಾಗಿದೆ. ಅಂದರೆ ಇಲೆಕ್ಟ್ರಾನ್ಸಗಳು ‘ನೆಗೆಟಿವ್ ಚಾರ್ಜ್ಡ್’ (negative charge) ಹೊಂದಿರುತ್ತವೆ. ಹಾಗಿದ್ದರೆ ಇಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ಕನ್ನಡದಲ್ಲಿ ‘ಕಳೆ-ಹುರುಪಿನವು’ ಇಲ್ಲವೇ ‘ಕಳೆವಣಿಗಳು’ ಅನ್ನಬಹುದು.
  • ಒಂದು ಅಣುವಿನಲ್ಲಿ ಕೂಡುವಣಿಗಳು (protons) ಮತ್ತು ಕಳೆವಣಿಗಳು (electrons) ಅಷ್ಟೇ ಸಂಖ್ಯೆಯಲ್ಲಿದ್ದರೆ ಆ ವಸ್ತುಗಳು ಕರೆಂಟಿಗೆ ಅನುವು ಮಾಡಿಕೊಡುವುದಿಲ್ಲ. ಅದೇ ಕಳೆವಣಿಗಳು (electrons) ಮತ್ತು ಕೂಡುವಣಿಗಳ (protons) ಸಂಖ್ಯೆಯು ಅಣುವಿನಲ್ಲಿ ಬೇರೆ ಬೇರೆ ಸಂಖ್ಯೆಯಲ್ಲಿದ್ದರೆ ಆ  ವಸ್ತುವಿನಿಂದ ಇನ್ನೊಂದು ವಸ್ತುವಿಗೆ ಕಳೆವಣಿಗಳ (electrons) ಕೊಡುಕೊಳ್ಳುವಿಕೆಯಾಗಿ ಕರೆಂಟ್ ಉಂಟಾಗುತ್ತದೆ.

ಬಾಚಣಿಗೆಯಿಂದ ಕೂದಲು ಬಾಚಿದಾಗ ಮತ್ತು ಬಾಚಣಿಗೆಯನ್ನು ಹಾಳೆಯೆಡೆಗೆ ಹಿಡಿದಾಗ ಆದದ್ದು ಇದೇ, ಕೂದಲಿನ ಅಣುಗಳು ಇಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ಕಳೆದುಕೊಂಡರೆ ಬಾಚಣಿಕೆಯ ಅಣುಗಳು ಇಲೆಕ್ಟ್ರಾನ್ಗಳನ್ನು ಪಡೆದುಕೊಂಡವು. ಹೀಗೆ ಇಲೆಕ್ಟ್ರಾನ್ಗಳ ಜಿಗಿತದಿಂದ ಉಂಟಾದದ್ದೇ ಕರೆಂಟ್.  ಈ ಬಗೆಯಲ್ಲಿ ಎರಡು ವಸ್ತುಗಳ ಉಜ್ಜುವಿಕೆ/ತಾಕುವಿಕೆಯಿಂದ ಉಂಟಾಗುವ ಕರೆಂಟನ್ನು ನೆಲೆಸಿದ ಕರೆಂಟ್ (static current/electricity) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ನಮ್ಮ ಮನೆಗೆ ಹರಿಯುವ ಕರೆಂಟ್ ವಸ್ತುಗಳ ಅಣುಗಳಲ್ಲಿರುವ ಇಲೆಕ್ಟ್ರಾನ್ಗಳ ಹರಿವಿನಿಂದಲೇ ದೊರೆಯುವುದು ಆದರೆ ಅದು ನೆಲೆಸಿದ ಕರೆಂಟಗಿಂತ (static current) ಒಂಚೂರು ಬೇರೆ ಬಗೆಯದು. ಈ ಕುರಿತು ಮುಂದಿನ ಬರಹದಲ್ಲಿ ನೋಡೋಣ.

facebooktwittergoogle_plusredditpinterestlinkedinmail

ವಿಜ್ಞಾನದಲ್ಲಿ ಒಲವು ಮೂಡಿಸುವುದು ಹೇಗೆ? – ಒಂದು ಅನುಭವ

– ಪ್ರಶಾಂತ ಸೊರಟೂರ.

ವಿಜ್ಞಾನದ ಉಪಯೋಗಗಳನ್ನು ನಾವು ಪ್ರತಿದಿನ ಪಡೆಯುತ್ತಿದ್ದರೂ, ವಿಜ್ಞಾನ ಹೊಮ್ಮಿಸಿದ ತಂತ್ರಜ್ಞಾನಗಳ ಬಳಕೆಯಿಲ್ಲದೇ ಇಂದು ಬದುಕು ಕಷ್ಟ ಅಂತಾ ಅನುಭವಕ್ಕೆ ಬಂದರೂ, ಅದರ ಕಲಿಕೆಯಲ್ಲಿ ನಾವು ಇನ್ನೂ ಹಿಂದೇಟು ಹಾಕುತ್ತೇವೆ. ಅದರಲ್ಲೂ ಶಾಲೆಯಲ್ಲಿ ಓದುತ್ತಿರುವ ಹೆಚ್ಚಿನ ಮಕ್ಕಳಿಗೆ ವಿಜ್ಞಾನ ಮತ್ತು ಗಣಿತವೆಂದರೆ ಕಬ್ಬಿಣದ ಕಡಲೆಯೇ ಸರಿ! “ಅದ್ಯಾಕೇ ಈ ವಿಷಯಗಳು ಇವೆ?” ಅಂತಾ ಹಲವು ಮಕ್ಕಳಿಗೆ ಅನ್ನಿಸುತ್ತಿರುವುದನ್ನು ಕಾಣಬಹುದು. ಪದವಿಯ ಹಂತಕ್ಕೆ ಹೋಗುವ ವಿದ್ಯಾರ್ಥಿಗಳೂ ಕೂಡ ಕಾಟಾಚಾರಕ್ಕೆ ಇಲ್ಲವೇ ತಂತ್ರಜ್ಞಾನ ಕಲಿಕೆಯಿಲ್ಲದೆ ಉದ್ಯೋಗ ಸಿಗುವುದಿಲ್ಲ ಅನ್ನುವ ಕಾರಣಕ್ಕಾಗಿಯೇ ಕಲಿಯುತ್ತಾರೆ ಹೊರತು ನಿಜವಾಗಿ ಅದರಲ್ಲಿ ಆಸಕ್ತಿ ಇಟ್ಟುಕೊಂಡು ಕಲಿಯುವುದು ತುಂಬಾ ಕಡಿಮೆ.

“ವಿಜ್ಞಾನದಲ್ಲಿ ಯಾಕೆ ಮಕ್ಕಳಿಗೆ ಅಷ್ಟು ಆಸಕ್ತಿ ಹುಟ್ಟುವುದಿಲ್ಲ” ಅನ್ನುವುದಕ್ಕೆ ಹಲವು ಕಾರಣಗಳಿರಬಹುದು. ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಹಲವಾರು ಶಾಲೆಯ ಮಕ್ಕಳೊಂದಿಗೆ ಒಡನಾಡಿದಾಗ ನನಗಾದ ಅನುಭವಗಳನ್ನು ಇಲ್ಲಿ ಹಂಚಿಕೊಳ್ಳುತ್ತಿರುವೆ. ಬೆಂಗಳೂರಿನ ಬಸವನಗುಡಿಯಲ್ಲಿರುವ ಮುನ್ನೋಟ, ಕನ್ನಡಿಗರ ಏಳಿಗೆಗೆ ಸಂಬಂಧಿಸಿದ ಪುಸ್ತಕಗಳಿಗೆ ಮೀಸಲಾದ ಮಳಿಗೆಯಾಗಿದ್ದು, ಅದರ ಜತೆಗೆ ಕನ್ನಡ ಮಾಧ್ಯಮದ ಶಾಲೆಗಳಿಗೆ ಭೇಟಿಕೊಟ್ಟು ದಾನಿಗಳ ನೆರವಿನಿಂದ ಮಕ್ಕಳಿಗೆ ವಿಜ್ಞಾನದ ಪುಸ್ತಕಗಳನ್ನು ಹಂಚುವ ಕೆಲಸವನ್ನು ಮಾಡುತ್ತಿದೆ. ಕನ್ನಡದಲ್ಲಿ ವಿಜ್ಞಾನದ ಬರಹಗಳನ್ನು ಮೂಡಿಸುತ್ತಿರುವ ನಮ್ಮ ಅರಿಮೆ ತಂಡ, ಮುನ್ನೋಟ ತಂಡದೊಂದಿಗೆ ಸೇರಿ ಹಲವು ಶಾಲೆಗಳಿಗೆ ಭೇಟಿಕೊಟ್ಟಾಗ ಆಗಿರುವ ಅನುಭವದ, ಚರ್ಚೆಯ ಸಾರಾಂಶವನ್ನು ಇಲ್ಲಿ ಬರೆದಿರುವೆ.

FB_IMG_1530981351900

ಶಾಲೆಯ ಮಕ್ಕಳೊಂದಿಗೆ ಈ ಕಾರ್ಯಕ್ರಮದಲ್ಲಿ ಮಾತನಾಡಲು ಶುರು ಮಾಡಿದಾಗ “ಯಾರಿಗೆ ವಿಜ್ಞಾನ ಇಷ್ಟ?” ಅನ್ನುವ ಪ್ರಶ್ನೆ ಕೇಳಿದಾಗ ಹೆಚ್ಚು ಕಡಿಮೆ ಎಲ್ಲ ಮಕ್ಕಳೂ “ನನಗಿಷ್ಟ” ಅನ್ನುತ್ತಾರೆ. “ಇಷ್ಟ ಇಲ್ಲ” ಅಂದರೆ ಶಿಕ್ಷಕರು ಬಯ್ಯಬಹುದು ಇಲ್ಲವೇ ಗುಂಪಿನಲ್ಲಿ ಎಲ್ಲರೂ “ಇಷ್ಟ” ಅನ್ನುತ್ತಿದ್ದಾರೆ ನಾನು ಹೇಗೆ “ಇಲ್ಲ” ಅನ್ನಲಿ ಅನ್ನುವ ಅಳುಕು ಮಕ್ಕಳಲ್ಲಿ ಇರುವುದು ಗಮನಕ್ಕೆ ಬಂದಿತು. ಮುಂದಿನ ಪ್ರಶ್ನೆಯಾಗಿ “ವಿಜ್ಞಾನ ಯಾಕೆ ಇಷ್ಟ?” ಅಂತಾ ಕೇಳಿದಾಗ, ಹೆಚ್ಚಿನ ಮಕ್ಕಳು “ಅದರಲ್ಲಿ ಪ್ರಯೋಗಗಳಿರುತ್ತವೆ ಅದಕ್ಕೆ ಇಷ್ಟ” ಎಂದು ಹೇಳುತ್ತಾರೆ.

ಮುಂದುವರೆಯುತ್ತಾ, “ಹಾಗಾದರೆ ವಿಜ್ಞಾನ ಅಂದರೇನು? ಯಾಕೆ ಅದನ್ನು ಕಲಿಯಬೇಕು?” ಅಂತಾ ಕೇಳಿದಾಗ ಹೆಚ್ಚಿನ ಮಕ್ಕಳು ನಿಜವಾಗಿ ಅವಕ್ಕಾಗಿ ಉತ್ತರಕ್ಕೆ ತಡಕಾಡುತ್ತಿರುವುದನ್ನು ಕಂಡೆ. ಕೆಲವು ಮಕ್ಕಳು ಈ ಪ್ರಶ್ನೆಗೆ ಉತ್ತರವಾಗಿ ಜೀವಕೋಶಗಳು, ಪರಿಸರ ಮುಂತಾದ ಪಠ್ಯಪುಸ್ತಗಳಲ್ಲಿರುವ ಪಾಠದ ಹೆಸರಗಳನ್ನು ಹೇಳಿದರು. ಕೆಲವೇ ಕೆಲವು ಮಕ್ಕಳು “ವಿಜ್ಞಾನ ಕಲಿತರೆ ನಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನ ವಿಷಯಗಳ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳಬಹುದು” ಅನ್ನುವಂತಹ ಉತ್ತರಗಳನ್ನು ನೀಡಿದರು.

ಈ ಮೇಲಿನ ಪ್ರಶ್ನೋತ್ತರಗಳಿಂದ ಕಂಡುಬಂದಿದ್ದೇನೆಂದರೆ,

  • ಹೆಚ್ಚಿನ ಮಕ್ಕಳಿಗೆ “ವಿಜ್ಞಾನ” ಎಂಬುದು ಒಂದು “ಪಠ್ಯಪುಸ್ತಕದ ವಿಷಯ” ಅಷ್ಟೆ.
  • ಪ್ರಯೋಗಗಳ (ಅಂದರೆ ಮಾಡಿನೋಡುವುದರ) ಮೂಲಕ ಹೇಳಿದರೆ ವಿಜ್ಞಾನ ಕಲಿಯುವುದು ಮಕ್ಕಳಿಗೆ ಇಷ್ಟ.

ಮಾತುಕತೆಯ ಮುಂದಿನ ಅಂಗವಾಗಿ ಅವರಿಗೆ ವಿಜ್ಞಾನಿಗಳ ಬದುಕನ್ನು ಚಿಕ್ಕ ಕತೆಗಳ ರೂಪದಲ್ಲಿ ಹೇಳಿದೆ.

  • ಗೆಲಿಲಿಯೋ ಮೊದಲ ಬಾರಿಗೆ ಭೂಮಿಯ ಸುತ್ತ ಗ್ರಹಗಳು ಮತ್ತು ಸೂರ್ಯ ಸುತ್ತುವುದಿಲ್ಲ ಬದಲಾಗಿ ಸೂರ್ಯ ನಡುವಿನಲ್ಲಿದ್ದು ಭೂಮಿ ಸೇರಿದಂತೆ ಉಳಿದ ಗ್ರಹಗಳು ಆತನ ಸುತ್ತ ಸುತ್ತುತ್ತವೆ ಅಂತಾ ಹೇಳಿದ್ದು ಮತ್ತು ಅದಕ್ಕೆ ಸಮಾಜ ಅವರನ್ನು ಹೀಯಾಳಿಸಿದ್ದರ ಬಗ್ಗೆ ಮತ್ತು ಹೀಯಾಳಿಕೆಗೆ ಎದೆಗುಂದದೆ ಗೆಲಿಲಿಯೋ ಮುನ್ನಡೆದುದರ ಕುರಿತಾಗಿಯೂ ಹೇಳಿದೆ.
  • ಅಲೆಕ್ಸಾಂಡರ್ ಗ್ರಾಹಂ ಬೆಲ್ ಅವರು ತಮ್ಮ ತಾಯಿಯ ಕಿವುಡುತನದಿಂದ ನೊಂದು ಸುಮ್ಮನಾಗಿರದೇ ಶಬ್ದ ಮತ್ತು ಅದರ ಸಾಗಾವಿಕೆಯ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸಿದರು. ಇದೇ ಮುಂದೆ ಅವರು ಟೆಲಿಫೋನ್ ಕಂಡುಹಿಡಿಯಲು ಅಡಿಪಾಯವಾಗಿದ್ದರ ಕುರಿತು ತಿಳಿಸಿದೆ.
  • ಶ್ರೀನಿವಾಸ ರಾಮಾನುಜನ್ ತುಂಬಾ ಚಿಕ್ಕ ವಯಸ್ಸಿನಲ್ಲಿ ತೀರಿಕೊಂಡರೂ, ಅವರು ಗಣಿತದಲ್ಲಿ ಮಾಡಿದ ಮೇರುಮಟ್ಟದ ಕೆಲಸದ ಬಗ್ಗೆ ಹೇಳಿದೆ.
  • ವಿಶ್ವೇಶ್ವರಯ್ಯನವರು ಜೋಗದಿಂದ ದುಮ್ಮಿಕ್ಕುವ ನೀರು ಕಂಡು ಬೇರೆಯವರಂತೆ ಬರೀ ಮುದಗೊಳ್ಳದೇ ಅದರಲ್ಲಿ ಅಡಗಿರುವ ಶಕ್ತಿಯ ಬಳಕೆಯ ಬಗ್ಗೆ ಮುಂದಾಗಿದ್ದರ ಕುರಿತು ಹೇಳಿದೆ.

ಕತೆಯ ಜತೆಗೆ ಆಯಾ ವಿಜ್ಞಾನಿಗಳ ಚಿತ್ರ ಗುರುತಿಸಲು ಇಲ್ಲವೇ ಅವರು ಮಾಡಿದ ಕೆಲಸದ ಬಗ್ಗೆ ಪ್ರಶ್ನೆ ಕೇಳಿ ಅದಕ್ಕೆ ಸರಿಯಾಗಿ ಉತ್ತರಿಸಿದ ಮಕ್ಕಳಿಗೆ ಪುಸ್ತಕ ರೂಪದಲ್ಲಿ ಬಹುಮಾನ ನೀಡಿದೆ. ಕತೆ ಮತ್ತು ಬಹುಮಾನ ಮಕ್ಕಳಿಗೆ ಇಷ್ಟವಾದವು ಅನ್ನಿಸಿತು. ವಿಜ್ಞಾನಿಗಳು ತಮ್ಮ ಜೀವನದುದ್ದಕ್ಕೂ ಹಲವು ಕಷ್ಟಗಳನ್ನು ಎದುರಿಸಿದರೂ ಹೇಗೆ ಸಾಧನೆ ಮಾಡಿದರು ಅನ್ನುವುದನ್ನು ಮನವರಿಕೆ ಮಾಡುವ ಉದ್ದೇಶದಿಂದ ಮಾತುಕತೆಯಲ್ಲಿ ಈ ಮೇಲಿನ ಬಗೆ ಅಳವಡಿಸಿಕೊಂಡೆ.

ಮುಂದುವರೆಯುತ್ತಾ, ಕಣ್ಕಟ್ಟಿನ ಮಾದರಿಗಳಲ್ಲಿ ಒಂದಾದ “ತಿರುಗುವ ಹಾವುಗಳು” (Rotating Snakes) ಚಿತ್ರವನ್ನು ಮಕ್ಕಳಿಗೆ ತೋರಿಸಿದಾಗ, ಚಿತ್ರಗಳು ತಿರುಗುತ್ತಿರುವಂತೆ ಕಾಣುವುದು ಆದರೆ ನಿಜವಾಗಿ ಅವು ತಿರುಗದೇ ನಮ್ಮ ಮಿದುಳಿಗೆ ಉಂಟಾಗುವ “ಅನಿಸಿಕೆ” ಎಂದು ತಿಳಿಸಿದೆ. ಹಾಗೆನೇ ವಿಜ್ಞಾನ ಕೂಡ ಬರೀ ಕಣ್ಣಿಗೆ ಕಾಣುವುದನ್ನು ನಿಜವೆಂದು ಬಗೆಯದೇ ವಿಷಯದ ಆಳಕ್ಕೆ ಇಳಿಯಲು ನೆರವಾಗುತ್ತದೆ ಎಂದು ಕೊಂಡಿ ಬೆಸೆಯಲು ಪ್ರಯತ್ನಿಸಿದೆ.

Rotating Sankes

ಲಕ್ಷಗಟ್ಟಲೇ ವರುಷಗಳಿಂದ ಮನುಷ್ಯ ಹಂತ ಹಂತವಾಗಿ ಹೇಗೆ ತನ್ನ ಅರಿವನ್ನು ಹಿಗ್ಗಿಸಿಕೊಳ್ಳುತ್ತಾ ಬಂದಿದ್ದಾನೆ ಎನ್ನುವುದನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದ ಮೂಲಕ ಚರ್ಚಿಸಿದೆ. ಸುತ್ತಣವನ್ನು ಅರಿಯದೇ ಹಾಗೆಯೇ ಇದ್ದು ಬಿಟ್ಟಿದ್ದರೆ ಮನುಷ್ಯ ಕೂಡ ಇತರೆ ಪ್ರಾಣಿಗಳಂತೆ ಆಗಿ ಬಿಡುತ್ತಿದ್ದ. ಚಿಕ್ಕ-ಚಿಕ್ಕದಾಗಿ ಎಡೆಬಿಡದೇ ಇಟ್ಟ ಕಲಿಕೆಯ ಹೆಜ್ಜೆಗಳು ಇಂದು ನಮ್ಮ ನೆರವಿಗೆ ಬಂದಿವೆ. ಹಾಗಾಗಿ ವಿಜ್ಞಾನದಲ್ಲಿ ಪ್ರತಿಯೊಬ್ಬರ ಯೋಚನೆ, ತೊಡಗುವಿಕೆ ಮನುಕುಲಕ್ಕೆ ಬೇಕಾಗಿದೆಯೆಂದೆ. (ಮಕ್ಕಳೆಡೆಗೆ ಕೈ ತೋರಿಸುತ್ತಾ)

Evolution_Science

ಮಕ್ಕಳನ್ನು ಮಾತುಕತೆಯಲ್ಲಿ ಇನ್ನಷ್ಟು ತೊಡಗಿಸಲು ಮತ್ತು ನಿಜವಾಗಿ ವಿಜ್ಞಾನ ಎಂದರೇನು ಅಂತಾ ಮನವರಿಕೆ ಮಾಡಲು ಏನು? ಏಕೆ? ಹೇಗೆ?” ಅನ್ನುವ ಚಟುವಟಿಕೆಯೊಂದನ್ನು ರೂಪಿಸಿದೆ. ಮಕ್ಕಳಿಗೆ ಇಷ್ಟವಾಗುವಂತೆ ಮಲ್ಲಿಗೆ, ಸಂಪಿಗೆ, ಗುಲಾಬಿ, ತಾವರೆ ಎಂಬ ಹೆಸರು ಆಯ್ದುಕೊಂಡು ಮೂರು-ನಾಲ್ಕು ತಂಡಗಳನ್ನು ಮಾಡಿದೆ.

