ಮೊದಲ ಹಂತದ ಲೆಕ್ಕಾಚಾರಗಳ ತಿರುಳುಗಳು

ನಮಗೆ ಗೊತ್ತಿರುವಂತೆ ಕೂಡುವುದು, ಕಳೆಯುವುದು, ಗುಣಿಸುವುದು, ಭಾಗಿಸುವುದು ಮೊದಲ ಹಂತದ ಲೆಕ್ಕಾಚಾರಗಳಾಗಿವೆ (Basic Operations). ಮೊದಲ ಹಂತದ ಲೆಕ್ಕಾಚಾರ ಮಾಡುವ ಮುನ್ನ ಕೆಲವು ತಿರುಳುಗಳನ್ನು (Properties) ತಿಳಿದುಕೊಂಡರೆ ಲೆಕ್ಕ ಬಿಡಿಸುವುದು ಸುಲಭವಾಗುತ್ತದೆ. ಈ ಕೆಳಗಿನ ತಿರುಳುಗಳನ್ನು ಎಣಿಯರಿಮೆ/ಅಂಕಗಣಿತ (Arithmetic), ಬರಿಗೆಯೆಣಿಕೆಯರಿಮೆ (Algebra), ಗೆರೆಯರಿಮೆ (Geometry) ಮತ್ತು ಹಲವಾರು ಕವಲುಗಳಲ್ಲಿ ಬಳಸಬಹುದು.

1. ನೆಲೆ ಮಾರ್ಪಾಡಬಲ್ಲತನ (Commutative Property) .

ನೆಲೆ (Position/commute) ಮಾರ್ಪಾಡಬಲ್ಲತನ ಎಂದರೆ ಯಾವುದೇ ಎರಡು ಬೆಲೆಗಳನ್ನು ಕೂಡುವಾಗ ಮತ್ತು ಗುಣಿಸುವಾಗ ಅದರ ನೆಲೆ ಮಾರ್ಪಾಟು ಮಾಡಿದರೆ ದೊರೆಯುವ ಮೊತ್ತವು ಒಂದೇ ಆಗಿರುತ್ತವೆ.

Image1 MP

ಇಲ್ಲಿ a ಮತ್ತು b ಮಾರ್ಪುಕಗಳು (Variables) ಹಾಗು ಅವುಗಳು ಯಾವುದೇ ಬೆಲೆಗಳನ್ನು ಹೊಂದಿರಬಹುದು, ಅಂದರೆ ಅವುಗಳು ಇಡಿ ಅಂಕೆಗಳಾಗಿರಬಹುದು (Whole number) ಅಥವಾ ಪಾಲುಗಳಾಗಿರಬಹುದು (Fraction).

ಉದಾಹರಣೆ 1: 7 ಮತ್ತು 11 ಎಂಬ ಎರಡು ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಈ ಬೆಲೆಗಳನ್ನು ಒಂದಕ್ಕೊಂದು ಕೂಡಿಸಿದಾಗ 7 + 11 = 18 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು.
  • ಈ ಬೆಲೆಗಳನ್ನು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಕೂಡೋಣ 11 + 7 = 18 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು, ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಕೂಡಿದ ಮೊತ್ತ ಒಂದೇ ಆಗಿದೆ.

7 + 11 = 11 + 7 = 18

ಉದಾಹರಣೆ 2:  ಕೆಳಗಿನ ಚಿತ್ರದಲ್ಲಿ ಹಸಿರು ಚೆಂಡುಗಳನ್ನು ಮತ್ತು ಕೆಂಪು ಚೆಂಡುಗಳನ್ನು ಹಾಕಲಾಗಿದೆ, ಮೊದಲು ಹಸಿರು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿ ನಂತರದಲ್ಲಿ ಕೆಂಪು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿದಾಗ ಮತ್ತು ಮೊದಲು ಹಾಕಿದ ಚೆಂಡುಗಳನ್ನೆಲ್ಲಾ ತೆಗೆದು ಎರಡನೇ ಸಲ ಕೆಂಪು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿ ನಂತರದಲ್ಲಿ ಹಸಿರು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿದಾಗ ದೊರೆತ ಮೊತ್ತ ಒಂದೇ ಎಂದು ನೆಲೆ ಮಾರ್ಪಾಡಬಲ್ಲತನವನ್ನು ಬಳಸಿ ತೋರಿಸಿ.