FB_IMG_1530981332618

ಈ ಚಟುವಟಿಕೆಯಲ್ಲಿ ಪ್ರತಿಯೊಂದು ತಂಡ ಮೂರು ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಬೇಕು. ಆ ಪ್ರಶ್ನೆಗಳು ಹೇಗಿರಬೇಕೆಂದರೆ,

– ಸುತ್ತಮುತ್ತ ಕಾಣುವ ಏನೇ ಕುತೂಹಲ, ಅಚ್ಚರಿಗಳನ್ನು ಹುಟ್ಟಿಸಿದ ಪ್ರಶ್ನೆಗಳಾಗಿರಬೇಕು.

– ಕೇಳುವ ಪ್ರಶ್ನೆಗಳು ಅವರ ಅನುಭವಗಳಾಗಿರಬೇಕು ಹೊರತು ಪಠ್ಯಪುಸ್ತಕಗಳಿಂದ ಎತ್ತುಕೊಂಡಿದ್ದು ಆಗಿರಬಾರದು.

– ಕೇಳುವ ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರ ಗೊತ್ತಿರಬೇಕಂತಿಲ್ಲ, ಬರೀ ಚಂದದ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಿದರೆ ಸಾಕು.

ಪ್ರಶ್ನೆಗಳನ್ನು ಕಲೆಹಾಕಲು 10 ನಿಮಿಷಗಳ ಸಮಯ ಗೊತ್ತುಪಡಿಸಿದೆ.

ಚಟುವಟಿಕೆ ಶುರು ಮಾಡುತ್ತಿರುವಂತೆ ಕೆಲವು ಮಕ್ಕಳು ಗುನುಗುಟ್ಟುತ್ತಾ ಕುಳಿತರು ಇನ್ನು ಕೆಲವು ಮಕ್ಕಳು ಬೇರೆಯ ಮಕ್ಕಳೊಂದಿಗೆ ಬೆರೆಯದೇ ಒಬ್ಬಂಟಿಯಾಗಿ ಕುಳಿತುಕೊಂಡಿದ್ದರು. ಚಟುವಟಿಕೆಯ ಬಗ್ಗೆ ಇನ್ನಷ್ಟು ತಿಳಿಸಲು,

“ನೋಡಿ ಮಕ್ಕಳೇ ಪ್ರತಿದಿನ ಬೆಳಿಗ್ಗೆ ಎದ್ದಾಗಿನಿಂದ ತಿಂಡಿ ತಿಂದು, ಶಾಲೆಗೆ ಬಂದು ಪಾಠ ಓದಿ, ಊಟ ಮಾಡಿ, ಆಟವಾಡಿ, ಸಂಜೆ ಮನೆಗೆಲಸ ಮಾಡಿ, ರಾತ್ರಿ ಊಟ ಮಾಡಿ ಮಲಗುವವರೆಗೂ ಹಲವಾರು ವಿಷಯಗಳು ನಿಮಗೆ ಕಂಡಿರುತ್ತವೆ. ಕೆಲವು ವಿಷಯಗಳನ್ನು ನಿಮ್ಮನ್ನು ಕುತೂಹಲಕ್ಕೆ ಈಡು ಮಾಡಿರಬಹುದು. ಉದಾ: ನಾವೇಕೆ ನಿದ್ದೆ ಮಾಡುತ್ತೇವೆ? ಎಲೆಗಳು ಹಸಿರಾಗೇಕೆ ಇರುತ್ತವೆ? ಮಣ್ಣು ಹೇಗೆ ಉಂಟಾಯಿತು? ನೀರಡಿಕೆ ಏಕೆ ಆಗುತ್ತದೆ? ಮುಂತಾದ ಕುತೂಹಲದ ಪ್ರಶ್ನೆಗಳು ನಿಮ್ಮಲ್ಲಿ ಹುಟ್ಟಿರಬಹುದು. ಅಂತಹ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳುವುದೇ ಇಂದಿನ ಆಟ. ಹಾಗಾಗಿ ಪಠ್ಯಪುಸ್ತಕಗಳನ್ನು ಪಕ್ಕಕ್ಕಿಟ್ಟು ನಿಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನಲ್ಲಿ ಕಂಡುಬಂದ ಅಚ್ಚರಿಯ ವಿಷಯಗಳ ಬಗ್ಗೆ ಗಮನಿಸಿ”

ಅಂದಾಗ, ಮಕ್ಕಳು ಒಗ್ಗೂಡಿ ಪ್ರಶ್ನೆಗಳನ್ನು ಕಲೆಹಾಕಲು ಮುಂದಾದರು. “ಪಠ್ಯಪುಸ್ತಕದಾಚೆಗೆ, ಎಷ್ಟೇ ಚಿಕ್ಕದಾದ, ಸುಲಭವೆನಿಸುವ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಬಹುದು” ಅಂದಾಗ ಅವರಲ್ಲಿ ಹುರುಪು ಹೆಚ್ಚಿದ್ದನ್ನು ಗಮನಿಸಿದೆ. ಪ್ರತಿಯೊಂದು ತಂಡದ ಪರವಾಗಿ ಯಾರಾದರೂ ಒಬ್ಬರು ಪ್ರಶ್ನೆ ಕಲೆಹಾಕಿ, ಕೇಳಲು ಹೇಳಿದೆ.

ಪ್ರಶ್ನೆ ಕಲೆಹಾಕುವಾಗ ಹೆಚ್ಚಿನ ಮಕ್ಕಳು ಆ ಚಟುವಟಿಕೆಯಲ್ಲಿ ತೊಡಗಿಕೊಂಡಿರುವುದು ಕಂಡಿತು. ಗೊತ್ತುಪಡಿಸಿದ ಹೊತ್ತು ಮುಗಿಯುತ್ತಿದ್ದಂತೆ ಹಲವು ಮಕ್ಕಳು ಕೈ ಎತ್ತಿ, “ನಾನು ಕೇಳುತ್ತೇನೆ…ನಾನು ಕೇಳುತ್ತೇನೆ” ಅಂತಾ ಮುಂದಾದರು.

IMG-20180804-WA0002

ಮಕ್ಕಳು ಕೇಳಿದ ಮೊದಲ ಕೆಲವು ಪ್ರಶ್ನೆಗಳು ಮತ್ತೇ ಪಠ್ಯಪುಸ್ತಕಗಳಿಂದ ಆಯ್ದುಕೊಂಡಿದ್ದು ಆಗಿದ್ದವು. (ಉದಾ: ಜೀವಕೋಶದಲ್ಲಿ ಮೈಟೋಕಾಂಡ್ರಿಯಾದ ಕೆಲಸವೇನು?) ಆದರೆ ಚಟುವಟಿಕೆ ಮುಂದುವರೆದಂತೆ ಅವರಿಗೆ ಇನ್ನಷ್ಟು ಒಳ್ಳೊಳ್ಳೆ ಪ್ರಶ್ನೆಗಳು ಬರಲು ತೊಡಗಿದವು. ಮಕ್ಕಳು ಕೇಳಿದ ಕೆಲವು ಪ್ರಶ್ನೆಗಳನ್ನು ಕೆಳಗೆ ಕೊಟ್ಟಿರುವೆ,

  • ನಾವು ಆಕಳಿಸಿದಾಗ ಕಣ್ಣೀರು ಏಕೆ ಬರುತ್ತದೆ?!
  • ಮನುಷ್ಯ ಸತ್ತ ಕೆಲವು ಗಂಟೆಗಳಲ್ಲಿ ವಾಸನೆ ಏಕೆ ಬರುತ್ತದೆ?! [ಈ ಪ್ರಶ್ನೆ ಕೇಳಿದ ಮಗು ಕೆಲವು ದಿನಗಳ ಮುಂಚೆ ತನ್ನ ಮನೆಯ ಪಕ್ಕ ಯಾರೋ ತೀರಿಹೋದದ್ದನ್ನು ಗಮನಿಸಿತ್ತು]
  • ನಾವು ವರುಷಗಳು ಕಳೆದಂತೆ ಏಕೆ, ಹೇಗೆ ಬೆಳೆಯುತ್ತೇವೆ?!
  • ಈರುಳ್ಳಿ ಹೆಚ್ಚುವಾಗ ಕಣ್ಣೀರು ಏಕೆ ಬರುತ್ತದೆ!? [ಈ ಪ್ರಶ್ನೆ ಕೇಳಿದ ಮಗು ಅಮ್ಮನಿಗೆ ಅಡುಗೆಯಲ್ಲಿ ಸಹಾಯ ಮಾಡುತ್ತದೆ. ಆಗ ಈ ಪ್ರಶ್ನೆ ಬಂದಿತಂತೆ]
  • ನಮ್ಮ ಮೈಯಲ್ಲಿ ರಕ್ತ ಹೇಗೆ ಉಂಟಾಗುತ್ತದೆ?!

ಹೌದು, ಹೌದು ಅನ್ನಿಸುವ ಮೇಲಿನಂತಹ ಪ್ರಶ್ನೆಗಳಲ್ಲದೇ ಮೇಲ್ನೋಟಕ್ಕೆ ಸ್ವಲ್ಪ ತಮಾಶೆ ಅನ್ನಿಸಿದರೂ, ಮಕ್ಕಳ ಎಲ್ಲೆಯಿಲ್ಲದ ಕುತೂಹಲವನ್ನು ತೋರ್ಪಡಿಸುವ ಕೆಳಗಿನ ಪ್ರಶ್ನೆಗಳನ್ನೂ ಕೇಳಿದರು,

  • ಮನುಷ್ಯರು ಮಾತಾಡುತ್ತಾರೆ ಆದರೆ ನಮ್ಮ ಮನೆಯ ಹಸು ಏಕೆ ಮಾತಾಡುವುದಿಲ್ಲ?! [ಈ ಮಗುವಿಗೆ ತಮ್ಮ ಹಸುವಿನ ಕೊಟ್ಟಿಗೆಯಲ್ಲಿ ಈ ಪ್ರಶ್ನೆ ಮೂಡಿತ್ತಂತೆ]
  • ಚುಕ್ಕೆ ಬಾಳೆಹಣ್ಣಿನ ಮೇಲೆ ಚುಕ್ಕೆಗಳಿರುತ್ತವೆ ಆದರೆ ಏಲಕ್ಕಿ ಬಾಳೆಹಣ್ಣಿನಲ್ಲಿ ಏಲಕ್ಕಿ ಏಕಿರುವುದಿಲ್ಲ!?
  • ಬಸ್ಸು, ರೈಲು ಗಾಡಿಗಳಿದ್ದರೂ ವಿಮಾನ ಏಕೆ ಕಂಡುಹಿಡಿದರು?

ಚಟುವಟಿಕೆಯಲ್ಲಿ ಒಳ್ಳೆಯ ಪ್ರಶ್ನೆ ಕೇಳಿ ಗೆದ್ದ ತಂಡದಿಂದ ಶಾಲೆಗೆ ಉಡುಗೊರೆಯಾಗಿ ವಿಜ್ಞಾನದ ಪುಸ್ತಕವೊಂದನ್ನು ಕೊಡಲಾಯಿತು. ಚಟುವಟಿಕೆಯ ಬಳಿಕ ಮನೆಯಲ್ಲಿಯೇ ಮಾಡಬಹುದಾದ ವಿಜ್ಞಾನ ಪ್ರಯೋಗಗಳ ಪುಸ್ತಕಗಳನ್ನು ಎಲ್ಲ ಮಕ್ಕಳಿಗೆ ಕೊಡಲಾಯಿತು.

IMG-20180825-WA0005

ಒಟ್ಟಾರೆಯಾಗಿ ಈ ಚಟುವಟಿಕೆ ಮಕ್ಕಳನ್ನು ತುಂಬಾ ಹುರುಪುಗೊಳಿಸಿದ್ದು ಕಂಡು ಬಂದಿತು. “ಮಕ್ಕಳು ಇಷ್ಟು ಹುರುಪಿನಿಂದ ನಮ್ಮೊಡನೆ ಒಡನಾಡುವುದಿಲ್ಲ. ಪ್ರಶ್ನೆ ಕೇಳುವುದಕ್ಕೆ ಮುಂದೆ ಬರುವುದಿಲ್ಲ” ಅನ್ನುವಂತಹ ಅನುಭವಗಳನ್ನು ಶಾಲೆಯ ಶಿಕ್ಷಕರು ಹಂಚಿಕೊಂಡರು.

ವಿಜ್ಞಾನವೆಂದರೆ ನಮ್ಮ ಸುತ್ತಮುತ್ತಲಿನ ವಿಷಯಗಳ ಸುತ್ತ ಕುತೂಹಲ ಬೆಳೆಸಿಕೊಳ್ಳುವುದು, ಅವುಗಳ ಬಗ್ಗೆ ಆಳವಾಗಿ ತಿಳಿದುಕೊಳ್ಳುವುದೇ ವಿಜ್ಞಾನದ ಗುರಿಯಾಗಿದೆ. ಸರಿ ಯಾವುದೆಂದು ಮೇಲ್ನೋಟಕ್ಕೆ ನೋಡದೇ ಆಳವಾಗಿ ಒರೆಗೆಹಚ್ಚುವುದು ವಿಜ್ಞಾನದ ತಳಹದಿ. ಪಠ್ಯಪುಸ್ತಕಗಳಲ್ಲಿರುವ ಪಾಠಗಳನ್ನು ಓದಿ, ಪರೀಕ್ಷೆ ಬರೆಯುವುದಷ್ಟೇ ವಿಜ್ಞಾನವಲ್ಲ ಅನ್ನುವುದನ್ನು ನಾವು ತಿಳಿದುಕೊಳ್ಳಬೇಕೆಂದು ತಿಳಿಸಿದಾಗ ಮಕ್ಕಳು ಚಟುವಟಿಕೆಗಳಲ್ಲಿ ಪಾಲ್ಗೊಂಡ ನಲಿವಿನೊಂದಿಗೆ ಹೌದೆನ್ನುವಂತೆ ತಲೆತೂಗಿದರು.

ಮೇಲಿನ ಶಾಲೆಯ ಮಕ್ಕಳೊಂದಿಗಿನ ಒಡನಾಟದಿಂದ ನನಗಾದ ಕಲಿಕೆಯೆಂದರೆ,

1. ವಿಜ್ಞಾನ ಕಲಿಸುವುದರಲ್ಲಿ ನಾವು ಮುಖ್ಯವಾಗಿ ಎಡವುತ್ತಿರುವುದೆಲ್ಲಿ ಎಂದರೆ, ವಿಜ್ಞಾನ ನಮ್ಮ ಬದುಕಿನ ಸುತ್ತನೇ ಇರುವ, ನಮ್ಮ ಸುತ್ತಣದ ತಿಳುವಳಿಕೆ ಅನ್ನುವುದನ್ನು ಮಕ್ಕಳಿಗೆ ಮನವರಿಕೆ ಮಾಡುವಲ್ಲಿ ಸೋಲುತ್ತಿರುವುದು. ವಿಜ್ಞಾನ ಹೇಗೆ ನಮ್ಮ ಬದುಕಿನೊಂದಿಗೆ ಹಾಸುಹೊಕ್ಕಾಗಿದೆ ಅನ್ನುವುದನ್ನು ಮೊದಲು ತಿಳಿಸಬೇಕು ಅದಾದ ಬಳಿಕವೇ ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿರುವ ಪಠ್ಯಕ್ರಮದಂತೆ ಕಲಿಸಲು ಮುಂದಾಗಬಹುದು. ಈ ಬಗೆಯನ್ನು ಪ್ರತಿಯೊಂದು ಪಾಠಕ್ಕೂ ಅಳವಡಿಸಿಕೊಳ್ಳಬಹುದು. ಉದಾಹರಣೆಗೆ, ’ಅಣು’ ಪಾಠವನ್ನು ಕಲಿಸುವ ಮುನ್ನ, ನಮ್ಮ ಸುತ್ತಮುತ್ತ ಕಾಣುವ ವಸ್ತುಗಳ ಜತೆಗೆ ನಮ್ಮ ಮೈ ಕೂಡ ಮೂಲದಲ್ಲಿ ಅಣುಗಳಿಂದ ಆಗಿರುವುದನ್ನು ಮಕ್ಕಳಿಗೆ ತಿಳಿಸಿಕೊಡಬೇಕು. ’ಅಣು’ಗಳ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸಿದುದರಿಂದ ಉದಾಹರಣೆಗೆ ನೀರಿನ ಗುಣಗಳನ್ನು ಚನ್ನಾಗಿ ತಿಳಿಯಲು ಆಯಿತು, ಹೆಚ್ಚು ಗಟ್ಟಿಯಾದ, ಹಗುರವಾದ ವಸ್ತುಗಳನ್ನು ಕಂಡುಹಿಡಿಯಲು ಸಾಧ್ಯವಾಯಿತು, ವಸ್ತುವೊಂದು ಇನ್ನೊಂದು ವಸ್ತುವಿನೊಡನೆ ಹೇಗೆ ಬೆರೆಯುತ್ತದೆ ಅನ್ನುವುದನ್ನು ಅರಿಯಲು ನೆರವಾಯಿತು ಹೀಗೆ ಮುಂದುವರೆಯಬಹುದು.

2. ಕಲಿಕೆಯಲ್ಲಿ ಮಕ್ಕಳ “ಪಾಲ್ಗೊಳ್ಳುವಿಕೆ” ತುಂಬಾ ಮುಖ್ಯ. ಹಾಗಾಗಿ ಶಾಲೆಯ ಕೋಣೆಯಲ್ಲಿ ಕಲಿಕೆ ಬರೀ ಶಿಕ್ಷಕರಿಂದ ಮಕ್ಕಳೆಡೆಗೆ ಹರಿಯದೇ, ಎರಡೂ ಬದಿಯಿಂದ ಚರ್ಚೆಯ, ಪ್ರಶ್ನೋತ್ತರಗಳ ರೂಪದಲ್ಲಿ ನಡೆದರೆ ಹೆಚ್ಚು ಪರಿಣಾಮಕಾರಿಯಾಗಬಲ್ಲದು. ಮಕ್ಕಳು ಹೆಚ್ಚು ತೊಡಗಿದಷ್ಟು ಕಲಿಕೆ ಸುಲಭ.

3. ವಿಜ್ಞಾನ ಕಲಿಕೆಯಲ್ಲಿ “ಓದಿ” ಕಲಿಯುವುದರ ಜತೆಗೆ “ಮಾಡಿ” ಕಲಿಯುವುದಕ್ಕೆ ಒತ್ತುಕೊಡಬೇಕು. ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಕಿರಿದಾದರೂ ಪರವಾಗಿಲ್ಲ ಪ್ರತಿಯೊಂದು ಶಾಲೆ ವಿಜ್ಞಾನದ ಪ್ರಯೋಗಮನೆಯನ್ನು ಹೊಂದಿರಬೇಕು. ಶಾಲೆಯ ಕೋಣೆಯಲ್ಲಿ ಕಲಿಸುವಾಗಲೂ ಕೂಡಾ ಶಿಕ್ಷಕರು ಪಾಠಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಕಿರು ಪ್ರಯೋಗಗಳನ್ನು ಮಾಡಿ ತೋರಿಸಬಹುದು.

4. ಮಕ್ಕಳ ಯೋಚನೆಯ ಹರಿವನ್ನು ಕಟ್ಟಿಹಾಕುವುದಾಗಲಿ ಇಲ್ಲವೇ “ಇದೇ ದಾರಿ ಸರಿಯಾದುದು”, “ಹೀಗೆನೇ ಯೋಚನೆ ಮಾಡಬೇಕು” ಅನ್ನುವುದನ್ನು ಕಲಿಸುಗರು ಮಾಡಬಾರದು. ಮಕ್ಕಳಿಗೆ ರೆಕ್ಕೆ ಬಡಿಯಲು ಬಿಟ್ಟಷ್ಟು ಅವರು ಹೊಸ ದಿಕ್ಕುಗಳನ್ನು ಅರಸಲು ಸಾಧ್ಯವಾಗುತ್ತದೆ. ಕಲಿಸುಗರು ಮಕ್ಕಳೊಂದಿಗೆ ಗೆಳೆಯ/ಗೆಳತಿಯಂತೆ ಬೆರೆತಷ್ಟೂ ಕಲಿಕೆ, ಕಲಿಸುವಿಕೆ ಸುಲಭವಾಗುತ್ತದೆ. [ಹಾಗಂತ ಬರೀ ತರ್ಲೆ ಮಾಡಲು ಬಿಡುವುದು ಅಂತಲ್ಲಾ:-) ]

5. ಪಠ್ಯಪುಸ್ತಕಗಳು ಕನ್ನಡದ ನುಡಿ ಸೊಗಡಿಗೆ ಒಗ್ಗುವಂತೆ ಮಾಡಬೇಕು. ಈಗಿರುವ ಪಠ್ಯಪುಸ್ತಕಗಳಲ್ಲಿ ತುಂಬಾ ಕಷ್ಟಕರವಾದ ಪದಗಳು, ವಾಕ್ಯಗಳ ಬಳಕೆ ಮಾಡಲಾಗಿದೆ. ವಿಜ್ಞಾನ ಅವರಿಗೆ ಬರೀ ಪಠ್ಯಕ್ರಮದ ವಿಷಯ, ಅದಕ್ಕೂ ಅವರ ಪರಿಸರಕ್ಕೂ ನಂಟಿಲ್ಲ ಅನ್ನಿಸುವುದಕ್ಕೆ ಇದು ಕೂಡ ಕಾರಣ. ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಶಿಕ್ಷಣ ಇಲಾಖೆ ಮತ್ತು ಸರಕಾರ ಕೂಡಲೇ ಗಮನಹರಿಸಿ, ಸರಿಪಡಿಸಬೇಕು. ತಾಯ್ನುಡಿ ಮಾಧ್ಯಮದಲ್ಲಿ ಕಲಿಕೆಯ ಪ್ರಯೋಜನ ಮಕ್ಕಳು ಪಡೆಯುವಂತಾಗಲು ಇದು ಆಗಬೇಕು. ಇಲ್ಲವಾದರೆ ಪಠ್ಯಪುಸ್ತಕಗಳ ಚೌಕಟ್ಟಿನಲ್ಲಿ ನೋಡಿದಾಗ ಇಂಗ್ಲೀಶ್ ಮತ್ತು ಕನ್ನಡ ಮಾಧ್ಯಮದಲ್ಲಿ ಕಲಿಕೆಯ ವ್ಯತ್ಯಾಸವೇನೂ ಉಳಿಯುವುದಿಲ್ಲ. ಎರಡೂ ಪಠ್ಯಪುಸ್ತಕಗಳೂ ಮಕ್ಕಳಿಗೆ ದೂರವಾದ ಪದಗಳಿಂದ ಪರಕೀಯವಾಗಿ ಬಿಡುತ್ತವೆ.

[ಪದಗಳ ಬಳಕೆಯ ಬಗ್ಗೆ ನಡೆಸಿದ ಅಧ್ಯಯನ ವರದಿಯನ್ನು ಓದಲು ಇಲ್ಲಿಗೆ ಹೋಗಿ ]

ಶಾಲೆಯ ಮಕ್ಕಳೊಂದಿಗೆ ಒಡನಾಡುವ ನಮ್ಮ ತಂಡದ ಕೆಲಸ ಮುಂದುವರೆಯಲಿರುವುದರಿಂದ, ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಇನ್ನಷ್ಟು ಕಲಿಕೆಯಾಗುವುದಂತೂ ನಿಜ. ಹಾಗಾಗಿ ಈ ಬರಹ ಮುಂದೊಮ್ಮೆ ಮತ್ತಷ್ಟು ಹಿಗ್ಗಬಹುದು.

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಇಂದು ಹಾರಲಿದೆ ಸೂರ್ಯನತ್ತ ಪಾರ್ಕರ್ ಬಾನಬಂಡಿ

ಅಮೆರಿಕಾದ ನಾಸಾ (NASA) ಕೂಟ ಸೂರ್ಯನ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸಲು ಇಂದು ಪಾರ್ಕರ್ ಸೋಲಾರ್ ಪ್ರೋಬ್ ಎಂಬ ಬಾನಬಂಡಿಯನ್ನು ಹಾರಿಸಲಿದೆ. ಇನ್ನು ಎರಡು ಗಂಟೆಗಳಲ್ಲಿ ಅಂದರೆ ಭಾರತದ ಹೊತ್ತು ಮಧ್ಯಾಹ್ನ ಸುಮಾರು 1 ಗಂಟೆಗೆ ಈ ಬಾನಬಂಡಿ ಬಾನಿಗೆ ನೆಗೆಯಲಿದೆ. ಈ ಮೂಲಕ ವಿಜ್ಞಾನದ ಹೊಸದೊಂದು ಮೈಲಿಗಲ್ಲು ದಾಟಲು ಮನುಕುಲ ಎದುರುನೋಡುತ್ತಿದೆ.

260px-Parker_Solar_Probe

ಭೂಮಿಯ ವಾತಾವರಣ, ಜೀವಿಗಳು ಬೆಳೆಯಲು ಬೇಕಾದ ಶಕ್ತಿಮೂಲವಾದ ಸೂರ್ಯನ ಹತ್ತಿರಕ್ಕೆ ಹೋಗಲು ಇಲ್ಲಿಯವರಿಗೆ ಆಗಿಲ್ಲ ಏಕೆಂದರೆ ಸೂರ್ಯನ ಮೇಲ್ಮೈ ತುಂಬಾ ಬಿಸಿಯಾಗಿದ್ದು, ಆ ಬಿಸಿಯನ್ನು ತಡೆದುಕೊಳ್ಳುವ ಸಲಕರಣೆಗಳನ್ನು ಮಾಡುವುದು ತುಂಬಾ ಕಷ್ಟ. ಸೂರ್ಯನ ಮೇಲ್ಮೈಯ ಸುತ್ತಣದ ಭಾಗದಲ್ಲಿ ಕಾವಳತೆ ಸುಮಾರು 20,00,000 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ವರೆಗೆ ತಲುಪುತ್ತದೆ!

ಹಾಗೆನೇ ಭೂಮಿಯಿಂದ ಸೂರ್ಯನಿರುವ ದೂರ, ಸಲಕರಣೆಗಳನ್ನು ಕಳಿಸಲು ಇನ್ನೊಂದು ಸವಾಲು ಒಡ್ದುತ್ತದೆ. ಸೂರ್ಯ ಮತ್ತು ಭೂಮಿಯ ನಡುವಿನ ಸರಾಸರಿ ದೂರ ಸುಮಾರು 15 ಕೋಟಿ ಕಿಲೋ ಮೀಟರ್! ಪಾರ್ಕರ್ ಬಾನಬಂಡಿ ಸೂರ್ಯನ ಮೇಲ್ಮೈಯಿಂದ ಸುಮಾರು 60 ಲಕ್ಷ ಕಿ.ಮೀ. ನಷ್ಟು ಹತ್ತಿರ ಹೋಗಲಿದ್ದು, ಇಷ್ಟು ಹತ್ತಿರಕ್ಕೆ ಹೋಗುವ ಮೊದಲ ಸಲಕರಣೆ ಇದಾಗಲಿದೆ.

ನೇಸರ, ಸೂರ್ಯ, ರವಿ ಮುಂತಾದ ಹೆಸರುಗಳಿಂದ ಗುರುತಿಸಲ್ಪಡುವ ಈ ನಕ್ಷತ್ರ ನಮಗೆ ಶಕ್ತಿಯ ಮೂಲ. ಹೈಡ್ರೋಜನ್ ಅಣುಗಳ ಬೆಸುಗೆಯಿಂದಾಗಿ ಸೂರ್ಯನಲ್ಲಿ ಹೇರಳವಾದ ಶಕ್ತಿ ಬಿಡುಗಡೆಯಾಗುತ್ತದೆ. ಸುಮಾರು 4.57 ಬಿಲಿಯನ್ ವರುಷಗಳ ಹಿಂದೆ ಹೈಡ್ರೋಜನ್ ಮತ್ತು ಹೀಲಿಯಂ ಅಣುಗಳಿಂದ ಕೂಡಿದ್ದ ದೈತ್ಯ ಅಣುಮೋಡದ ಕುಸಿತದಿಂದ ಸೂರ್ಯ ಉಂಟಾಗಿದ್ದು, ತನ್ನ ಬದುಕಿನ ಅರ್ಧ ಆಯುಷ್ಯವನ್ನು ಸೂರ್ಯ ಈಗಾಗಲೇ ಕಳೆದಿದ್ದಾನೆ ಎಂದು ವಿಜ್ಞಾನಿಗಳು ಅಂದಾಜಿಸಿದ್ದಾರೆ.

ಸೂರ್ಯನಲ್ಲಿ ಮುಖ್ಯವಾಗಿ ತಿರುಳು (core), ಸೂಸಿಕೆಯ ಹರವು (radiative zone), ಒಯ್ಯಿಕೆಯ ಹರವು (convective zone), ಬೆಳಕುಗೋಳ (photosphere), ಬಣ್ಣಗೋಳ (chromosphere), ಹೊಳಪುಗೋಳ (corona) ಎಂಬ ಭಾಗಗಳನ್ನು ಗುರುತಿಸಲಾಗಿದೆ. ಈ ಭಾಗಗಳನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ.

3

ತಿರುಳಿನ ಭಾಗದಲ್ಲಿ ಹೈಡ್ರೋಜನ್ ಅಣುಗಳ ಬೆಸುಗೆಯಿಂದ ಬಿಡುಗಡೆಯಾಗುವ ಶಕ್ತಿ ಉಳಿದ ಭಾಗಗಳನ್ನು ದಾಟಿ ಹೊರಸೂಸುತ್ತದೆ. ನಾಸಾ ಇಂದು ಹಾರಿಸಲಿರುವ ಬಾನಬಂಡಿ ಸುಮಾರು 88 ದಿನಗಳ ಪ್ರಯಾಣದ ಬಳಿಕ ಸೂರ್ಯನ ಸುತ್ತಣದ ಭಾಗವಾದ ಹೊಳಪುಗೋಳದ ಹತ್ತಿರಕ್ಕೆ ಮೊದಲ ಬಾರಿಗೆ ಹೋಗಲಿದೆ.

ಸೋಲಾರ್ ಪಾರ್ಕರ್ ಬಾನಬಂಡಿ ಸುಮಾರು ಏಳು ವರುಶಗಳ ಕಾಲ ಸೂರ್ಯನ ಸುತ್ತ ಅಧ್ಯಯನ ನಡೆಸಲಿದ್ದು, ಅದರ ಒಟ್ಟಾರೆ ಪ್ರಯಾಣವನ್ನು ದಿನಾಂಕಕ್ಕೆ ತಕ್ಕಂತೆ ಕೆಳಗಿನ ಓಡುಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ. (ಚಿತ್ರಸೆಲೆ: ವಿಕಿಪೀಡಿಯಾ)

Animation_of_Parker_Solar_Probe_trajectory

(ಚಿತ್ರದಲ್ಲಿನ ಬಣ್ಣಗಳ ವಿವರ – ಹಳದಿ: ಸೂರ್ಯ, ಹಸಿರು: ಬುಧ, ತಿಳಿನೀಲಿ: ಶುಕ್ರ, ಕಡುನೀಲಿ: ಭೂಮಿ, ನವಿರುಗೆಂಪು: ಪಾರ್ಕರ್ ಪ್ರೋಬ್)

ಬಾನಬಂಡಿಯ ಭಾಗಗಳು:

ಪಾರ್ಕರ್ ಸೋಲಾರ್ ಪ್ರೋಬ್ ಸೂರ್ಯನ ಸುತ್ತಣದಲ್ಲಿ ಎದುರಾಗುವ ಹೆಚ್ಚಿನ ಕಾವಳತೆಯನ್ನು ತಡೆದುಕೊಳ್ಳುವಂತೆ ಅಣಿಗೊಳಿಸಲಾಗಿದೆ. ಇದಕ್ಕಾಗಿ ಕಾರ್ಬನ್ ಎಳೆಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟ ಸಿ.ಎಫ್.ಆರ್.ಸಿ. ಎಂಬ ವಸ್ತುವನ್ನು ಬಳಸಲಾಗಿದೆ. ಇದು ಸುಮಾರು 1377 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ವರೆಗಿನ ಕಾವಳತೆಯನ್ನು ತಡೆದುಕೊಳ್ಳಬಲ್ಲದು.

parker_probe

(ಚಿತ್ರಸೆಲೆ: KnowledgeSuttra.com )

ಬಾನಬಂಡಿಗೆ ಏನಾದರೂ ತೊಂದರೆಯಾದರೆ ಭೂಮಿಗೆ ಮಾಹಿತಿಯನ್ನು ಕಳಿಸಲು ಸುಮಾರು 8 ನಿಮಿಶಗಳು ತಗಲುವುದರಿಂದ, ಈ ಹೊತ್ತಿನಲ್ಲಿ ತಂತಾನೇ ತೀರ್ಮಾನ ಕೈಗೊಳ್ಳುವಂತೆ ಬಾನಬಂಡಿಯನ್ನು ಸಜ್ಜುಗೊಳಿಸಲಾಗಿದೆ. ಸೂರ್ಯನ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸಲು ಬೇಕಿರುವ ವೈಜ್ಞಾನಿಕ ಸಲಕರಣೆಗಳನ್ನು ಬಾನಬಂಡಿಯ ನಡುವಿನ ಭಾಗದಲ್ಲಿ ಇರಿಸಲಾಗಿದೆ. ಬಾನಬಂಡಿಯಲ್ಲಿ ಎರಡು ಸೋಲಾರ್ ಸಾಲುತಟ್ಟೆಗಳಿದ್ದು, ಅಧ್ಯಯನಕ್ಕೆ ಬೇಕಾದ ವಿದ್ಯುತ್ ಶಕ್ತಿಯನ್ನು ಒದಗಿಸುತ್ತವೆ.

ಬಾನಬಂಡಿಯ ಕೆಲಸಗಳು:

ಇಂದು ಬಾನಿಗೇರಿ 2025 ರವರೆಗೆ ಸೂರ್ಯನ ಸುತ್ತ ಅಧ್ಯಯನ ನಡೆಸುವ ಪಾರ್ಕರ್ ಬಾನಬಂಡಿ ಈ ಕೆಳಗಿನ ಮುಖ್ಯ ಅಧ್ಯಯನದ ಗುರಿಗಳನ್ನು ಹೊಂದಿದೆ,

1. ಹೊಳಪುಗೋಳದ (ಕರೋನಾ) ಕಾವು ಮತ್ತು ಆ ಮೂಲಕ ಸೂರ್ಯ ಅಲೆಗಳ ವೇಗಹೆಚ್ಚುವಿಕೆಗೆ ಕಾರಣವಾದ ಶಕ್ತಿ ಹರಿವಿನ ಮೂಲವನ್ನು ತಿಳಿದುಕೊಳ್ಳುವುದು.

2. ಸೂರ್ಯನ ಸುತ್ತಣದಲ್ಲಿ ಉಂಟಾಗುವ ಕಾಂತ ಬಯಲಿನ (magnetic filed) ರಚನೆ ಮತ್ತು ಅದರ ಏರಿಳಿತದ ಕುರಿತು ಅರಿತುಕೊಳ್ಳುವುದು.

3. ಸೂರ್ಯನ ಸುತ್ತಣದಿಂದ ಹೊಮ್ಮುವ ಶಕ್ತಿದುಂಬಿದ ಕಣಗಳು ಹೇಗೆ ವೇಗಹೆಚ್ಚಿಸಿಕೊಳ್ಳುತ್ತವೆ ಮತ್ತು ಅವುಗಳು ಹೇಗೆ ಸಾಗಣಿಕೆಗೊಳ್ಳುತ್ತವೆ ಎಂದು ಅರಿಯುವುದು.

ಈ ಮೇಲಿನ ಮೂರು ಮುಖ್ಯ ಗುರಿಗಳ ಜತೆಗೆ ಸೂರ್ಯನ ಕುರಿತು ಇನ್ನೂ ಹತ್ತು ಹಲವಾರು ಹೊಸ ವಿಷಯಗಳು ತಿಳಿಯಲಿವೆ ಎಂದು ವಿಜ್ಞಾನಿಗಳು ಅಂದುಕೊಂಡಿದ್ದಾರೆ.

ಸೂರ್ಯನ ಬಗ್ಗೆ ಹಲವಾರು ವರುಷಗಳಿಂದ ಅಧ್ಯಯನ ಕೈಗೊಳ್ಳುತ್ತಾ ಬಂದಿರುವ ವಿಜ್ಞಾನಿ ಯುಜೀನ್ ಪಾರ್ಕರ್ (Eugene Parker) ಅವರ ಹೆಸರಿನಲ್ಲಿ ಈ ಬಾನಬಂಡಿಯನ್ನು ಗುರುತಿಸಲಾಗಿದೆ. ವಿಜ್ಞಾನಿಯೊಬ್ಬ ಬದುಕಿರುವಾಗಲೇ ಅವರ ಹೆಸರನ್ನು ಬಾನಬಂಡಿಗೆ ಇಟ್ಟಿದ್ದು ಇದೇ ಮೊದಲ ಬಾರಿ.

ಬಾನಬಂಡಿಯನ್ನು ಹಾರಿಸಲು ಈ ಮುಂಚೆ ನಿಗದಿಪಡಿಸಿದ್ದ ದಿನಾಂಕಗಳನ್ನು ಹಲವು ಬಾರಿ ಮುಂದೂಡಲಾಗಿದ್ದು, ಇಂದು ಈ ಹಮ್ಮುಗೆ ನೆರವೇರಲಿ ಎಂದು ಹಾರೈಸೋಣ.

ಮಾಹಿತಿ: 11.08.2018 ರಂದು ಹಾರಿಕೆಗೆ 4 ನಿಮಿಷಗಳ ಮುಂಚೆ ಕೆಲವು ತೊಡಕುಗಳು ಕಂಡುಬಂದಿದ್ದರಿಂದ ಹಾರಿಕೆಯನ್ನು 1 ದಿನ ಮುಂದೂಡಲಾಯಿತು. ಇಂದು ಅಂದರೆ 12.08.2018 ರಂದು ಭಾರತದ ಹೊತ್ತು ಮಧ್ಯಾಹ್ನ ಸುಮಾರು 1 ಗಂಟೆಗೆ ಪಾರ್ಕರ್ ಸೋಲಾರ್ ಪ್ರೋಬ್ ಬಾನಿಗೇರಿತು.

ನೆಲದಿಂದ ನೆಗೆದ 45 ನಿಮಿಷಗಳ ಬಳಿಕ ಡೆಲ್ಟಾ 4 ಏರುಬಂಡಿಯಿಂದ(rocket) ಸೋಲಾರ್ ಪ್ರೋಬ್ ಬಾನಬಂಡಿ(spacecraft) ಬೇರ್ಪಟ್ಟು ಸೂರ್ಯನೆಡೆಗೆ ಪಯಣ ಬೆಳೆಸಿತು. ಇದೆ ವರುಷದ ಕೊನೆಗೆ ಅದು ಸೂರ್ಯನ ಹತ್ತಿರಕ್ಕೆ ತಲುಪುವ ನಿರೀಕ್ಷೆಯಿದೆ.

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಭೂಮಿಯನ್ನು ಅಳೆದವರಾರು?

ದುಂಡಾಕಾರವಾಗಿರುವ ಭೂಮಿಯ ದುಂಡಗಲ (diameter) 12,756 ಕಿಲೋ ಮೀಟರಗಳು ಮತ್ತು ಅದರ ತೂಕ 5.97219 × 10‌‍24 ಕಿಲೋ ಗ್ರಾಂ. ಇಂತಹ ಸಾಲುಗಳನ್ನು ಓದಿದೊಡನೆ ಮುಖ್ಯವಾಗಿ ಎರಡು ವಿಷಯಗಳು ಬೆರೆಗುಗೊಳಿಸುತ್ತವೆ. ಮೊದಲನೆಯದು ಇಷ್ಟೊಂದು  ದೊಡ್ಡದಾದ ಅಂಕಿಗಳು ಮತ್ತು ಎರಡನೆಯದು ಅವುಗಳನ್ನು ಅಳೆದುದು ಹೇಗೆ?.

Image EM1
ಇನ್ನೊಂದು ಅಚ್ಚರಿಯ ವಿಷಯವೆಂದರೆ ಭೂಮಿಯ ದುಂಡಗಲವನ್ನು ಮೊಟ್ಟಮೊದಲ ಬಾರಿಗೆ ಅಳೆದದ್ದು ಸರಿಸುಮಾರು 2200 ವರುಶಗಳ ಹಿಂದೆ! ಬನ್ನಿ, ಅವರಾರು? ಹೇಗೆ ಅಳೆದರು? ಎಂದು ತಿಳಿದುಕೊಳ್ಳೋಣ.
ಕ್ರಿ.ಪೂ. ಸುಮಾರು 200 ರಲ್ಲಿ ಈಜಿಪ್ಟಿನ ಎರತೊಸ್ತನೀಸ್ (Eratosthenes) ಎಂಬ ಗಣಿತದರಿಗ ಭೂಮಿಯ ದುಂಡಗಲವನ್ನು ಅಳೆದವರಲ್ಲಿ ಮೊದಲಿಗ. ಅದೂ ತನ್ನ ನಾಡಿನಲ್ಲೇ ಇದ್ದುಕೊಂಡು ಅರಿಮೆಯ ನೆರವಿನಿಂದ ಈ ಕೆಲಸವನ್ನು ಮಾಡಿ ತೋರಿಸಿದಾತ.