Image3 MP

  • ಮೊದಲು ಕೆಂಪು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿ ನಂತರದಲ್ಲಿ ಹಸಿರು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿದಾಗ:

ಕೆಂಪು ಚೆಂಡುಗಳು(3) + ಹಸಿರು ಚೆಂಡುಗಳು(16) = ಚೀಲದಲ್ಲಿರುವ ಒಟ್ಟು ಚೆಂಡುಗಳು(19).

  • ಮೊದಲು ಹಾಕಿದ ಚೆಂಡುಗಳನ್ನೆಲ್ಲಾ ತೆಗೆದು ಎರಡನೇ ಸಲ ಕೆಂಪು ಚೆಂಡುಗಳನ್ನು ಹಾಕಿದಾಗ;

ಹಸಿರು ಚೆಂಡುಗಳು(16) +  ಕೆಂಪು ಚೆಂಡುಗಳು(3) = ಚೀಲದಲ್ಲಿರುವ ಒಟ್ಟು ಚೆಂಡುಗಳು(19).

  • ಮೇಲೆ ತೋರಿಸಿದಂತೆ ಮೊದಲನೇ ಸಲ ಮತ್ತು ಎರಡನೇ ಸಲ ಚೆಂಡುಗಳನ್ನು ಹಾಕಿದಾಗ ದೊರೆತ ಮೊತ್ತ ಒಂದೇ ಹಾಗಾಗಿ ಇದು ನೆಲೆ ಮಾರ್ಪಾಡಬಬಲ್ಲತನವನ್ನು ಹೊಂದಿದೆ.

3 + 16 = 16 + 3 = 19

ಉದಾಹರಣೆ 3: 15 ಮತ್ತು 5 ಎಂಬ ಎರಡು ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಈ ಬೆಲೆಗಳನ್ನು ಒಂದಕ್ಕೊಂದು ಗುಣಿಸಿದಾಗ 15 x 5 = 75 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು.
  • ಈ ಬೆಲೆಗಳನ್ನು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಗುಣಿಸೋಣ 5 x 15 = 75 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು, ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಗುಣಿಸಿದ ಮೊತ್ತ ಒಂದೇ ಆಗಿವೆ.

15 x 5 = 5 x 15 = 75

 

ನೆಲೆ ಮಾರ್ಪಾಡಬಲ್ಲತನ ಕಳೆಯುವುದಕ್ಕೆ ಮತ್ತು ಭಾಗಿಸುವುದಕ್ಕೆ ಹೊಂದುವುದಿಲ್ಲ, ಆದರೆ ಕೂಡುವುದಕ್ಕೆ ಮತ್ತು ಗುಣಿಸುವುದಕ್ಕೆ ಸರಿಹೊಂದುತ್ತದೆ

 

Image2 MP

ಉದಾಹರಣೆ 4: 20 ಮತ್ತು 6 ಎಂಬ ಎರಡು ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಈ ಬೆಲೆಗಳನ್ನು ಒಂದಕ್ಕೊಂದು ಕಳೆದಾಗ 20 – 6 = 14 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು.
  • ಈ ಬೆಲೆಗಳನ್ನು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಕಳೆಯೋಣ 6 – 20 = -14 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು, ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಕಳೆದ ಮೊತ್ತ ಬೇರೆ ಬೇರೆ ಆಗಿವೆ.