ಎರತೊಸ್ತನೀಸ್‍ರಿಗೆ ತನ್ನ ಸುತ್ತಮುತ್ತಲಿನ ಆಗುಹೋಗುಗಳು ತುಂಬಾ ಕುತೂಹಲ ಮೂಡಿಸಿದಂತವು. ಬೇಸಿಗೆಯ ಒಂದು ಗೊತ್ತುಪಡಿಸಿದ ಹೊತ್ತಿನಂದು ಸಿಯನ್ ಊರಿನ ಬಾವಿಯ ಮೇಲೆ ಹಾದುಹೋಗುವ ಸೂರ್ಯನ ಕಿರಣಗಳು, ಆ ಬಾವಿಯ ನಟ್ಟನಡುವೆ ಬೀಳುತ್ತಿದ್ದುದು ಮತ್ತು ಅದೇ ಹೊತ್ತಿಗೆ ಅಲ್ಲಿಂದ ಸುಮಾರು 750 ಕೀಲೋ ಮೀಟರಗಳಷ್ಟು ದೂರವಿರುವ ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾದ ಕಂಬವೊಂದರ ಮೇಲೆ ಸೂರ್ಯನ ಬೆಳಕಿನಿಂದ ಉಂಟಾಗುವ ನೆರಳು ನೇರವಾಗಿರದೇ ಒಂದು ಕೋನದಲ್ಲಿ ಇರುತ್ತಿದ್ದುದು, ಎರತೋಸ್ತೇನಸ್ ರ ಕುತೂಹಲ ಕೆರಳಿಸಿದ್ದವು.

ಸೂರ್ಯನ ನೆಟ್ಟ ನೇರವಾದ ಕಿರಣಗಳು ಉಂಟುಮಾಡುವ ನೆರಳು ಸಿಯಾನ್ ಊರಿನಲ್ಲಿ ನೇರವಾಗಿ ಮತ್ತು ಅದೇ ಹೊತ್ತಿಗೆ ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾದಲ್ಲಿ ಒಂದು ಕೋನದಲ್ಲಿದ್ದದ್ದು, ನಮ್ಮ ಭೂಮಿ ಚಪ್ಪಟೆಯಾಗಿರದೇ ದುಂಡಾಗಿದೆ ಅನ್ನುವಂತ ವಿಷಯವನ್ನು ಎರತೊಸ್ತನೀಸ್‍ರಿಗೆ ತೋರಿಸಿಕೊಟ್ಟಿದ್ದವು. ಗಣಿತವನ್ನರಿತಿದ್ದ ಎರತೊಸ್ತನೀಸ್‍ರಿಗೆ ಇದನ್ನು ಬಳಸಿಯೇ ಭೂಮಿಯ  ಸುತ್ತಳತೆಯನ್ನು ಅಳೆಯುವ ಹೊಳಹು ಹೊಮ್ಮಿತು.

Image EM2ಸಿಯಾನ್ ಊರಿನ ಬಾವಿಯ ಮೇಲೆ ಸೂರ್ಯನ ಕಿರಣಗಳು ನೇರವಾಗಿ ಬೀಳುತ್ತಿದ್ದ ಹೊತ್ತಿಗೆ ತನ್ನೂರು ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾದಲ್ಲಿದ್ದ ಕಂಬದ ನೆರಳು ಬೀಳುತ್ತಿದ್ದ ಕೋನವನ್ನು ಎರತೋಸ್ತೇನಸ್ ಅಳೆದರು. ಕಂಬ ಉಂಟುಮಾಡುತ್ತಿದ್ದ ನೆರಳಿನ ಕೋನವು 7.2°  ಎಂದು ಗೊತ್ತಾಯಿತು.

ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾ ಮತ್ತು ಸಿಯನ್ ಊರುಗಳ ದೂರ ತಿಳಿದಿದ್ದ ಎರತೋಸ್ತೇನಸ್ ಗಣಿತದ ನಂಟುಗಳನ್ನು ಬಳಸಿ ಭೂಮಿಯ ಸುತ್ತಳತೆ ಮತ್ತು ದುಂಡಗಲವನ್ನು ಈ ಕೆಳಗಿನಂತೆ ಎಣಿಕೆಹಾಕಿದರು.

Image EM3ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾ ಕಂಬದ ನೆರಳಿನ ಕೋನ = 7.2°

ಒಂದು ಸುತ್ತಿನಲ್ಲಿ ಇರುವ ಕೋನಗಳು = 360°

ಅಂದರೆ, ದುಂಡಾಗಿರುವ ಭೂಮಿಯ ಸುತ್ತಳತೆ ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾ ಮತ್ತು ಸಿಯಾನ್ ಊರುಗಳ ದೂರದ 360/7.2 = 50 ರಷ್ಟು ಇರಬೇಕು.

ಇನ್ನು, ಅಲೆಕ್ಸಾಂಡ್ರಿಯಾ ಮತ್ತು ಸಿಯನ್ ಊರುಗಳ ನಡುವಿನ ದೂರ = 5000 ಸ್ಟೇಡಿಯಾ
(ಸ್ಟೇಡಿಯಾ/Stadia – ದೂರವನ್ನು ಅಳೆಯಲು ಎರತೊಸ್ತನೀಸ್ ಬಳಸಿದ ಅಳತೆಗೋಲು)

ಹಾಗಾಗಿ,  ಭೂಮಿಯ ಸುತ್ತಳತೆ = 50 x 5000 = 250000 ಸ್ಟೇಡಿಯಾ = 40,000 ಕಿಲೋ ಮೀಟರಗಳು
(1 ಸ್ಟೇಡಿಯಾ = 0.15 ಕಿ.ಮೀ.)

ನಮಗೆ ಗೊತ್ತಿರುವಂತೆ, ಸುತ್ತಳತೆ = 3.142 x ದುಂಡಗಲ (Circumference = 3.142 x diameter)

ಹಾಗಾಗಿ, ಎರತೊಸ್ತನೀಸ್ ಎಣಿಕೆ ಹಾಕಿದ ಭೂಮಿಯ ದುಂಡಗಲ (diameter) = 40000/3.142 = 12730.7 ಕಿ.ಮೀ.

ಹೀಗೆ ಸುಮಾರು 2200 ವರುಶಗಳ ಹಿಂದೆ ಕೋನಗಳನ್ನು  ಬಳಸಿ ಎರತೋಸ್ತೇನಸ್ ಅಳೆದದ್ದು, ಹೊಸಜಗತ್ತಿನಲ್ಲಿ ಉಪಗ್ರಹಗಳನ್ನು ಬಳಸಿ ಕರಾರುವಕ್ಕಾಗಿ ಅಳೆಯಲಾದ ಭೂಮಿಯ ದುಂಡಗಲ 12,756 ಕಿಲೋ ಮೀಟರಗಳಿಗೆ ತುಂಬಾ ಹತ್ತಿರವಾಗಿದೆ ಎಂಬುದನ್ನು ನೋಡಿದರೆ ಅರಿಮೆಯ ’ಹಿರಿಮೆ’  ಮನದಟ್ಟಾಗುತ್ತದೆ.

(ಸೆಲೆ: heasarc.nasa.govhte.si.edu, en.wikipedia.org, emaze.com)

facebooktwittergoogle_plusredditpinterestlinkedinmail

ನೆಲದಾಳದ ಕೊರೆತ

ವೋಯೇಜರ್-1 ಎಂಬ ಬಾನಬಂಡಿ (spacecraft) ನಮ್ಮ ನೆಲದಿಂದ ಸರಿಸುಮಾರು 141 ಬಾನಳತೆಯ (Astronomical Unit-AU) ದೂರದಲ್ಲಿ ಅಂದರೆ ಸುಮಾರು 2.11 x 1010 km ದೂರದಲ್ಲಿ ಸಾಗುತ್ತಿದೆ. ಇಷ್ಟು ದೂರದವರೆಗೆ ವಸ್ತುವೊಂದನ್ನು ಸಾಗಿಸಿ ಅದನ್ನು ತನ್ನ ಹಿಡಿತದಲ್ಲಿಟ್ಟುಕೊಳ್ಳುವಲ್ಲಿ ಮನುಷ್ಯರ ಅರಿವಿನ ಎಲ್ಲೆ ಚಾಚಿಕೊಂಡಿದೆ. ಆದರೆ ಈ ಬರಹದಲ್ಲಿ  ಹೇಳಹೊರಟಿರುವುದು ವೋಯೇಜರ್ ಬಗ್ಗೆ ಅಲ್ಲ. ಬಾನಾಳದಲ್ಲಿ ಇಷ್ಟು ದೂರ ಸಾಗಬಲ್ಲೆವಾದರೂ ನಾವು ನೆಲೆ ನಿಂತಿರುವ ನೆಲದಲ್ಲಿ ಎಷ್ಟು ಆಳವನ್ನು ತಲುಪಲು ಇಲ್ಲಿಯವರೆಗೆ ಆಗಿದೆ ಅನ್ನುವುದರ ಕುರಿತು.

ನಿಮಗೆ ಬೆರಗಾಗಬಹುದು, ಮೇಲ್ಮೈಯಿಂದ ಅದರ ನಡುವಿನವರೆಗೆ ಸುಮಾರು 6378 ಕಿ.ಮೀ. ಆಳವಿರುವ ನೆಲದಲ್ಲಿ ಇಲ್ಲಿಯವರೆಗೆ ಮನುಷ್ಯರಿಗೆ ತಮ್ಮ ಸಲಕರಣೆಗಳನ್ನು ತೂರಲು ಆಗಿರುವುದು 12.26 ಕಿ.ಮೀ. ಅಷ್ಟೇ! ಅಂದರೆ ನೆಲದಾಳದ ಬರೀ 0.2%! ನೆಲದಾಳದಲ್ಲಿರುವ ಕಾವಳತೆ (temperature), ಒತ್ತಡ ಮನುಷ್ಯರು ಮಾಡಿದ ಸಲಕರಣೆಗಳು ತೂರಲಾಗದ ಮಟ್ಟದಲ್ಲಿದ್ದು, ಬಾನಾಳವನ್ನು ಗೆಲ್ಲುವಷ್ಟು ಸುಲಭವಲ್ಲ. ಆದರೆ ಎಂದಿನಂತೆ ಮನುಷ್ಯರು ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಸಾಹಸವನ್ನಂತೂ ಮಾಡುತ್ತಲೇ ಬಂದಿದ್ದಾರೆ.

ನೆಲದ ಆಳಕ್ಕೆ ತೂರುವ ಕೋಲಾ ಕಡು ಆಳದ ಕೊರೆತ (Kola Super-deep Borehole) ಎನ್ನುವ ಯೋಜನೆಯನ್ನು ರಷ್ಯಾ 24.05.1970 ರಲ್ಲಿ ಆರಂಭಿಸಿತು. ಈ ಯೋಜನೆಯನ್ನು ಶುರು ಮಾಡುವಾಗ ಸುಮಾರು 15 ಕಿ.ಮೀ. ಆಳಕ್ಕೆ ತೂತು ಕೊರೆಯುವ ಗುರಿಯನ್ನು ಇಟ್ಟುಕೊಂಡಿದ್ದ ರಷ್ಯಾ, 19 ವರುಶಗಳ ಬಳಿಕ 1989 ರಲ್ಲಿ 12.26 ಕಿ.ಮೀ. ಆಳ ತಲುಪಿ ಅಲ್ಲಿಂದ ಇನ್ನೂ ಆಳಕ್ಕೆ ಇಳಿಯಲು ತನ್ನ ಸಲಕರಣೆಗಳಿಂದ ಆಗದು ಎನ್ನುವ ತೀರ್ಮಾನವನ್ನು ಕೈಗೊಂಡು ಯೋಜನೆಯನ್ನು ಕೊನೆಗೊಳಿಸಿತು.

1                          (ರಷ್ಯಾದ ತೂತು ಕೊರೆಯುವ ಯೋಜನೆಯ ತಾಣ)

ಅಮೇರಿಕಾ ಅದಕ್ಕೂ ಮುಂಚೆ ಇಂತಹ ಆಳದ ತೂತು ಕೊರೆಯುವ ಕೆಲಸಕ್ಕೆ ಕೈಹಾಕಿ 9.583 ಕೀ.ಮೀ. ಆಳಕ್ಕೆ ಇಳಿಯಿತಾದರೂ, ರಷ್ಯಾ ತಲುಪಿದ ಆಳವನ್ನು ತಲುಪಲು ಅದಕ್ಕೆ ಆಗಲಿಲ್ಲ. ರಷ್ಯಾ ಕೊರೆದ ತೂತು ಮನುಷ್ಯರು ಮಾಡಿದ ಎಲ್ಲಕ್ಕಿಂತ ನೆಲದಾಳದ ತೂತು ಎಂಬ ತನ್ನ ಹಿರಿಮೆಯನ್ನು ಇಂದು ಕೂಡ ಕಾಯ್ದುಕೊಂಡಿದೆ.

ರಷ್ಯಾ ಕೈಗೊಂಡಿದ್ದ ಯೋಜನೆಯಲ್ಲಿ ಅಂದುಕೊಂಡಿದ್ದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ತೊಡಕುಗಳು ಅದಕ್ಕೆ ಎದುರಾದವು. 1984 ರಲ್ಲಿ ಸುಮಾರು 12000 ಮೀ (12 ಕಿ.ಮೀ.) ಆಳ ತಲುಪಿದಾಗ ಕೊರೆತದ ಸಲಕರಣೆಯ ಸುಮಾರು 5000 ಮೀ ಉದ್ದದ ಎಳೆ ನೆಲದೊಳಗೆ ಮುರಿದುಹೋಯಿತು. ಆಗ ಆ ಆಳವನ್ನು ಬಿಟ್ಟು ಸುಮಾರು 7000 ಮೀ ಆಳದಿಂದ ಬೇರೆ ದಾರಿಯಲ್ಲಿ ತೂತು ಕೊರೆಯುವ ಕೆಲಸವನ್ನು ಮುಂದುವರೆಸಬೇಕಾಯಿತು. ಮುಂದೆ 1989 ರಲ್ಲಿ 12262 ಮೀ. ತಲುಪಿದ ಕೊರೆತ ಅದೇ ವರುಶ 13500 ಮೀ ಮತ್ತು 1990 ರಲ್ಲಿ 15000 ಮೀ ತಲುಪಲಿದೆಯೆಂದು ರಷ್ಯಾ ಅಂದುಕೊಂಡಿತ್ತು.

ಆದರೆ 12262 ಮೀ. ಆಳ ತಲುಪುತ್ತಿದ್ದಂತೆ ನೆಲದಾಳದ ಕಾವು ಸುಮಾರು 180 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ಇರುವುದು ಗೊತ್ತಾಯಿತು. ಈ ಮಟ್ಟದ ಕಾವು (temperature) ಮುಂದುವರೆದರೆ 15000 ಮೀ ಆಳದಲ್ಲಿ ಕಾವು ಸುಮಾರು 300 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ಇರಲಿದ್ದು, ಅಷ್ಟು ಬಿಸುಪನ್ನು ತಡೆದುಕೊಳ್ಳಲು ಕೊರೆತದ ಸಲಕರಣೆಗೆ ಆಗದೆನ್ನುವ ತೀರ್ಮಾನಕ್ಕೆ ರಷ್ಯಾ ಬಂದಿತು. ಹಾಗಾಗಿ 12262 ಮೀ. ಆಳವೇ ಆ ಯೋಜನೆಯ ಕೊನೆಯಾಯಿತು.

2(ತೂತು ಕೊರೆಯುವ ಯೋಜನೆಯ ಚಿತ್ರ)

3 (ತೂತು ಕೊರೆಯಲು ಬಳಸಿದ ಸಲಕರಣೆ)

            ತಾನು ಅಂದುಕೊಂಡಿದ್ದ ಆಳವನ್ನು ತಲುಪಲು ಆಗದಿದ್ದರೂ, ರಷ್ಯಾ ಕೈಗೊಂಡ ಈ ಯೋಜನೆಯಲ್ಲಿ ಹಲವಾರು ಹೊಸದಾದ ವಿಷಯಗಳು ತಿಳಿದುಬಂದವು. ನೆಲದ ತೊಗಟೆಯ ಕಟ್ಟಣೆಯ ಬಗ್ಗೆ ಹಲವು ವಿಷಯಗಳು ಗೊತ್ತಾದವು. ಈ ಯೋಜನೆಯಲ್ಲಿ  ಕಂಡುಕೊಂಡ ಬೆರಗುಗೊಳಿಸಿದ ವಿಷಯಗಳೆಂದರೆ,

  1. ಸುಮಾರು 7 ಕಿ.ಮೀ. ಆಳದಲ್ಲಿ ಪೆಡಸುಕಲ್ಲುಗಳ(granite) ಮೇರೆ ಕೊನೆಯಾಗಿ ಕಪ್ಪುಗಲ್ಲುಗಳ (basalt) ಹರವು ಶುರುವಾಗದಿರುವುದು. ಈ ಆಳದ ಬಳಿಕ ಪೆಡಸುಕಲ್ಲುಗಳ ಮಾರ್ಪಟ್ಟ ರೂಪದ ಕಲ್ಲುಗಳೇ ಮುಂದುವರೆದಿರುವುದು ಈ ಯೋಜನೆಯಲ್ಲಿ ಕಂಡುಬಂದಿತು. ಅಷ್ಟೇ ಅಲ್ಲದೆ ಮಾರ್ಪಟ್ಟ ಈ ಪೆಡಸುಕಲ್ಲುಗಳಲ್ಲಿ ಬಿರುಕುಗಳಿದ್ದು, ಅಲ್ಲಿ ನೀರು ತುಂಬಿಕೊಂಡಿರುವುದು ಅರಿಮೆಗಾರರನ್ನು ಬೆರಗುಗೊಳಿಸಿತು. ಈ ನೀರು ನೆಲದ ಮೇಲ್ಮೈಯಿಂದ ಬರದೇ ನೆಲದ ಆಳದಿಂದ ಬಂದಿದ್ದೆಂದು ಅರಿಗರು ಎಣಿಸಿದ್ದಾರೆ.
  1. ನೆಲದಾಳದಲ್ಲಿ ಅಂದುಕೊಂಡಿದ್ದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಮಟ್ಟದಲ್ಲಿ ಹೈಡ್ರೋಜನ್ ಆವಿ ಕಂಡುಬಂದಿದ್ದು. ಯೋಜನೆಯಲ್ಲಿ ಪಾಲ್ಗೊಂಡಿದ್ದ ಅರಿಗರು ಹೇಳುವಂತೆ ಆಳದ ಕೊಳವೆಯಿಂದ ಹೊಮ್ಮುತ್ತಿದ್ದ ಮಣ್ಣು ಹೈಡ್ರೋಜನ್ ಆವಿಯಿಂದ ಕುದಿಯುತ್ತಿರುವಂತೆ ಕಂಡುಬಂದಿತಂತೆ.

ನೇಸರನ ಕುಟುಂಬದಲ್ಲೇ ವಿಶೇಷವಾದ ಸುತ್ತಣವನ್ನು ಹೊಂದಿರುವ ನಮ್ಮ ನೆಲದ ಒಳರಚನೆಯನ್ನು ತಿಳಿದುಕೊಳ್ಳುವ, ಅದರ ರಚನೆಯ ಏರ್ಪಾಟನ್ನು ಅರಿತುಕೊಳ್ಳುವ ಇಂತಹ ಕುತೂಹಲ ಮನುಷ್ಯರಿಗೆ ಹಿಂದಿನಿಂದಲೂ ಇರುವಂತದು. ನೆಲದ ಮೇಲ್ಮೈಯಲ್ಲಿ ಕಡಲುಗಳು ಹೇಗೆ ಉಂಟಾದವು? ಅದರ ಆಳದಲ್ಲೂ ನೀರಿದೆಯೆ? ಅದರ ಆಳದಲ್ಲಿ ಅದಿರುಗಳು, ಜಲ್ಲಿಗಳು ಯಾವ ರೂಪದಲ್ಲಿವೆ? ನೆಲದ ಒಳಪದರುಗಳ ಹಂಚಿಕೆ ಹೇಗಿದೆ? ಹೀಗೆ ಹತ್ತಾರು ಪ್ರಶ್ನೆಗಳು ಮಂದಿಯ ತಲೆಯನ್ನು ಕೊರೆಯುತ್ತ ಬಂದಿವೆ. ಆದರೆ ನೆಲದಾಳಕ್ಕೆ ತೂರಿ ಇವುಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳುವಂತಹ ಅಳವು ದಕ್ಕಿಸಿಕೊಳ್ಳಲು ಮಾತ್ರ ಇಲ್ಲಿಯವರೆಗೆ ಮನುಷ್ಯರಿಗೆ ಆಗಿಲ್ಲ.

ನೇರವಾಗಿ ಆಳಕ್ಕೆ ತೂರಿ ತಿಳಿದುಕೊಳ್ಳಲು ಆಗದಿದ್ದರೂ, ಎಂದಿನಂತೆ ಅರಿಮೆಯ ಚಳಕವನ್ನು ಬಳಸಿ ನೇರವಲ್ಲದ ದಾರಿಯಲ್ಲೇ ನೆಲದ ರಚನೆಯನ್ನು ತಕ್ಕಮಟ್ಟಿಗೆ ಕಂಡುಕೊಳ್ಳುವಲ್ಲಿ  ಮುಂದಡಿಯಿಡಬೇಕಾಯಿತು. ಅದರಂತೆ ನೆಲನಡುಕದ ಅಲೆಗಳು (seismic waves) ಸಾಗುವ ಬಗೆಯನ್ನು ಅರಿತುಕೊಂಡು ನೆಲದ ರಚನೆಯನ್ನು ಕೆಳಗಿನಂತೆ ಗುರುತಿಸಲಾಗಿದೆ.

4

ಹೀಗೆ ಗುರುತಿಸಿದ ಇಟ್ಟಳವು (structure) ತಕ್ಕಮಟ್ಟಿಗೆ ಸರಿಯಿದೆಯೆಂದು ಅರಿಮೆಗಾರರು ಒಪ್ಪಿದ್ದರೂ ಆಗಾಗ ಇದರಲ್ಲಿ ಹೊಸ ಕಂಡುಕೊಳ್ಳುವಿಕೆಗಳು ಹೊರಹೊಮ್ಮುತ್ತಲಿವೆ. ಮೇಲ್ಮೈಯಲ್ಲಿರುವ ಕಡಲ ನೀರಿಗಿಂತ ಹಲವು ಪಟ್ಟು ಹೆಚ್ಚಿನ ನೀರು ನೆಲದಾಳದಲ್ಲಿದೆ ಎಂಬಂತಹ ಸುದ್ದಿಯನ್ನು ಇಲ್ಲಿ ನೆನಪಿಸಿಕೊಳ್ಳಬಹುದು.

ಏನೇ ಆಗಲಿ, ಮನುಷ್ಯರ ಮೈ ಶಕ್ತಿಗಿಂತ ಅವರ ಅರಿವಿನ ಹಿರಿಮೆ ಹೆಚ್ಚಿನದು. ನಮ್ಮ ನೆಲದಾಳಕ್ಕೆ ಇನ್ನೂ ಆಳದ ’ಅರಿವಿನ ತೂತು’ ಕೊರೆದು, ಒಡಲಾಳದ ತಿಳುವಳಿಕೆಯನ್ನು ತನ್ನದಾಗಿಸಿಕೊಳ್ಳುವಲ್ಲಿ  ಮುಂದಿನ ದಿನಗಳಲ್ಲಿ ಇನ್ನಷ್ಟು ಗೆಲುವು ಸಿಗಬಹುದು.

 (ಮಾಹಿತಿಯ ಮೂಲ: https://en.wikipedia.org/wiki/Kola_Superdeep_Borehole, http://www.autoorb.com)

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಸೂರ್ಯನ ಬಗ್ಗೆ ಗೊತ್ತೇ?

ತೇರಾ ಏರಿ ಅಂಬರದಾಗೆ ನೇಸರ ನಗುತಾನೆ

1

ನೇಸರ, ಸೂರ್ಯ ಹೀಗೆ ಹಲವು ಹೆಸರುಗಳನ್ನು ಹೊತ್ತ ಬಾನಂಗಳದ ಬೆರಗು, ನಮ್ಮ ಇರುವಿಕೆಗೆ, ಬಾಳಿಗೆ ಮುಖ್ಯ  ಕಾರಣಗಳಲ್ಲೊಂದು. ನೇಸರನಿಂದ ದೊರೆಯುವ ಶಕ್ತಿಯನ್ನು ಬಳಸಿಕೊಂಡೇ ನೆಲದಲ್ಲಿರುವ ಕೋಟಿಗಟ್ಟಲೆ ಜೀವಿಗಳು ತಮ್ಮ ಬದುಕನ್ನು ಸಾಗಿಸುತ್ತಿವೆ. ಕಬ್ಬಿಗರ ಕವಿತೆಗಳಿಗೆ ನೇಸರನ ಚೆಲುವು ಹೇಗೆ ಹುರುಪು ತುಂಬತ್ತದೋ ಅಂತದೇ ಅಚ್ಚರಿಯ ವಿಷಯಗಳನ್ನು ಅರಿಮೆಯ ನೆಲೆಯಲ್ಲಿ ತನ್ನ ಒಡಲೊಳಗೆ ನೇಸರ ಅಡಗಿಸಿಕೊಂಡಿದ್ದಾನೆ. ಈ ಅಚ್ಚರಿಯ ವಿಷಯಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳೋಣ ಬನ್ನಿ.

ಸೂರ್ಯ ಭೂಮಿಯಿಂದ ಸುಮಾರು 15,00,00,000 ಕಿ.ಮೀ. ದೂರದಲ್ಲಿದ್ದಾನೆ. ಪ್ರತಿ ಸೆಕೆಂಡಿಗೆ ಸುಮಾರು 3,00,000 ಕಿ.ಮೀ. ವೇಗದಲ್ಲಿ ಸಾಗುವ ಬೆಳಕಿಗೆ ಸೂರ್ಯನಿಂದ ಹೊರಟು ನೆಲವನ್ನು ತಲುಪಲು ಸರಿಸುಮಾರು 8 ನಿಮಿಷ, 19 ಸೆಕೆಂಡುಗಳು ಬೇಕಾಗುತ್ತವೆ. ಸೂರ್ಯನ ದುಂಡಗಲ (diameter) ಸುಮಾರು 13,92,684 ಕಿ.ಮೀ. ಅಂದರೆ ಇದು ನಮ್ಮ ಭೂಮಿಯ ಸುಮಾರು 109 ಪಟ್ಟು! ಸೂರ್ಯನ ಅಳವಿ (volume) 1.41×1018 ಕಿ.ಮೀ. ಇದು ಭೂಮಿಯ ಅಳವಿಯ ಸುಮಾರು 13,00,000 ಪಟ್ಟು! ಸೂರ್ಯನ ರಾಶಿ (mass) 1.98855×1030 ಕೆ.ಜಿ.ಗಳು, ಈ ರಾಶಿ ಭೂಮಿ ರಾಶಿಯ ಸುಮಾರು 3,33,000 ಪಟ್ಟು!.

ಬುಧ, ಮಂಗಳ, ಭೂಮಿ, ಶುಕ್ರ, ಶನಿ, ಗುರು ಹೀಗೆ ಹಲವು ಬಾನಕಾಯಗಳನ್ನು ತನ್ನ ಹಿಡಿತದಲ್ಲಿ ಇಟ್ಟುಕೊಂಡಿರುವ ನೇಸರನ ಹೇರಳತೆಯ ಬಗ್ಗೆ ನಿಮಗೀಗ ಅರಿವಾಗಿರಬಹುದು. ಇತರ ಬಾನಕಾಯಗಳೊಂದಿಗೆ ಹೋಲಿಸುವ ಈ ಕೆಳಗಿನ ಚಿತ್ರವನ್ನು ನೋಡಿದರೆ ನಿಮಗೆ ಇನ್ನಷ್ಟು ಅಚ್ಚರಿಯಾಗಬಹುದು.

2

ಸೂರ್ಯ ಹುಟ್ಟು:

ಬಾನಂಗಳದಲ್ಲಿ ಇಷ್ಟೊಂದು ಕರಾರುವಕ್ಕಾಗಿ ಏರ್ಪಟ್ಟಿರುವ  ‘ಸೂರ್ಯ’ (Sun) ಎಂಬ ಬಾನಕಾಯದ ಹುಟ್ಟು, ಇತರ ನಕ್ಷತ್ರಗಳ ಹುಟ್ಟಿನಂತೆಯೇ ಆಗಿದೆ ಎಂದು ಅರಿಮೆಯ ನೆಲೆಯಲ್ಲಿ ಊಹಿಸಲಾಗಿದೆ. ಸುಮಾರು 4.57 ಬಿಲಿಯನ್ ವರುಷಗಳ ಹಿಂದೆ ಹೈಡ್ರೋಜನ್ ಮತ್ತು ಹೀಲಿಯಂ ಅಣುಗಳಿಂದ ಕೂಡಿದ್ದ ದೈತ್ಯ ಅಣುಮೋಡದ ಕುಸಿತದಿಂದ ಸೂರ್ಯ ಉಂಟಾಗಿದೆಯೆಂದು ಅರಿಗರು ಅಂದಾಜಿಸಿದ್ದಾರೆ. ಈ ಕುಸಿತ ಉಂಟಾದಾಗ ಹೇರಳವಾದ ಶಕ್ತಿ ಸೂರ್ಯನ ನಡುವಿನಲ್ಲಿ ಅಡಕಗೊಂಡು, ಅಳಿದುಳಿದ ಶಕ್ತಿಯು ತಟ್ಟೆಯ ಆಕಾರದಲ್ಲಿ ಹಲವು ಲಕ್ಷ ಕಿ.ಲೋ.ಗಳಷ್ಟು ದೂರ ಚದುರಿ, ಭೂಮಿಯೂ ಸೇರಿದಂತೆ ಸೂರ್ಯ ಏರ್ಪಾಟಿನಲ್ಲಿರುವ (Solar system) ಇತರ ಬಾನಕಾಯಗಳು ಉಂಟಾಗಿವೆ ಎಂಬುದು ಬಾನರಿಗರ ಅನಿಸಿಕೆ.

ಈ ಮುಂಚೆ ಸೂರ್ಯನಷ್ಟು ಹೊಳಪಿರುವ ಲೆಕ್ಕವಿಲ್ಲದಷ್ಟು ನಕ್ಶತ್ರಗಳು ಬಾನಂಗಳದಲ್ಲಿ ಇವೆಯೆಂದು ನಂಬಲಾಗಿತ್ತು ಆದರೆ ಇತ್ತೀಚಿನ ಅರಕೆಯಲ್ಲಿ ಕಂಡುಬಂದಿರುವುದೇನೆಂದರೆ ಸೂರ್ಯನ ಹೊಳಪು (brightness), ಹಾಲುಹಾದಿ  (milkyway) ಗ್ಯಾಲಕ್ಸಿಯಲ್ಲಿರುವ ಸುಮಾರು 85% ನಕ್ಶತ್ರಗಳಿಗಿಂತ ಹೆಚ್ಚಿನದಂತೆ. ಹೊಳಪಿನ ಪ್ರಮಾಣದಲ್ಲಿ ಎರಡನೇ ಸ್ಥಾನದಲ್ಲಿರುವ ಸಿರಿಯುಸ್ (Sirius) ನಕ್ಷತ್ರದ ಹೊಳಪಿಗಿಂತ ನೇಸರನ ಹೊಳಪು ಸುಮಾರು 13 ಬಿಲಿಯನ್ ಪಟ್ಟು ಹೆಚ್ಚಾಗಿದೆ!.

ಸೂರ್ಯನ ಏರ್ಪಾಡು:

ಬೆಂಕಿಯನ್ನು ಉಗುಳುವ ಬಾನುಂಡೆಯಂತೆ ಕಾಣುವ ಸೂರ್ಯನಲ್ಲಿ ಮುಖ್ಯವಾಗಿ ತಿರುಳು (core), ಸೂಸಿಕೆಯ ಹರವು (radiative zone), ಒಯ್ಯಿಕೆಯ ಹರವು (convective zone), ಬೆಳಕುಗೋಳ (photosphere), ಬಣ್ಣಗೋಳ (chromosphere), ಹೊಳಪುಗೋಳ (corona) ಎಂಬ ಭಾಗಗಳನ್ನು ಗುರುತಿಸಲಾಗಿದೆ.

3

ತಿರುಳು (core): ಇದು ಸೂರ್ಯನ ನಟ್ಟನಡುವಿನ ಭಾಗ. ಈ ಒಳಭಾಗ ಸೂರ್ಯನ ಒಟ್ಟು ಅಳತೆಯ ಸುಮಾರು 20-25% ನಷ್ಟಿದೆ. ನೇಸರನಲ್ಲಿ ಉಂಟಾಗುವ ಶಕ್ತಿಯ ಪ್ರಮಾಣದಲ್ಲಿ ಸುಮಾರು 99% ಶಕ್ತಿಯು ಈ ಭಾಗದಲ್ಲಿಯೇ ಉಂಟಾಗುತ್ತದೆ. ಹೇರಳವಾದ ಶಕ್ತಿ ಬಿಡುಗಡೆಯಾಗುವ ಈ ಭಾಗದಲ್ಲಿರುವ ಬಿಸುಪು (temperature) ಸುಮಾರು 1,50,00,000 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ಎಂದು ಅಂದಾಜಿಸಲಾಗಿದೆ! ಹೈಡ್ರೋಜನ್ ಅಣುಗಳ ಬೆಸುಗೆಯಿಂದಾಗಿ (nuclear fusion) ತಿರುಳಿನ ಭಾಗದಲ್ಲಿ ಹೇರಳವಾದ ಶಕ್ತಿ ಬಿಡುಗಡೆಯಾಗುತ್ತದೆ. ಹೈಡ್ರೋಜನ್ ಅಣುಗಳ ಬೆಸುಗೆಯ ಬಳಿಕ ಅವುಗಳು ಹೀಲಿಯಂ ಅಣುಗಳಾಗಿ ಬದಲಾಗುತ್ತವೆ. ಈ ಬೆಸುಗೆಯಲ್ಲಿ ಅಣುಗಳ ರಾಶಿಯ ಕೊಂಚ ಪಾಲು ಶಕ್ತಿಯಾಗಿ ಮಾರ್ಪಡುತ್ತದೆ.

ಸೂಸಿಕೆಯ ಹರವು (radiative zone): ತಿರುಳಿನಲ್ಲಿ ಉಂಟಾಗುವ ಶಕ್ತಿ ನೇಸರನ ಮೇಲ್ಮೈವರೆಗೆ ತಲುಪಿಸುವಲ್ಲಿ ಇದು ಮೊದಲ ಹಂತ. ಇಲ್ಲಿ ಹೈಡ್ರೋಜನ್ ಮತ್ತು ಹೀಲಿಯಂ ಅಣುಗಳು ಬೆಳಕಿಗಳ (photon) ರೂಪದಲ್ಲಿ ಕಾವನ್ನು ಸೂಸಿ ಇತರ ಭಾಗಗಳಿಗೆ ಶಕ್ತಿಯನ್ನು ಸಾಗಿಸುತ್ತವೆ.

 ಒಯ್ಯಿಕೆಯ ಹರವು (convective zone): ಸೂಸಿಕೆಯ ಹರವಿನ ಬಳಿಕ ಬರುವ ಈ ಭಾಗದಲ್ಲಿ ಅಣುಗಳು ತಮ್ಮ ಸಾಗಾಟಾದ ಮೂಲಕ ಕಾವನ್ನು (heat) ಇತರ ಭಾಗಗಳಿಗೆ ಒಯ್ಯುತ್ತವೆ. ತಿರುಳು ಮತ್ತು ಸೂಸಿಕೆಯ ಹರವಿಗೆ ಹೋಲಿಸಿದರೆ ಈ ಭಾಗದಲ್ಲಿ ಬಿಸುಪು ತುಂಬಾ ಕಡಿಮೆ ಇರುತ್ತದೆ. 1.5 ಕೋಟಿ ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ಇದ್ದ ಬಿಸುಪು, ಈ ಭಾಗದಲ್ಲಿ ಸುಮಾರು 5700 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್‍ಗೆ ಇಳಿಯುತ್ತದೆ.

ಬೆಳಕುಗೋಳ (photosphere): ಹೆಸರೇ ಸೂಚಿಸುವಂತೆ ಸೂರ್ಯನಲ್ಲಿ ಉಂಟಾಗುವ ಶಕ್ತಿ ಬೆಳಕಿನ ರೂಪದಲ್ಲಿ ನಮಗೆ ಕಾಣುವುದು ಈ ಭಾಗದಿಂದಾಗಿಯೇ. ಅಚ್ಚರಿಯ ವಿಷಯವೆಂದರೆ ಇಲ್ಲಿ ಉಂಟಾಗುವ ಶಕ್ತಿಯ ರೂಪವಾದ ’ಬೆಳಕು’ ಸೂರ್ಯನ ಮೇಲ್ಮೈ ಕಡೆಗೆ ಮತ್ತು ಅದರಾಚೆಗೆ ತೆರುವಿನಲ್ಲಿ (space) ಸಾಗಬಲ್ಲದು ಆದರೆ ಅದು ಸೂರ್ಯನ ಒಳಭಾಗಕ್ಕೆ ಸಾಗಲಾರದು.

ಬೆಳಕುಗೋಳದ ಬಳಿಕ ಸುಮಾರು 500 ಕಿ.ಮೀ. ವರೆಗೆ ಬಿಸುಪು (temperature) ತುಂಬಾ ಕಡಿಮೆಯಾಗುತ್ತದೆ. ಒಂದು ಹಂತದಲ್ಲಿ ಬಿಸುಪು ಸೂರ್ಯನ ಇತರೆಡೆಗಳಿಗಿಂತ ಎಲ್ಲಕ್ಕಿಂತ ಕಡಿಮೆ ಎನ್ನಬಹುದಾದ 4700 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ಮಟ್ಟವನ್ನು ತಲಪುತ್ತದೆ. ಬೆಳಕುಗೋಳವಾದ ಮೇಲೆ ಕಾಣುವ ಬಣ್ಣಗೋಳ, ಹೊಳಪುಗೋಳ ಮುಂತಾದ ನೇಸರನ ಇತರೆ ಭಾಗಗಳನ್ನು ಒಟ್ಟಾರೆಯಾಗಿ ಸೂರ್ಯನ ಸುತ್ತಣ (Sun’s atmosphere) ಎಂದು ಗುರುತಿಸಲಾಗುತ್ತದೆ.

ಬಣ್ಣಗೋಳ (chromosphere): ಕಡಿಮೆ ಬಿಸುಪು ಹೊಂದಿರುವ ಭಾಗದ ಬಳಿಕ ಇರುವುದೇ ಬಣ್ಣಗೋಳ. ಸುಮಾರು 2000 ಕಿ.ಮೀ. ಆಳದಷ್ಟು ಹರಡಿಕೊಂಡಿರುವ ಈ ಭಾಗದಲ್ಲಿ ಬಿಸುಪು ಮತ್ತೇ ಏರತೊಡಗುತ್ತದೆ. ಈ ಭಾಗದ ಹೊರಮೈಯಲ್ಲಿ ಸರಿಸುಮಾರು 20,000 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ಬಿಸುಪಿರುತ್ತದೆ. ಗ್ರಹಣ (Solar eclipse) ಉಂಟಾದಾಗ ಈ ಭಾಗ ಬಣ್ಣದ ಮಿಂಚಿನಂತೆ ಹೊಳೆಯುವುದರಿಂದ ಇದನ್ನು ಬಣ್ಣಗೋಳ ಅಂತಾ ಕರೆಯಲಾಗುತ್ತದೆ.

ಹೊಳಪುಗೋಳ (corona): ಇದು ಬಣ್ಣಗೋಳದ ಬಳಿಕ ಬರುವ ನೇಸರನ ಸುತ್ತಣದ ಭಾಗ. ಈ ಭಾಗದಲ್ಲಿ ಬಿಸುಪು ಹೆಚ್ಚಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಒಂದು ಹಂತದಲ್ಲಿ ಬಿಸುಪು ಸುಮಾರು 20,00,000 ಡಿಗ್ರಿ ಸೆಲ್ಸಿಯಸ್ ವರೆಗೆ ತಲುಪುತ್ತದೆ. ಬಣ್ಣಗೋಳ ಮತ್ತು ಹೊಳಪುಗೋಳದಲ್ಲಿ ಬಿಸುಪು ಹೆಚ್ಚಿರಲು ಕಾರಣವೇನೆಂದು ಇನ್ನೂ ಸರಿಯಾಗಿ ತಿಳಿದಿಲ್ಲವಾದರೂ, ಇದಕ್ಕೆ ಆಲ್ಪವಿನ್ ಅಲೆಗಳು (Alfvén waves) ಎಂದು ಕರೆಯಲಾಗುವ ಕಾವಿನ ಅಲೆಗಳು ಕಾರಣವೆಂದು ಊಹಿಸಲಾಗಿದೆ. ಗ್ರಹಣದ ಹೊತ್ತಿನಲ್ಲಿ ಈ ಭಾಗ ಸೂರ್ಯನ ಸುತ್ತ ಉಂಗುರದಂತೆ ಹೊಳೆಯುತ್ತದೆ.