20 – 6 6 – 20

ಉದಾಹರಣೆ 5: 20 ಮತ್ತು 4 ಎಂಬ ಎರಡು ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಈ ಬೆಲೆಗಳನ್ನು ಒಂದಕ್ಕೊಂದು ಭಾಗಿಸಿದಾಗ 20/4 = 5 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು.
  • ಈ ಬೆಲೆಗಳನ್ನು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಭಾಗಿಸಿದಾಗ 4/20 = 1/5 = 0.2 ಎಂಬ ಮೊತ್ತವು ದೊರೆಕಿತು, ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ನೆಲೆಮಾರ್ಪಾಟು ಮಾಡಿ ಭಾಗಿಸಿದ ಮೊತ್ತ ಬೇರೆ ಬೇರೆ ಆಗಿವೆ,

20 /4 4/20

  1. ಗುಂಪು ಮಾರ್ಪಾಡಬಲ್ಲತನ (Associative property).

ಗುಂಪು ಮಾರ್ಪಾಡಬಲ್ಲತನ ಎಂದರೆ ಯಾವುದೇ ಒಂದಿಷ್ಟು ಬೆಲೆಗಳನ್ನು ಕೂಡುವಾಗ ಮತ್ತು ಗುಣಿಸುವಾಗ ಅದರ

ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿದರೆ ದೊರೆಯುವ ಮೊತ್ತವು ಒಂದೇ ಆಗಿರುತ್ತವೆ.

Image4 MP

ಇಲ್ಲಿ a, b ಮತ್ತು c ಮಾರ್ಪುಕಗಳು (Variables) ಹಾಗು ಅವುಗಳು ಯಾವುದೇ ಬೆಲೆಗಳನ್ನು ಹೊಂದಿರಬಹುದು.

ಅಂದರೆ ಅವುಗಳು ಇಡಿ ಅಂಕೆಗಳಾಗಿರಬಹುದು (Whole numbers) ಅಥವಾ ಪಾಲುಗಳಾಗಿರಬಹುದು (Fractions).

ಉದಾಹರಣೆ 1: 8, 7 ಮತ್ತು 4 ಎಂಬ ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಮೊದಲ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸೋಣ ನಂತರದಲ್ಲಿ ಗುಂಪಿಗೆ ಮೂರನೇ ಬೆಲೆಯನ್ನು ಕೂಡೋಣ.

(8 + 7) + 4 = 15 + 4 = 19

  • ಮೊದಲ ಬೆಲೆಗೆ ಕೊನೆಯ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸಿ ಕೊಡೋಣ.

8 + (7 + 4) = 8 + 11 = 19

  • ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿ ಕೂಡಿದ ಮೊತ್ತ ಒಂದೇ ಆಗಿದೆ.

(8 + 7) + 4 = 8 + (7 + 4) = 19

ಉದಾಹರಣೆ 2: 2.2, 5.5 ಮತ್ತು 6.6 ಎಂಬ ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಮೊದಲ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸೋಣ ನಂತರದಲ್ಲಿ ಗುಂಪಿಗೆ ಮೂರನೇ ಬೆಲೆಯನ್ನು ಗುಣಿಸೋಣ.

(2.2 x 5.5)  x 6.6 = 12.1 x 6.6 = 79.86

  • ಮೊದಲ ಬೆಲೆಗೆ ಕೊನೆಯ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸಿ ಗುಣಿಸೋಣ

2.2 x (5.5 x 6.6) = 2.2 x 36.3  = 79.86

  • ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿ ಗುಣಿಸಿದ ಮೊತ್ತ ಒಂದೇ ಆಗಿದೆ.