ಹೊಳಪುಗೋಳವು ಸೂರ್ಯನ ಹೊರಭಾಗವಾಗಿದ್ದರೂ ಅದಾದ ಮೇಲೆಯೂ ಹಲವು ಲಕ್ಷ ಕಿ.ಮೀ.ಗಳಷ್ಟು ದೂರದವರೆಗೆ ಸೂರ್ಯನಲ್ಲಿ ಉಂಟಾಗುವ ಕಾವಿನ ಅಲೆಗಳು ಹಬ್ಬುತ್ತವೆ. ಒಟ್ಟಾರೆಯಾಗಿ ಈ ಅಲೆಗಳನ್ನು ಸೂರ್ಯನ ಗಾಳಿ (Solar wind) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಸೂರ್ಯನಲ್ಲಿರುವ ಅಡಕಗಳು:

ಸೂರ್ಯನಲ್ಲಿ ಶಕ್ತಿ ಉಂಟಾಗಲು ಕಾರಣವಾದ ಹೈಡ್ರೋಜನ್ ಹೆಚ್ಚಿನ ಪ್ರಮಾಣದಲ್ಲಿದೆ. ಸೂರ್ಯನಲ್ಲಿರುವ ಅಡಕಗಳ ಪ್ರಮಾಣವನ್ನು ಈ ಕೆಳಗಿನ ಪಟ್ಟಿಯಲ್ಲಿ ಕಾಣಬಹುದು.

4

ಸೂರ್ಯನ ಸಾವು:

ಹುಟ್ಟಿದ ಎಲ್ಲವೂ ಒಂದು ದಿನ ಸಾವಿಗೆ ಶರಣಾಗಬೇಕು ಅನ್ನುವ ಮಾತು ಅರಿಮೆಯ ನೆಲೆಯಲ್ಲಿ ಸೂರ್ಯನಿಗೂ ತಪ್ಪಿದ್ದಲ್ಲ. ಸೂರ್ಯನಲ್ಲಿ ಶಕ್ತಿ ಉಂಟಾಗಲು ಕಾರಣವಾದ ಹೈಡ್ರೋಜನ್ ಅಣುಗಳು ತೀರಿದ ಮೇಲೆ, ಸೂರ್ಯ ಸಾವಿನಂಚಿಗೆ ತಲುಪಲಿದ್ದಾನೆ. ಈ ಹಂತದಲ್ಲಿ ಸೂರ್ಯನ ಗಾತ್ರ ದೊಡ್ದದಾಗುತ್ತ ಹೋಗಿ ಬುಧ, ಶುಕ್ರ ಮತ್ತು ಭೂಮಿಯ ದೂರವನ್ನು ನುಂಗಿಹಾಕುವಷ್ಟು ಅಗಲವಾಗಿ ಬೆಳೆಯುತ್ತಾನೆ. ಹಾ! ಈಗಲೇ ಚಿಂತಿಸಬೇಡಿ ಅದಕ್ಕಿನ್ನೂ 5.7 ಬಿಲಿಯನ್ ವರ್ಷಗಳು ಬೇಕು.

(ಮಾಹಿತಿ ಸೆಲೆಗಳು: http://www.dirish.com/http://en.wikipedia.org/wiki/Sunhttp://www.thunderbolts.info/)

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಬೀಳುವಿಕೆಯ ಬೆರಗು

ಹೀಗೊಂದು ಪ್ರಶ್ನೆ,

ಎತ್ತರದಿಂದ ಒಂದು ಕಬ್ಬಿಣದ ಗುಂಡು ಮತ್ತು ಹಕ್ಕಿಯ ಗರಿಯೊಂದನ್ನು ಕೆಳಗೆ ಬಿಟ್ಟರೆ ಯಾವುದು ಮೊದಲು ನೆಲವನ್ನು ತಲುಪುತ್ತೆ?

ಅದರಲ್ಲೇನಿದೆ? ಕಬ್ಬಿಣದ ಗುಂಡು ಹಕ್ಕಿಯ ಗರಿಗಿಂತ ತೂಕವಾಗಿರುವುದರಿಂದ ಗುಂಡು ಮೊದಲು ನೆಲವನ್ನು ತಲುಪುತ್ತದೆ ಅಂತಾ ನೀವನ್ನಬಹುದು. ಉತ್ತರ ಸರಿಯಾಗಿಯೇ ಇದೆ.

ವಸ್ತುವೊಂದು ನೆಲದೆಡೆಗೆ ಬೀಳಲು ನೆಲಸೆಳೆತ (earth’s gravity) ಕಾರಣ ಮತ್ತು ಈ ಸೆಳೆತವು ವಸ್ತುವಿನ ರಾಶಿಗೆ (mass) ತಕ್ಕಂತೆ ಇರುತ್ತದೆ ಅಂದರೆ ಹೆಚ್ಚಿನ ರಾಶಿವುಳ್ಳ ವಸ್ತುವು ಹೆಚ್ಚಿನ ನೆಲಸೆಳೆತಕ್ಕೆ ಒಳಗಾಗಿ ಬೇಗನೇ ನೆಲಕ್ಕೆ ಬೀಳುತ್ತದೆ ಅನ್ನುವ ಹೆಚ್ಚಿನ ವಿಷಯವನ್ನೂ ನೀವು ಮೇಲಿನ ಪ್ರಶ್ನೆಗೆ ಉತ್ತರವಾಗಿ ನೀಡಬಹುದು.

ಈಗ ಮೇಲಿನ ಪ್ರಶ್ನೆಗೆ ತುಸು ಕಟ್ಟುಪಾಡು ಹಾಕೋಣ,

ಅದೇ ಎತ್ತರದಿಂದ ಗಾಳಿಯಿರದ ಬರಿದುದಾಣದಲ್ಲಿ (vacuum chamber) ಅದೇ ಕಬ್ಬಿಣದ ಗುಂಡು ಮತ್ತು ಹಕ್ಕಿಯ ಗರಿಯನ್ನು ನೆಲದೆಡೆಗೆ ಬಿಟ್ಟರೆ ಯಾವುದು ಮೊದಲು ನೆಲವನ್ನು ತಲುಪುತ್ತದೆ?

ಎರಡೂ ಒಂದೇ ಹೊತ್ತಿಗೆ ನೆಲವನ್ನು ತಲಪುತ್ತವೆ.

ಅನ್ನುವ ಉತ್ತರವನ್ನು ಕೇಳಿದರೆ ಅಚ್ಚರಿಯಾಗಬಹುದು.

ಗಾಳಿಯನ್ನಷ್ಟೇ  ತೆಗೆದು ತಾಣವನ್ನು ಬರಿದಾಗಿಸಿದಾಗ ವಸ್ತುಗಳ ರಾಶಿಯಂತೂ ಬದಲಾಗುವುದಿಲ್ಲ ಹಾಗಾಗಿ ನೆಲಸೆಳೆತವು ಬದಲಾಗದು ಆದರೂ ತೂಕದ ಗುಂಡು ಮತ್ತು ಹಗುರವಾದ ಗರಿ ನೆಲವನ್ನು ಸೇರಲು ಅಷ್ಟೇ ಹೊತ್ತನ್ನು ಹೇಗೆ ತೆಗೆದುಕೊಂಡವು? ಉತ್ತರವನ್ನು ಕಂಡುಕೊಳ್ಳುವ ಮುನ್ನ, ಅಮೇರಿಕಾದ ನಾಸಾ ಬರಿದುದಾಣದಲ್ಲಿ (vacuum chamber) ನಡೆಸಿದ ಈ ಮೇಲಿನ ಎರಡೂ ಪ್ರಯೋಗಗಳನ್ನು ಕೆಳಗಿನ ವಿಡಿಯೋದಲ್ಲಿ  ನೋಡೋಣ

  1. ಗಾಳಿ ಇರುವಾಗ ವಸ್ತುಗಳ ಬೀಳುವಿಕೆ:

  1. ಗಾಳಿ ಬರಿದಾಗಿಸಿದಾಗ ವಸ್ತುಗಳ ಬೀಳುವಿಕೆ:

ಬೀಳುವಿಕೆಯ ಈ ಹಿನ್ನೆಲೆಯನ್ನು ತಿಳಿದುಕೊಳ್ಳೊಲು ಮೊದಲು ’ವೇಗಮಾರ್ಪು’ ಅನ್ನುವುದನ್ನು ಅರಿಯೋಣ. ವೇಗ (velocity) ಮಾರ್ಪಡುವ ಮಟ್ಟವನ್ನು ವೇಗಮಾರ್ಪು (acceleration) ಅನ್ನುತ್ತಾರೆ. ಉದಾಹರಣೆಗೆ: ಕಾರೊಂದನ್ನು 50 km/h ಅಷ್ಟು ವೇಗದಲ್ಲಿ ಓಡಿಸುತ್ತಿದ್ದೀರಿ ಅಂದುಕೊಳ್ಳೋಣ. ಈ ವೇಗ ಬದಲಾಗದೇ ಅಷ್ಟೇ ಇದ್ದರೆ ಅದರ ವೇಗಮಾರ್ಪು ಸೊನ್ನೆಯಾಗಿರುತ್ತದೆ. ಏಕೆಂದರೆ ಕಾರಿನ ವೇಗ ಮಾರ್ಪಡದೆ ಅಷ್ಟೇ ಇದೆ. ಈಗ ಕಾರಿನ ವೇಗ ಸೆಕೆಂಡಿಗೆ 1 km ನಷ್ಟು ಬದಲಾಗುತ್ತಾ ಹೊರಟರೆ ಅದರ ವೇಗಮಾರ್ಪು 1 km/s2  ಆಗಿರುತ್ತದೆ.

ವಸ್ತುವೊಂದು ನೆಲಸೆಳೆತಕ್ಕೆ ಒಳಗಾದಾಗ ಅದರ ವೇಗಮಾರ್ಪು 9.81 m/s2  ನಷ್ಟಿರುವುದು ಪ್ರಯೋಗಗಳಿಂದ ತಿಳಿದುಬಂದಿದೆ. ಇದನ್ನು ನೆಲಸೆಳೆತದಿಂದಾದ ವೇಗಮಾರ್ಪು (acceleration due to gravity) ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಇದನ್ನು ‘g’ ಗುರುತಿನಿಂದ ಗುರುತಿಸಲಾಗುತ್ತದೆ. ನೆಲದ ಮೇಲ್ಮೈಯ ಎತ್ತರಕ್ಕೆ ಅನುಗುಣವಾಗಿ ಇದರ ಬೆಲೆ ತುಸು ಬದಲಾದರೂ ಸರಾಸರಿಯಾಗಿ 9.81 m/s2  ಅಂತಾ ಬಳಸುವುದರಿಂದಲೆಕ್ಕಾಚಾರದಲ್ಲಿ ಹೆಚ್ಚಿನ ವ್ಯತ್ಯಾಸವೇನೂ ಆಗುವುದಿಲ್ಲ.

ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ನೆಲಸೆಳೆತದಿಂದಾಗುವ ವೇಗದ ಬದಲಾವಣೆಯನ್ನು ಅಂದರೆ ವೇಗಮಾರ್ಪನ್ನು  ತೋರಿಸಲಾಗಿದೆ. ವಸ್ತುವೊಂದನ್ನು ಕೈಯಲ್ಲಿ ಹಿಡಿದಿರುವಾಗ ಅದರ ವೇಗ ’0’ ಆಗಿರುತ್ತದೆ ಅದೇ ನೆಲದೆಡೆಗೆ ಅದನ್ನು ಬಿಟ್ಟರೆ ಅದರ ವೇಗ ಪ್ರತಿ ಸೆಕೆಂಡಿಗೆ 9.81 ಮೀಟರ್‍ ನಷ್ಟು ಬದಲಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಕೈಬಿಟ್ಟ ಮೊದಲ ಸೆಕೆಂಡಿಗೆ ಅದರ ವೇಗ 9.81 m/s ಆಗಿದ್ದರೆ, ಎರಡನೇ ಸೆಕೆಂಡಿಗೆ ಅದು 9.81 X 2 = 19.6 m/s, ಮೂರನೇ ಸೆಕೆಂಡಿಗೆ 9.81 X 3 = 29.4 m/s ಆಗಿರುತ್ತದೆ. ಹೀಗೆ ನೆಲ ತಲುಪುವವರೆಗೂ ಅದರ ವೇಗ ಒಂದೇ ಮಟ್ಟದಲ್ಲಿ ಬದಲಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ.

acceleration-gravity

ವಸ್ತುವೊಂದರ ವೇಗವು ಯಾವ ಮಟ್ಟದಲ್ಲಿರುತ್ತದೆ ಮತ್ತು ಆ ವೇಗ ಯಾವ ಮಟ್ಟದಲ್ಲಿ ಮಾರ್ಪಡುತ್ತದೆ ಅನ್ನುವುದರ ಮೇಲೆ, ಆ ವಸ್ತುವು ಎಷ್ಟು ಬೇಗ ಸಾಗುತ್ತದೆ ಅನ್ನುವುದು ತೀರ್ಮಾನವಾಗುತ್ತದೆ. ಬೇರಾವುದೇ ಬಲಕ್ಕೆ ಒಳಪಡದೆ ಬರೀ ನೆಲಸೆಳತದ ಬಲಕ್ಕೆ ಒಳಪಟ್ಟ ವಸ್ತುಗಳ ವೇಗಮಾರ್ಪಿನ ಮಟ್ಟ ಒಂದೇ ಆಗಿರುತ್ತದೆ. ಅಂದರೆ ಅದಾವುದೇ ವಸ್ತುವಿದ್ದರೂ ಅದರ ವೇಗ ಪ್ರತಿ ಸೆಕೆಂಡಿಗೆ 9.81 m/s ನಷ್ಟು ಬದಲಾಗುತ್ತದೆ.

ಈಗ ಈ ಬರಹದ ಮೊದಲ ಭಾಗದಲ್ಲಿರುವ ಪ್ರಶ್ನೆಗಳು ಮತ್ತು ವೇಗಮಾರ್ಪಿನ ಮೇಲಿನ ತಿಳುವಳಿಕೆಯನ್ನು ತಳಕುಹಾಕಿದರೆ, ಬರಿದುದಾಣದಲ್ಲಿ (vaccum) ವಸ್ತುಗಳು ನೆಲವನ್ನು ಸೇರಲು ತೆಗೆದುಕೊಳ್ಳವ ಹೊತ್ತು ’ವೇಗಮಾರ್ಪಿನ’ ಮೇಲೆ ನಿಂತಿದೆ ಹೊರತು ಅವುಗಳ ’ರಾಶಿಯ’ (mass) ಮೇಲಲ್ಲ ಅನ್ನುವುದು ತಿಳಿದುಬರುತ್ತದೆ. ನೆಲಸೆಳೆತದಿಂದಾಗುವ ವೇಗಮಾರ್ಪು ಬದಲಾಗದಿರುವುದರಿಂದ ತೂಕದ ಮತ್ತು ಹಗುರವಾದ ಎರಡೂ ವಸ್ತುಗಳೂ ಒಂದೇ ಹೊತ್ತಿಗೆ ನೆಲವನ್ನು ಸೇರುತ್ತವೆ.

ಈ ತಿಳುವಳಿಕೆಯನ್ನು ನ್ಯೂಟನ್‍ರ ಎರಡನೇ ಕಟ್ಟಲೆಯಿಂದಲೂ ಕೆಳಗಿನಂತೆ ತೋರಿಸಬಹುದು.  ಈ ಕಟ್ಟಲೆಯ ಪ್ರಕಾರ,

            ಬಲ = ರಾಶಿ X ವೇಗಮಾರ್ಪು

           >> F = m X a

        ಇಲ್ಲಿ, ವೇಗಮಾರ್ಪು ‘ನೆಲಸೆಳೆತದಿಂದಾದ ವೇಗಮಾರ್ಪು’ ಆಗಿರುವುದರಿಂದ a = g = 9.81 m/s2  ಆಗಿರುತ್ತದೆ.

         ಈಗ ತೂಕದ ವಸ್ತುವನ್ನು 1 ರಿಂದ ಮತ್ತು ಹಗುರವಾದ ವಸ್ತುವನ್ನು 2 ರಿಂದ ಸೂಚಿಸೋಣ.

         ತೂಕದ ವಸ್ತು       : F1 = m1 X g
         ಹಗರುವಾದ ವಸ್ತು : F2 = m2 X g

              >> F1/m1 = F2/m2

ಮೇಲಿನ ನಂಟಿನಿಂದ ತಿಳಿದುಬರುವುದೇನೆಂದರೆ, ತೂಕದ ಮತ್ತು ಹಗುರವಾದ ವಸ್ತುಗಳ ನೆಲಸೆಳೆತದ ಬಲ ಮತ್ತು ರಾಶಿಗಳ ಅನುಪಾತ ಒಂದೇ ಆಗಿರುತ್ತದೆ. ಅಂದರೆ ತೂಕದ ವಸ್ತುವು ಹೆಚ್ಚಿನ ನೆಲಸೆಳೆತದ ಬಲಕ್ಕೆ ಒಳಪಟ್ಟರೂ ಅದರ ಹೆಚ್ಚಿನ ರಾಶಿ ಅದರ ಪರಿಣಾಮವನ್ನು ಕಡಿಮೆ ಮಾಡುತ್ತದೆ.

 

ಸರಿ. ಬರಿದುದಾಣದಲ್ಲಿ ತೂಕದ ಮತ್ತು ಹಗುರವಾದ ವಸ್ತುಗಳು ನೆಲ ತಲುಪಲು ಅಷ್ಟೇ ಹೊತ್ತನ್ನು ತೆಗೆದುಕೊಳ್ಳುವುದೇಕೆ ಎಂದು ತಿಳಿದೆವು. ಆದರೆ ಗಾಳಿಯ ಸುತ್ತಣ ಇದ್ದಾಗ ಏನಾಗುತ್ತದೆ? ನಮ್ಮ ದಿನದ ಬದುಕಿನಲ್ಲಿ ಕಾಣುವಂತೆ ತೂಕದ ವಸ್ತುವೇಕೆ ಮೊದಲು ನೆಲವನ್ನು ತಲಪುತ್ತದೆ? ಅನ್ನುವ ಪ್ರಶ್ನೆ ಹಾಗೇ ಉಳಿಯುತ್ತದೆ ಅಲ್ಲವೇ.

 

ಗಾಳಿಯ ಸುತ್ತಣದಲ್ಲಿ ವಸ್ತುಗಳನ್ನು ಬಿಟ್ಟಾಗ ನೆಲಸೆಳೆತದ ಜತೆಗೆ ಇನ್ನೊಂದು ಬಲವು ವಸ್ತುಗಳ ಮೇಲೆ ಎರಗುತ್ತದೆ. ಅದೇ ಎಳೆತದ ಬಲ (drag force) ಇಲ್ಲವೇ ಗಾಳಿತಡೆ (air resistance). ಈ ಬಲವು ವಸ್ತುಗಳ ಸಾಗಾಣೆಯ ಎದುರಾಗಿ ಕೆಲಸ ಮಾಡುತ್ತದೆ ಅಂದರೆ ನೆಲಸೆಳೆತದಿಂದಾಗಿ ಕೆಳಗೆ ಸಾಗುತ್ತಿರುವ ವಸ್ತುವಿನ ಮೇಲೆ ಗಾಳಿಯ ಎಳೆತದ ಬಲವು ಮೇಲ್ಮುಖವಾಗಿರುತ್ತದೆ.

 

ಗಾಳಿಯ ಸುತ್ತಣದಿಂದಾಗುವ ಈ ಎಳೆತ ಬಲದ ಮಟ್ಟವು ವಸ್ತುವಿನ ದಟ್ಟಣೆ (density), ವೇಗ (velocity), ಹರವಿಗೆ (area) ತಕ್ಕಂತೆ ಇರುತ್ತದೆ. ಒಂದೇ ಹರವಿನ ಆದರೆ ಎರಡು ಬೇರೆ ತೂಕವುಳ್ಳ ವಸ್ತುಗಳನ್ನು ಹೋಲಿಸಿದರೆ, ತೂಕದ ವಸ್ತುವಿನ ಮೇಲೆ ಈ ಎಳೆತ ಬಲದ ಪರಿಣಾಮ ಕಡಿಮೆ ಇರುತ್ತದೆ. ಇದನ್ನು ಗಣಿತದ ನಂಟುಗಳಿಂದ ಈ ಕೆಳಗಿನಂತೆ ತೋರಿಸಬಹುದು.

ತೂಕದ ವಸ್ತುವಿನ ಮೇಲೆ ಎರಗುವ,

ಒಟ್ಟು ಬಲ = ನೆಲಸೆಳೆತದ ಬಲ (gravitational force) – ಎಳೆತದ ಬಲ (drag force),

Fn = F1 – Fd

ಇಲ್ಲಿ, F1 = ನೆಲಸೆಳೆತದ ಬಲ, Fd = ಎಳೆತದ ಬಲ.
ಎಳೆತದ ಬಲವು ಸಾಗಾಟದ ಎದುರಾಗಿ ಕೆಲಸ ಮಾಡುವುದರಿಂದ ಕಳೆ ಗುರುತನ್ನು ಬಳಸಲಾಗಿದೆ.