(2.2 x 5.5)  x 6.6 = 2.2 x (5.5 x 6.6) = 79.86

 ಗುಂಪು ಮಾರ್ಪಾಡಬಲ್ಲತನ ಕಳೆಯುವುದಕ್ಕೆ ಮತ್ತು ಭಾಗಿಸುವುದಕ್ಕೆ ಹೊಂದುವುದಿಲ್ಲ, ಆದರೆ ಕೂಡುವುದಕ್ಕೆ ಮತ್ತು ಗುಣಿಸುವುದಕ್ಕೆ ಸರಿಹೊಂದುತ್ತದೆ

 

Image5 MP

ಉದಾಹರಣೆ 3:4 2 1 ಎಂಬ ಲೆಕ್ಕವನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಲೆಕ್ಕದ ಮೊದಲ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸೋಣ ನಂತರದಲ್ಲಿ ಗುಂಪಿಗೆ ಮೂರನೇ ಬೆಲೆಯನ್ನು ಕಳೆಯೋಣ.

(4 – 2 ) – 1 = 2 – 1 = 1

  • ಲೆಕ್ಕದ ಮೊದಲ ಬೆಲೆಗೆ ಕೊನೆಯ ಎರಡು ಬೆಲೆಗಳನ್ನು ಒಡ ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿ ಕೆಳೆಯೋಣ.

4 – (2 – 1) = 4 – 1 = 3

  • ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿದ ನಂತರದ ಮೊತ್ತ ಬೇರೆ ಬೇರೆ ಆಗಿವೆ.

(4 – 2 ) – 1 4 – (2 – 1),

ಉದಾಹರಣೆ 4: 9, 6 ಮತ್ತು 12 ಎಂಬ ಬೆಲೆಗೆಳನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ,

  • ಮೊದಲ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸೋಣ ನಂತರದಲ್ಲಿ ಗುಂಪಿಗೆ ಮೂರನೇ ಬೆಲೆಯನ್ನು ಭಾಗಿಸೋಣ.

(9/6)/12 = (3/2)/12 = 3/24

  • ಮೊದಲ ಬೆಲೆಗೆ ಕೊನೆಯ ಎರಡು ಬೆಲೆಗಳನ್ನು ಗುಂಪಾಗಿಸಿ ಭಾಗಿಸೋಣ.

9/(6/12) = 9/(1/2) = 18

  • ಮೊದಲು ದೊರೆತ ಮೊತ್ತ ಮತ್ತು ಗುಂಪು ಮಾರ್ಪಾಟು ಮಾಡಿ ಗುಣಿಸಿದ ಮೊತ್ತ ಬೇರೆ ಬೇರೆ ಆಗಿದೆ.

(9/6)/12  9/(6/12)

3. ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆ (Distributive property)

ಒಂದು ಗುಂಪಿನಲ್ಲಿರುವ ಬೆಲೆಗಳಿಗೆ ಇನ್ನೊಂದು ಬೆಲೆಯಿಂದ ಗುಣಿಸಿ ಹಂಚಬಹುದು.

Image6 MP

ಇಲ್ಲಿ a, b, c ಮತ್ತು d ಮಾರ್ಪುಕಗಳು (Variables) ಹಾಗು ಅವುಗಳು ಯಾವುದೇ ಬೆಲೆಗಳನ್ನು ಹೊಂದಿರಬಹುದು.

ಉದಾಹರಣೆ 1:  ‘2 x (4 + 8 + 16)’  ಇದನ್ನು ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆಯಲ್ಲಿ ಬಿಡಿಸಿರಿ.

ಇದನ್ನು ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆಯಲ್ಲಿ ಬಿಡಿಸಿ ಬರೆದಾಗ

 2 x (4 + 8 + 16) = 2 x 4 + 2 x 8 + 2 x 16 =8 + 16 + 32 =56

ಉದಾಹರಣೆ2 : (10 6 + 2 3) x 5 ಇದನ್ನು ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆಯಲ್ಲಿ ಬಿಡಿಸಿರಿ.