>> Fn = F1 – Fd ನಂಟಿಗೆ ತೂಕದ ವಸ್ತುವಿನ ರಾಶಿ ’m1′ ನಿಂದ ಬಾಗಿಸಿದಾಗ (divide),

>> Fn/m1 = F1/m1 – Fd/m1

>> a1 = g – Fd/m1

ಇಲ್ಲಿ, a1 = ತೂಕದ ವಸ್ತುವಿನ ಒಟ್ಟಾರೆ ವೇಗಮಾರ್ಪು, g = ನೆಲಸೆಳೆತದಿಂದಾದ ವೇಗಮಾರ್ಪು

ಈ ಮೇಲಿನ ನಂಟು ನಾವು ಈ ಮೊದಲು ಕಂಡುಕೊಂಡ ವಿಷಯವನ್ನೇ ಹೇಳುತ್ತದೆ. ರಾಶಿ ಹೆಚ್ಚಿರುವ ವಸ್ತುವಿನ ಮೇಲೆ ಗಾಳಿ ಎಳೆತದ ಪರಿಣಾಮ ಕಡಿಮೆ ಇರುತ್ತದೆ ಏಕೆಂದರೆ ರಾಶಿ ಹೆಚ್ಚಿದಂತೆ ‘Fd/m1’ ನ ಬೆಲೆ ಕಡಿಮೆಯಾಗುತ್ತದೆ ಮತ್ತು ಆ ಮೂಲಕ ವಸ್ತುವಿನ ಒಟ್ಟು ವೇಗಮಾರ್ಪು ‘a1’ ಹೆಚ್ಚುತ್ತದೆ.

ಹಾಗಾಗಿ ಗಾಳಿಯ ಸುತ್ತಣವಿರುವಾಗ ತೂಕದ ವಸ್ತುವು ಹಗುರವಾದ ವಸ್ತುವಿಗಿಂತ ಬೇಗನೆ ನೆಲವನ್ನು ತಲಪುತ್ತದೆ ಮತ್ತು ಬರಿದಿನಲ್ಲಿ (vacuum) ಗಾಳಿ ಎಳೆತದ ಬಲ ಇಲ್ಲದಿರುವುದರಿಂದ, ನೆಲಸೆಳೆತದ ವೇಗಮಾರ್ಪು ಬದಲಾಗದಿರುವುದರಿಂದ ತೂಕ ಮತ್ತು ಹಗುರವಾದ ಎರಡೂ ವಸ್ತುಗಳು ಒಂದೇ ಹೊತ್ತಿಗೆ ನೆಲವನ್ನು ತಲಪುತ್ತವೆ.

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸುತ್ತುಹಾದಿಗಳು

ಮುಂಚಿನ ಬರಹವೊಂದರಲ್ಲಿ, ವಸ್ತುಗಳು ಮತ್ತು ಜೀವಿಗಳ ಮೂಲ ಘಟಕವಾದ ಅಣುವಿನ ರಚನೆಯ ಬಗ್ಗೆ ತಿಳಿದುಕೊಂಡಿದ್ದೆವು. ಅದನ್ನು ಮುಂದುವರೆಸುತ್ತಾ ಈ ಬರಹದಲ್ಲಿ ಅಣುವಿನ ಒಳರಚನೆಗಳಲ್ಲಿ ಒಂದಾದ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಹೇಗೆ ಸುತ್ತುತ್ತವೆ ಎಂದು ಅರಿತುಕೊಳ್ಳೋಣ.

ಈ ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ತಿಳಿದುಕೊಂಡಂತೆ, ಅಣುವಿನ ನಡುವಣದಲ್ಲಿ ಪ್ರೋಟಾನ್‍ಗಳು ಮತ್ತು ನ್ಯೂಟ್ರಾನ್‍ಗಳು ಇರುತ್ತವೆ. ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ನಡುವಣದ ಸುತ್ತ ಸುತ್ತುತ್ತಿರುತ್ತವೆ. ಅಣುವಿನ ಕುರಿತ ತಿಳುವಳಿಕೆ ಶುರುವಾದಾಗಿನ ಮೊದಲ ಕೆಲವು ದಶಕಗಳವರೆಗೆ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ನಡುವಣದ ಸುತ್ತ ಬರೀ ದುಂಡನೆಯ ಹಾದಿಗಳಲ್ಲಿ ಸುತ್ತುತ್ತವೆ ಅಂತಾ ಅಂದುಕೊಳ್ಳಲಾಗಿತ್ತು. ಆದರೆ ಹೊಸ ಹೊಸ ಅರಕೆಗಳು ಈ ನಿಟ್ಟಿನಲ್ಲಿ ನಡೆದುದರಿಂದ ಕಂಡುಬಂದಿದ್ದೇನೆಂದರೆ,

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಸುತ್ತುವ ನೆಲೆಯನ್ನು 100% ರಷ್ಟು ನಿಕ್ಕಿಯಾಗಿ ಹೇಳಲು ಆಗುವುದಿಲ್ಲ, ಗಣಿತ ಸೂತ್ರಗಳ ತಳಹದಿಯಲ್ಲಿ ಸುಮಾರು 90% ರಷ್ಟು ನಿರ್ದಿಷ್ಟತೆಯಿಂದ ಇಂತಲ್ಲಿ ಇರಬಹುದು ಅಂತಾ ಹೇಳಬಹುದಷ್ಟೆ.

ಜರ್ಮನಿಯ ವಾರ್ನರ್ ಹಯ್ಸನ್‍ಬರ್ಗ್ (Werner Heisenberg) ಎಂಬ ವಿಜ್ಞಾನಿಯು 1927 ರಲ್ಲಿ ಮುಂದಿಟ್ಟಿದ್ದ, ಹಯ್ಸನ್‍ಬರ್ಗ್ ನಿರ್ದಿಷ್ಟವಲ್ಲದ ನಿಯಮ (Heisenberg uncertainty principle) ತಳಹದಿಯ ಮೇಲೆ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ನೆಲೆಯನ್ನು ಸೂಚಿಸಬಹುದು.

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ನಡುವಣದ ಸುತ್ತ ಸುತ್ತಲು ಬಳಸುವ ದಾರಿಗಳನ್ನು ಆರ್ಬಿಟಲ್ಸ್ (Orbitals) ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಕನ್ನಡದಲ್ಲಿ ಇವುಗಳನ್ನು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸುತ್ತುಹಾದಿಗಳು ಎನ್ನಬಹುದು. ಸುತ್ತುಹಾದಿಗಳಲ್ಲಿ ಮುಖ್ಯವಾಗಿ ನಾಲ್ಕು ಬಗೆಗಳಿವೆ. ಆ ಬಗೆಗಳನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ನೋಡಬಹುದು,

orbitals‘s’ ಬಗೆಯ ಸುತ್ತುಹಾದಿಗಳು ಗುಂಡನೆಯ ಆಕಾರದಲ್ಲಿದ್ದರೆ, ‘p’ ಮತ್ತು ‘d’ ಸುತ್ತುಹಾದಿಗಳು ಬಲೂನಿನ ರೂಪವನ್ನು ಹೋಲುತ್ತವೆ. ಅದೇ ‘f’ ಸುತ್ತುಹಾದಿಗಳು ಹೆಚ್ಚು ಸುತ್ತಿ ಬಳಸಿದ ದಾರಿಯಾಗಿರುತ್ತವೆ.
ಇನ್ನೊಂದು ಗಮನಿಸಬೇಕಾದ ವಿಷಯವೆಂದರೆ, ಈ ನಾಲ್ಕು ಬಗೆಯ ಸುತ್ತುಹಾದಿಗಳು, ಹಾದಿಯೊಂದರಲ್ಲಿ ಹೆಚ್ಚೆಂದರೆ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಮಾತ್ರ ಹೊಂದಿರಬಹುದು.

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಗಳಿಸಿಕೊಂಡಿರುವ ಶಕ್ತಿಯ ಆಧಾರದ ಮೇಲೆ ಅವುಗಳ ಸುತ್ತುಹಾದಿಗಳು ತೀರ್ಮಾನವಾಗುತ್ತವೆ. ಎಲ್ಲಕ್ಕಿಂತ ಕಡಿಮೆ ಶಕ್ತಿಹೊಂದಿರುವ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ’1s’ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಸುತ್ತಿದರೆ, ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಶಕ್ತಿ ಹೊಂದಿರುವ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ’2s’ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಸುತ್ತುತ್ತವೆ. ಹೀಗೆ ಮುಂದುವರೆಯುತ್ತಾ ಶಕ್ತಿಗೆ ಅನುಗುಣವಾಗಿ 2p, 3s, 3p… ಮುಂತಾದ ಸುತ್ತುಹಾದಿಗಳಲ್ಲಿ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಸುತ್ತುತ್ತವೆ.

ಇಲ್ಲಿ s,p,d,f ಪಕ್ಕದಲ್ಲಿರುವ ಅಂಕಿಗಳಾದ 1, 2, 3, 4… ಶಕ್ತಿಯ ಮಟ್ಟಗಳನ್ನು ಸೂಚಿಸುತ್ತವೆ (ಕಡಿಮೆ ಪ್ರಮಾಣದಿಂದ ಹೆಚ್ಚಿನ ಪ್ರಮಾಣದ ಶಕ್ತಿಯೆಡೆಗೆ)

ಅಣುವೊಂದರಲ್ಲಿ ಎಷ್ಟು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿವೆ ಅನ್ನುವುದರ ಮೇಲೆ ಅವುಗಳಲ್ಲಿ ಎಷ್ಟು ಸುತ್ತುಹಾದಿಗಳಿವೆ ಎನ್ನುವುದನ್ನು ಲೆಕ್ಕಹಾಕಬಹುದು. ಉದಾಹರಣೆಗೆ, ಅಣುವೊಂದರಲ್ಲಿ 10 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿದ್ದರೆ ಮೊದಲಿಗೆ ’1s’ ಬಗೆಯ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಮತ್ತು ’2s’ ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಇನ್ನೆರಡು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿರುತ್ತವೆ. ಇನ್ನುಳಿದ 6 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಲ್ಲಿ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು 2px ಸುತ್ತುಹಾದಿಯಲ್ಲಿ, 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು 2py ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಮತ್ತು 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು 2pz ಸುತ್ತುಹಾದಿಯಲ್ಲಿರುತ್ತವೆ.

10 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿದ ಈ ಉದಾಹರಣೆಯನ್ನು ಕೆಳಗಿನಂತೆ ಸೂಚಿಸಲಾಗುತ್ತದೆ,

1s2 2s2 2p6

(ಇಲ್ಲಿ 1 ನೇ ಶಕ್ತಿ ಮಟ್ಟದಲ್ಲಿ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಮತ್ತು 2 ನೇ ಶಕ್ತಿ ಮಟ್ಟದಲ್ಲಿ 2+6= 8 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿರುವುದನ್ನು ಗಮನಿಸಬಹುದು)

ನೆನಪಿರಲಿ: ಒಂದು ಸುತ್ತುಹಾದಿಯಲ್ಲಿ ಹೆಚ್ಚೆಂದರೆ 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಷ್ಟೇ ಇರಬಹುದು. ಕಡಿಮೆ ಶಕ್ತಿಯ ಸುತ್ತುಹಾದಿಗಳಿಂದ ಶುರುವಾಗಿ ಹೆಚ್ಚಿನ ಶಕ್ತಿಯ ಸುತ್ತುಹಾದಿಗಳಲ್ಲಿ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳು ಸುತ್ತುತ್ತವೆ.

ಚಿಪ್ಪುಗಳು (Shells):

ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸುತ್ತುವಿಕೆಯನ್ನು ಅವುಗಳ ಸುತ್ತುಹಾದಿಗಳಲ್ಲದೇ, ಚಿಪ್ಪುಗಳು (shells) ಎಂದು ಕರೆಯಲಾಗುವ ಬಗೆಯಲ್ಲೂ ಸೂಚಿಸಲಾಗುತ್ತದೆ. ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆಗೆ ಅನುಗುಣವಾಗಿ ಅವುಗಳು ಇಂತಿಷ್ಟು ಚಿಪ್ಪುಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ ಎಂದು ಸೂಚಿಸಲಾಗುತ್ತದೆ. ಈ ಬಗೆಯು ಮುಖ್ಯವಾಗಿ ಅಣುವೊಂದರ ವಿದ್ಯುತ್ ಗುಣವನ್ನು ತಿಳಿಯಲು ನೆರವಾಗುತ್ತದೆ.
ಚಿಪ್ಪುಗಳನ್ನು ’n’ ನಿಂದ ಸೂಚಿಸಿದರೆ, 2*(n)2 ಲೆಕ್ಕದಲ್ಲಿ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆಯನ್ನು ಹಂಚಿಕೆ ಮಾಡಲಾಗುತ್ತದೆ.

ಉದಾಹರಣೆಗೆ,
ಚಿಪ್ಪು 1 –> 2*(1)2 = 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 2 –> 2*(2)2 = 8 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 3 –> 2*(3)2 = 18 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.

ಇದನ್ನು ಇನ್ನೊಂದು ಬಗೆಯಲ್ಲಿ ಹೇಳಬೇಕೆಂದರೆ, ಅಣುವೊಂದರಲ್ಲಿ ಎಷ್ಟು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿವೆ ಎನ್ನುವುದರ ಮೇಲೆ ಅವುಗಳಲ್ಲಿ ಎಷ್ಟು ಚಿಪ್ಪುಗಳಿವೆ (shells) ಇವೆ ಎನ್ನುವುದನ್ನು ಲೆಕ್ಕ ಹಾಕಬಹುದು.
ಉದಾ: 10 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿದ್ದರೆ ಮೇಲೆ ತೋರಿಸಿದಂತೆ, 2 (ಚಿಪ್ಪು1) + 8 (ಚಿಪ್ಪು2) ಒಟ್ಟು 2 ಚಿಪ್ಪುಗಳಿರುತ್ತವೆ.

ಚಿಪ್ಪುಗಳು ಮತ್ತು ಅಣುವಿನ ಗುಣ:
ಮೇಲೆ ತಿಳಿಸಿದಂತೆ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದುವ ಚಿಪ್ಪಿನ ಸಾಮರ್ಥ್ಯವನ್ನು 2*(n)2 ರಿಂದ ಲೆಕ್ಕಹಾಕಬಹುದು. ಅಣುವೊಂದರಲ್ಲಿ ಚಿಪ್ಪೊಂದರ ಸಾಮರ್ಥ್ಯಕ್ಕಿಂತ ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆ ಕಡಿಮೆ ಇದ್ದರೆ ಅಂತಹ ಅಣುವಿನಲ್ಲಿ ಬೇರೊಂದು ಅಣುವಿನೊಂದಿಗೆ ಒಡನಾಡುವ ಸಾಮರ್ಥ್ಯ ಹೆಚ್ಚಿರುತ್ತದೆ.

ಉದಾಹರಣೆಗೆ: ಅಣುವೊಂದರಲ್ಲಿ 12 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿವೆ ಎಂದುಕೊಳ್ಳೋಣ. ಅದರಲ್ಲಿ ಚಿಪ್ಪುಗಳು ಮತ್ತು ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆ ಹೀಗಿರುತ್ತದೆ.
ಚಿಪ್ಪು 1 –> 2*(1)2 = 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 2 –> 2*(2)2 = 8 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ಚಿಪ್ಪು 3 –> 2*(3)2 = 18 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳನ್ನು ಹೊಂದಿರಬಹುದು ಆದರೆ ಉಳಿದವು 2 ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಷ್ಟೇ (12-2-8=2) ಆಗಿರುವುದರಿಂದ ಚಿಪ್ಪು3 ರ ಸಾಮರ್ಥ್ಯಕ್ಕಿಂತ (18) ಕಡಿಮೆ ಸಂಖ್ಯೆಯಲ್ಲಿ (2) ಇಲೆಕ್ಟ್ರಾನ್‍ಗಳಿರುವುದನ್ನು ಗಮನಿಸಬಹುದು. ಇಂತಹ ಅಣು ಬೇರೊಂದು ಅಣುವಿನೊಂದಿಗೆ ಸುಲಭವಾಗಿ ಒಡನಾಡಬಲ್ಲದ್ದಾಗಿರುತ್ತದೆ.

(ಮುಂದಿನ ಬರಹದಲ್ಲಿ ಅಣುಗಳ ಇನ್ನಷ್ಟು ವಿಷಯಗಳನ್ನು ತಿಳಿಯೋಣ)

facebooktwittergoogle_plusredditpinterestlinkedinmail

ಚುಟುಕು ಯಂತ್ರಗಳಿಗೆ ಈ ಬಾರಿಯ ನೊಬೆಲ್

ಯಂತ್ರಗಳನ್ನು ಯಾರು ಬಳಸುವುದಿಲ್ಲ ಹೇಳಿ? ಕಾರು, ಬಸ್ಸು, ವಿಮಾನದಂತಹ ಸಾಗಾಣಿಕೆಯ ಯಂತ್ರಗಳಿಂದ ಹಿಡಿದು ಗ್ರ್ಯಾಂಡರ್, ಪಂಪ್, ಹೊಲಿಗೆ ಯಂತ್ರ ಹೀಗೆ ದೈನಂದಿನ ಹಲವು ಕೆಲಸಗಳಲ್ಲಿ ನಾವಿಂದು ಯಂತ್ರಗಳನ್ನು ಬಳಸುತ್ತಿದ್ದೇವೆ. ಹಿಂದೊಮ್ಮೆ ಎಲ್ಲ ಕೆಲಸಗಳಿಗೆ ಮೈ ಕಸುವನ್ನೇ ನೆಚ್ಚಿಕೊಂಡಿದ್ದ ನಾವು, ಇಂದು ಯಂತ್ರಗಳ ಮೇಲೆ ನಮ್ಮೆಲ್ಲ ಹೊರೆಯನ್ನು ಹಾಕಿದ್ದೇವೆ.

ಈಗೊಂದು ಪ್ರಶ್ನೆ, ಎಲ್ಲಕ್ಕಿಂತ ದೊಡ್ಡ ಯಂತ್ರ ಯಾವುದು? ಹಡಗು, ವಿಮಾನ, ರಾಕೆಟ್ ಹೀಗೆ ಹಲವು ಉತ್ತರಗಳು ಬರಬಹುದು. ಹಾಗಿದ್ದರೆ ಎಲ್ಲಕ್ಕಿಂತ ಚಿಕ್ಕ ಯಂತ್ರ ಯಾವುದು? ಮೊಬೈಲ್. ಅದಕ್ಕಿಂತ ಚಿಕ್ಕದು? ಕೈ ಗಡಿಯಾರ. ಹಾಗಾದರೆ ಅದಕ್ಕಿಂತ ಚಿಕ್ಕದು? ಇನ್ನೂ ಚಿಕ್ಕದು? ಹೀಗೆ ಕೇಳುತ್ತಾ ಹೊರಟರೆ ಕೊನೆ ಎಲ್ಲಿ? ಆದರೆ ಈ ಪ್ರಶ್ನೆಯನ್ನು ಕೇಳುತ್ತಲೇ, ಅಂತಹ ಕಿರಿದಾದ, ಚುಟುಕಾದ ಯಂತ್ರಗಳನ್ನು ಮಾಡಬಹುದು ಅಂತಾ ತೋರಿಸಿರುವ ಅರಿಗರ ತಂಡಕ್ಕೆ ಈ ವರುಶದ ನೊಬೆಲ್ ಪ್ರಶಸ್ತಿ ದೊರೆತಿದೆ. ಅವರು ಮಾಡಿದ ಚುಟುಕು ಯಂತ್ರಗಳ ಹೆಸರು ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್ಸ್ (Molecular Machines) ಅಂದರೆ ಅಣುಕೂಟಗಳ ಯಂತ್ರಗಳು. ಯಾವ ಯಂತ್ರಗಳಿವು? ಏನಿವುಗಳ ಉಪಯೋಗ? ಮುಂತಾದ ವಿಷಯಗಳನ್ನು ತಿಳಿಯೋಣ ಬನ್ನಿ.

ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್ಸ್  (Molecular Machine) ಅಂದರೇನು?:

’ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್’ ಪದದಲ್ಲಿರುವ ಎರಡು ಪದಗಳನ್ನು ಬೇರೆ ಬೇರೆಯಾಗಿ ಮೊದಲು ನೋಡೋಣ,

ನಮಗೆ ಗೊತ್ತಿರುವಂತೆ ವಸ್ತುಗಳು ಕಿರಿದಾದ ಘಟಕಗಳಾದ ಅಣುಗಳಿಂದ ಮಾಡಲ್ಪಟ್ಟಿರುತ್ತವೆ. ಈ ಅಣುಗಳು ಒಂದಕ್ಕೊಂದು ಕಲೆತು ನಿರ್ದಿಷ್ಟ ರಚನೆಯೊಂದನ್ನು ಏರ್ಪಡಿಸುತ್ತವೆ. ಈ ರಚನೆಗಳನ್ನು ’ಮೊಲಿಕ್ಯುಲ್’ (Molecule) ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಮೊಲಿಕ್ಯುಲ್ (Molecule) ಎರಡು ಇಲ್ಲವೇ ಅದಕ್ಕಿಂತ ಹೆಚ್ಚು ಅಣುಗಳಿಂದ ಕೂಡಿರುತ್ತದೆ. ಕನ್ನಡದಲ್ಲಿ ಮೊಲಿಕ್ಯುಲ್‍ನ್ನು ಅಣುಕೂಟ ಎಂದು ಕರೆಯಬಹುದು.

Molicul

ಇಲ್ಲಿ ಗಮನಿಸಬೇಕಾದ ಎರಡು ವಿಷಯಗಳೆಂದರೆ, ಅಣುವಿನ ಬಗ್ಗೆ ನಾವು ಮಾತನಾಡುತ್ತಿರುವುದರಿಂದ ತುಂಬಾನೇ ಕಿರಿದಾದ ರಚನೆಯ ಬಗ್ಗೆ ಮಾತನಾಡುತ್ತಿದ್ದೇವೆ ಅನ್ನುವುದು ಒಂದು ಮತ್ತು ಜೀವಿಗಳು, ವಸ್ತುಗಳು ಹೀಗೆ ಎಲ್ಲದರಲ್ಲಿ ಅಡಕವಾಗಿರುವ ರಚನೆಯೊಂದರ ಬಗ್ಗೆ ನಾವು ಮಾತನಾಡುತ್ತಿದ್ದೇವೆ ಅನ್ನುವುದು ಇನ್ನೊಂದು.

ಇನ್ನು, ಎರಡನೆಯ ಪದ ಮಶೀನ್ ಇಲ್ಲವೇ ಯಂತ್ರ. ಮೈ ಶಕ್ತಿ, ರಾಸಾಯನಿಕ ಶಕ್ತಿ, ಮಿಂಚಿನ, ಗಾಳಿಯ ಶಕ್ತಿ ಹೀಗೆ ಯಾವುದಾದರೊಂದು ಬಗೆಯ ಶಕ್ತಿಯನ್ನು ಬಳಸಿಕೊಂಡು, ಗೊತ್ತುಪಡಿಸಿದ ಕೆಲಸ ಇಲ್ಲವೇ ಚಟುವಟಿಕೆಯೊಂದನ್ನು ಮಾಡುವ ಸಲಕರಣೆಯನ್ನು ಯಂತ್ರ ಎಂದು ಕರೆಯುತ್ತೇವೆ. ಉದಾಹರಣೆಗೆ, ಕಾರು ಉರುವಲಿನ ಶಕ್ತಿಯನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಗಾಣಿಕೆಯ ಚಟುವಟುಕೆಯೊಂದನ್ನು ಮಾಡಬಲ್ಲ ಯಂತ್ರವಾಗಿದೆ. ಹಾಗೆನೇ ಹೊಲಿಗೆ ಯಂತ್ರ ಕರೆಂಟ್ ಇಲ್ಲವೇ ಕಾಲಿನ ಶಕ್ತಿಯನ್ನು ಬಳಸಿಕೊಂಡು ಹೊಲಿಯುವ ಸೂಜಿಯನ್ನು ಮೇಲೆ ಕೆಳಗೆ ಆಡಿಸುವ ಚಟುವಟಿಕೆಯನ್ನಾಗಿ ಬದಲಾಯಿಸುವ ಯಂತ್ರವಾಗಿದೆ.

ಈಗ ’ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶಿನ್’ ಎಂಬ ಎರಡು ಪದಗಳನ್ನು ಜೋಡಿಸಿದಾಗ ಅದರ ಹುರುಳನ್ನು ಸುಲಭವಾಗಿ ತಿಳಿಯಬಹುದು. ವಸ್ತುಗಳಲ್ಲಿನ ಕಿರು ರಚನೆಯಾದ ಅಣುಕೂಟಗಳನ್ನು ಒಂದು ಗೊತ್ತುಪಡಿಸಿದ ರೀತಿಯಲ್ಲಿ ಹೊಂದಿಸಿಕೊಂಡು, ಗೊತ್ತುಪಡಿಸಿದ ಕೆಲಸವನ್ನು ಮಾಡುವ ಯಂತ್ರಗಳೇ ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶಿನ್ಸ್ ಇಲ್ಲವೇ ಅಣುಕೂಟಗಳ ಯಂತ್ರಗಳು.

ಇನ್ನೂ ತಿಳಿಯಾಗಿ ಹೇಳಬೇಕೆಂದರೆ ಇಂಜಿನ್ನು, ಗಾಲಿ, ಅಡಿಗಟ್ಟು (chassis) ಮುಂತಾದ ರಚನೆಗಳನ್ನು, ಗೊತ್ತುಪಡಿಸಿದ ರೀತಿಯಲ್ಲಿ ಹೊಂದಿಸಿಕೊಂಡು, ನಮ್ಮ ಓಡಾಟಕ್ಕೆ ನೆರವಾಗುವ ’ಕಾರು’ ಎಂಬ ಯಂತ್ರ ಹೇಗಿದೆಯೋ ಹಾಗೆ ವಸ್ತುವಿನಲ್ಲಿನ ಕಿರಿದಾದ ಅಣುಕೂಟಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಯಂತ್ರವೊಂದನ್ನು ತಯಾರು ಮಾಡಿದರೆ ಅದೇ ’ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್’ ಆಗುತ್ತದೆ. ಇದರ ಅಳತೆಯನ್ನು ಹೋಲಿಸಿ ಹೇಳಬೇಕೆಂದರೆ, ನಮ್ಮ ಕೂದಲ ಎಳೆಯೊಂದರ ಸುಮಾರು 1000 ಪಟ್ಟು ಚಿಕ್ಕ ಅಳತೆಯದು!

ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್ಸ್ (Molecular Machines) ಹೊಸದೇ?:
ಹಾಗೇ ನೋಡಿದರೆ ನಮ್ಮ ಮಯ್ಯಲ್ಲೇ ಸಾವಿರಾರು ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್‍ಗಳಿವೆ. ಉದಾಹರಣೆಗೆ, ಹಲವು ಪ್ರೋಟಿನ್ ರಚನೆಗಳು ಒಗ್ಗೂಡಿ ನಮ್ಮ ಮಯ್ಯ ರಚನೆಯ ಅಡಿಪಾಯವಾಗಿರುವ ಜೀವಕೋಶಗಳಲ್ಲಿ ಅಡಕಗಳನ್ನು ಒಂದೆಡೆಯಿಂದ ಇನ್ನೊಂದೆಡೆ ಸಾಗಿಸುವ ಯಂತ್ರಗಳಾಗಿ ಕೆಲಸ ಮಾಡುತ್ತವೆ. ಇನ್ನೂ ಕೆಲವು ರಚನೆಗಳು ರಕ್ತ, ಉಸಿರ್ಗಾಳಿ ಸಾಗಾಣಿಕೆಯ ಕೆಲಸವನ್ನು ಮಾಡುತ್ತವೆ. ಹಾಗಾಗಿ ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್ ಗಳೆಂದು ಕರೆಯಲ್ಪಡುವ ಚುಟುಕು ಯಂತ್ರಗಳು ಸ್ವಾಭಾವಿಕವಾಗಿ ಕಾಣಸಿಗುತ್ತವೆ.

ಆದರೆ ಈ ಯಂತ್ರಗಳು ನಮಗೆ ಬೇಕಿರುವ ಕೆಲಸವನ್ನು ಮಾಡಲಾರವು, ತಮಗೆ ಗೊತ್ತುಪಡಿಸಿದ ಸ್ವಾಭಾವಿಕ ಕೆಲಸವನ್ನಷ್ಟೇ ಅವು ಮಾಡಬಲ್ಲವು. ನಮಗೆ ಬೇಕಾದ, ನಾವು ಗೊತ್ತುಪಡಿಸಿದ ಕೆಲಸವನ್ನೇ ಮಾಡಬಲ್ಲ ಯಂತ್ರಗಳು ಬೇಕಿದ್ದರೆ, ನಾವೇ ಅಂತಹ ಚುಟುಕು ಯಂತ್ರಗಳನ್ನು ಉಂಟು ಮಾಡುವುಂತೆ ಆಗಬೇಕು. ಇದೇ ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್ ಕುರಿತಾಗಿ ನಮ್ಮ ಮುಂದಿರುವ ಸವಾಲು.

ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್ಸ್  (Molecular Machine) ಮಾಡುವುದು ಹೇಗೆ?:
ಈ ಮೇಲೆ ತಿಳಿದುಕೊಂಡಂತೆ, ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್ ತುಂಬಾನೇ ಚಿಕ್ಕದಾಗಿರುವುದರಿಂದ ನಮ್ಮ ಕೈಯಿಂದಾಗಲಿ ಇಲ್ಲವೇ ನಾವು ಕಟ್ಟಿರುವ ಇನ್ನೊಂದು ಯಂತ್ರದಿಂದಾಗಲಿ ತಯಾರಿ ಮಾಡಲು ಆಗದು. ಹಾಗಿದ್ದರೆ ಈ ಚುಟುಕು ಅಣುಕೂಟ ಯಂತ್ರಗಳ ಕಟ್ಟಣೆಯ ಕೆಲಸವನ್ನು ಮಾಡುವುದು ಹೇಗೆ? ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಮೊದಲ ಬಾರಿಗೆ ಗೆಲುವು ಕಂಡವರೇ ಈ ಬಾರಿಯ ನೊಬೆಲ್ ಪ್ರಶಸ್ತಿ ಪಡೆದ ಅರಿಗರಲ್ಲಿ ಒಬ್ಬರಾದ ಫ್ರಾನ್ಸ್ ದೇಶದ ಜೀನ್-ಪಿರ್ ಸಾವೆಜ್ (Jean-Pierre Sauvage). 1983 ರಲ್ಲಿ ಇವರು ತಾಮ್ರದ ಗುಣವನ್ನು ಬಳಸಿಕೊಂಡು ಅಣುಕೂಟದ ಸರಪಳಿಯೊಂದನ್ನು ಮಾಡಿ ತೋರಿಸಿದರು. ಈ ಕಟ್ಟಣೆಯ ಹಂತಗಳನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಲಾಗಿದೆ.

Molicular_Machine_1

ಎರಡು ಅಣುಕೂಟಗಳು ಒಂದಕ್ಕೊಂದು ಕೊಂಡಿಯಾಗಲು ತಾಮ್ರದ ಹುರುಪಿಯನ್ನು (copper ion) ಸಾವೆಜ್ ಬಳಸಿಕೊಂಡರು. ತಾಮ್ರದ ಹುರುಪಿಯೆಡೆಗೆ ಎರಡು ಅಣುಕೂಟಗಳನ್ನು ತಂದಾಗ, ಅವು ಒಂದಕ್ಕೊಂದು ಸೆಳೆಯಲ್ಪಟ್ಟು ಉಂಗುರದ ಆಕಾರದಂತೆ ಕೊಂಡಿಯಾದವು. ಇಂತಹ ಹಲವು ಉಂಗುರುಗಳನ್ನು ಸೇರಿಸಿದರೆ ಉಂಗುರದ ಸರಪಳಿಯೊಂದನ್ನು ಆಗ ಮಾಡಬಹುದಾಯಿತು. (ಕಾರಿನ ಕಟ್ಟಣೆಗೆ ಹೋಲಿಸಿದರೆ ಗಾಲಿಯಂತಹ ರಚನೆ ಈಗ ತಯಾರಾಯಿತು ಅನ್ನಬಹುದು)

1991 ನೇ ಇಸ್ವಿಯಲ್ಲಿ ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಮುಂದಿನ ಮೈಲಿಗಲ್ಲು ಉಂಟಾಯಿತು. ಈ ಮೈಲಿಗಲ್ಲನ್ನು ನೆಟ್ಟವರೇ ಈ ಬಾರಿಯ ನೊಬೆಲ್ ಪಡೆದವರಲ್ಲಿ ಎರಡನೆಯವರಾದ ಸ್ಕಾಟ್‍ಲೆಂಡಿನ ಜೇಮ್ಸ್ ಪ್ರೇಸರ್ ಸ್ಟೊಡಾರ್ಟ್ (James Fraser Stoddart). ಅಣುಕೂಟಗಳ ಉಂಗುರಾಕಾರದ ಸರಪಳಿಯನ್ನು ಒಂದು ತಿರುಗೋಲಿನ (axle) ರಚನೆಯಲ್ಲಿ ಹಿಂದೆ ಮುಂದೆ ಸಾಗುವಂತೆ ಮಾಡುವಲ್ಲಿ ಸ್ಟೊಡಾರ್ಟ್ ಗೆಲುವು ಕಂಡರು.

ಕಾವು ನೀಡಿದಾಗ ಅಣುಕೂಟಗಳು ಒಂದಕ್ಕೊಂದು ಡಿಕ್ಕಿ ಹೊಡೆಯುತ್ತವೆ. ಹೀಗೆ ಹೊಡೆಯುವ ಡಿಕ್ಕಿಯನ್ನು ಒಂದು ಗೊತ್ತುಪಡಿಸಿದ ರೀತಿಯಲ್ಲಿ ಉಂಟುಮಾಡುವಂತಾದರೆ ತಿರುಗೋಲಿನಲ್ಲಿ ಸಾಗಬಲ್ಲ ಅಣುಕೂಟಗಳ ರಚನೆಯನ್ನು ಪಡೆಯಬಹುದೆಂದು ಸ್ಟೊಡಾರ್ಟ್ ತೋರಿಸಿದರು. (ಕಾರಿನ ಕಟ್ಟಣೆಗೆ ಹೋಲಿಸಿದರೆ ಗಾಲಿಗಳು ತಿರುಗೋಲಿನಲ್ಲಿ ಸಾಗುವಂತಹ ರಚನೆ ಈಗ ತಯಾರಾಯಿತು ಅನ್ನಬಹುದು). ಇಂತಹ ರಚನೆಯೊಂದನ್ನು ಕೆಳಗಿನ ಓಡುಚಿತ್ರದಲ್ಲಿ ನೋಡಬಹುದು.fig_ke_16_molecularelevator1999 ರಲ್ಲಿ ನೆದರ್ ಲ್ಯಾಂಡಿನ ಬರ್ನಾರ್ಡ್ ಎಲ್ ಫೆರಿಂಗಾ (Bernard L. Feringa) ಎಂಬುವವರು ಮೇಲಿನ ಎರಡು ಮೈಲಿಗಲ್ಲುಗಳನ್ನು ಬಳಸಿಕೊಂಡು, ಜಗತ್ತಿನ ಮೊಟ್ಟಮೊದಲ ಅಣುಕೂಟಗಳ ಕಿರುಕಾರೊಂದನ್ನು ಮಾಡಿ ತೋರಿಸಿದರು. ಈ ಸಾಧನೆಗಾಗಿ ಮೇಲಿನ ಇಬ್ಬರು ಅರಿಗರ ಜತೆಯಲ್ಲಿ ಈ ಬಾರಿಯ ನೊಬೆಲ್ ಪ್ರಶಸ್ತಿ ಫೆರಿಂಗಾ ಅವರಿಗೆ ಸಂದಿದೆ. ಫೆರಿಂಗಾ ಅವರು ಮುಂದಿಟ್ಟ ಅಣುಕೂಟಗಳು ಕಲೆತುಕೊಳ್ಳುವಂತೆ ಮಾಡುವ ಬಗೆಯನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ನೋಡಬಹುದು.

Molicular_Machine_3

ಈ ಬಗೆಯಲ್ಲಿ ಹಲವು ಅಣುಕೂಟಗಳನ್ನು ಕಲೆಯುವಂತೆ ಮಾಡುತ್ತಾ ಹೋದರೆ, ಅಣುಕೂಟಗಳ ಕಿರುಕಾರೊಂದನ್ನೇ ಮಾಡಬಹುದೆಂದು ಫೆರಿಂಗಾ ತೋರಿಸಿದರು. ಈ ಕಿರುಕಾರಿನ (nanocar) ತೋರುಚಿತ್ರವನ್ನು ಕೆಳಗೆ ನೋಡಬಹುದು.

nanocar_Feringa

ಹೀಗೆ ಮೂವರು ಅರಿಗರು ಬೇರೆ ಬೇರೆ ಕಾಲಘಟ್ಟದಲ್ಲಿ ಅಣುಕೂಟಗಳ ಯಂತ್ರಗಳನ್ನು ಅಂದರೆ ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್‍ಗಳನ್ನು ಉಂಟುಮಾಡಬಹುದಾದ ಬಗೆಯನ್ನು ತೋರಿಸಿದ್ದು, ಇದಕ್ಕಾಗಿ 2016 ನೇ ಸಾಲಿನ ಕೆಮಿಸ್ಟ್ರಿ ಕವಲಿನ ನೊಬೆಲ್ ಪ್ರಶಸ್ತಿಯನ್ನು ಈ ಮೂವರಿಗೂ ಒಟ್ಟಾಗಿ ನೀಡಲಾಗಿದೆ.

Nobel_luerates

ಈ ಚುಟುಕು ಯಂತ್ರಗಳ ಉಪಯೋಗವೇನು?:

ಕಡುಕಿರಿದಾದ ಯಂತ್ರಗಳನ್ನು ಮಾಡುವ ಬಗೆಯನ್ನೇನೋ ಅರಿಗರು ಮುಂದಿಟ್ಟರು. ಆದರೆ ಈ ಯಂತ್ರಗಳ ಉಪಯೋಗವೇನು? ಅನ್ನುವುದು ಸಹಜವಾದ ಪ್ರಶ್ನೆ. ಈ ಪ್ರಶ್ನೆಗೆ ನೇರವಾಗಿ ಜಾರಿಗೆ ತರಬಲ್ಲ ಬಳಕೆಗಳಿವೆ ಅನ್ನುವ ಉತ್ತರ ಇಂದಿಗೆ ದೊರೆಯದಿದ್ದರೂ, ಮುಂದಿನ ದಿನಗಳಲ್ಲಿ ಇದರ ಬಳಕೆಯ ಹರವು ತುಂಬಾ ಹೆಚ್ಚಲಿದೆ ಅನ್ನುವುದು ಬಲ್ಲವರ ಮಾತು.

ಉದಾಹರಣೆಗೆ, ಕ್ಯಾನ್ಸರ್ ಹುಣ್ಣನ್ನು ಅದಿರುವಲ್ಲಿಗೆ ಹೋಗಿ ಕೊಲ್ಲಬಹುದಾದ ಇಲ್ಲವೇ ಅದನ್ನು ಅಲ್ಲಿಂದ ಕತ್ತರಿಸಿ ಹೊರತರಬಹುದಾದ ಮೊಲಿಕ್ಯುಲಾರ್ ಮಶೀನ್ ಮಾಡುವಂತಾದರೆ ರೋಗಗಳನ್ನು ಗುಣಪಡಿಸುವ ನಿಟ್ಟಿನಲ್ಲಿ ದೊಡ್ಡ ಹೆಜ್ಜೆಯನ್ನು ಇಟ್ಟಂತಾಗುತ್ತದೆ. ಹಾಗೆನೇ ಇಂದಿನ ಟ್ರಾನಿಸ್ಟರ್, ಕೆಪ್ಯಾಸಿಟರ್ ಮುಂತಾದ ಬಿಡಿಭಾಗಗಳ ಬದಲಾಗಿ ಅಣುಕೂಟಗಳ ಯಂತ್ರಗಳನ್ನೇ ಬಳಸುವಂತಾದರೇ ಇಲೆಕ್ಟ್ರಾನಿಕ್ಸ್ / ಕಂಪ್ಯೂಟರ್ ಗಳ ಕವಲಿನಲ್ಲಿ ಕ್ರಾಂತಿಯನ್ನೇ ಉಂಟುಮಾಡಿದಂತಾಗುವುದು.

ಒಟ್ಟಿನಲ್ಲಿ ಅಣುಕೂಟಗಳ ಚುಟುಕು ಯಂತ್ರಗಳು ಮುಂದಿನ ದಿನಗಳಲ್ಲಿ ಅರಿವಿನ ಹೆಬ್ಬಾಗಿಲನ್ನೇ ನಮ್ಮ ಮುಂದೆ ತೆರಿದಿಡಬಹುದು. ಈ ಹೆಬ್ಬಾಗಿಲನ್ನು ತೋರಿದ ಅರಿಗರಿಗೆ ಈ ವರುಷದ ನೊಬೆಲ್ ಪ್ರಶಸ್ತಿ ದೊರೆತದ್ದು ನಲಿವಿನ ಸಂಗತಿ.

(ಮಾಹಿತಿ ಮತ್ತು ಚಿತ್ರ ಸೆಲೆಗಳು: Royal Swedish Academy of Science, Washington PostWikipedia)

facebooktwittergoogle_plusredditpinterestlinkedinmail
  • ಹಂಚಿ

    facebooktwittergoogle_plusredditpinterestlinkedinmail