ಇದನ್ನು ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆಯಲ್ಲಿ ಬಿಡಿಸಿ ಬರೆದಾಗ

(10 6 + 2 3) x 5 = 10 x 5 6 x 5 + 2 x 5 3 x 5 = 50 30 + 10 15 = 15

ನಿಮ್ಮ ಅರಿವಿಗೆ: ಗುಂಪಿನ ಒಳಗೆ ಯಾವ ಗುರುತುಗಳಿವೆಯೋ ( – , +, x, / ) ಅದೇ ಗುರುತನ್ನು ಹಂಚಿ ಗುಣಿಸುವಾಗ ಉಳಿಸಿಕೊಳ್ಳಬೇಕು.

ಮೇಲೆ ಹೇಳಿದ ಮೂರು ಕಟ್ಟಳೆಗಳನ್ನು ಕೆಳಗಿನ ಚಿತ್ರದಂತೆ ತೋರಿಸೋಣ

  • ಹಂಚಬಲ್ಲ ಕಟ್ಟಳೆಯನ್ನು ಹೀಗೆ ತೋರಿಸಬಹುದು (Distributive Property)

 Image7 MP

  • ಗುಂಪು ಮಾರ್ಪಾಡಬಲ್ಲತನವನ್ನು ಹೀಗೆ ತೋರಿಸಬಹುದು (Associative Property)

Image8 MP

  • ನೆಲೆ ಮಾರ್ಪಾಡಬಲ್ಲತನವನ್ನು ಹೀಗೆ ತೋರಿಸಬಹುದು (Commutative Property)

Image9 MP

(ಸೆಲೆಗಳು: www.mathsisfun.com, wikipedia)

facebooktwittergoogle_plusredditpinterestlinkedinmail
Bookmark the permalink.

50 Comments

  1. Pingback: buy MU Legend Zen

  2. Pingback: MU Legend Zen

  3. Pingback: Cheap NHL 18 Coins for sale

  4. Pingback: buy Mu Legend Zen

  5. Pingback: madden 18 coins

  6. Pingback: new siriustube550 abdu23na4093 abdu23na37

  7. Pingback: freshamateurs559 abdu23na7977 abdu23na81

  8. Pingback: tubepla.net download703 afeu23na5659 abdu23na56

  9. Pingback: hd videos tubepla.net952 afeu23na1782 abdu23na7

  10. Pingback: tubepla.net download207 afeu23na536 abdu23na73

  11. Pingback: 132nzh2236G

  12. Pingback: hdmobilesex.me

  13. Pingback: viagra no rx required

  14. Pingback: cialis cost

  15. Pingback: generic cialis cost

  16. Pingback: buy cialis canada

  17. Pingback: cialis pills

  18. Pingback: Fda approved viagra

  19. Pingback: Buy viagra on internet

  20. Pingback: albuterol inhaler generic walmart

  21. Pingback: lowest price on viagra

  22. Pingback: ceallas

  23. Pingback: ciprofloxacin 500mg antibiotics cost

  24. Pingback: cialis 20 mg

  25. Pingback: buy naltrexone online usa

  26. Pingback: buy cialis

  27. Pingback: cialis 20

  28. Pingback: erectile dysfunction viagra medicines

  29. Pingback: bimatoprost brands

  30. Pingback: cialis price walgreens

  31. Pingback: viagra cost

  32. Pingback: tylenol cost

  33. Pingback: online pharmacy viagra

  34. Pingback: online pharmacy viagra

  35. Pingback: online pharmacy viagra

  36. Pingback: ed meds

  37. Pingback: gnc ed pills

  38. Pingback: generic ed pills

  39. Pingback: chloroquine 2020

  40. Pingback: canada pharmacy

  41. Pingback: walmart pharmacy

  42. Pingback: walmart pharmacy

  43. Pingback: cialis generic

  44. Pingback: Cialis in usa

  45. Pingback: levitra dosage

  46. Pingback: vardenafil

  47. Pingback: vardenafil for sale

  48. Pingback: track viagra without a doctor prescription

  49. Pingback: gambling casino online

  50. Pingback: cialis 10 mg tablet

Comments are closed

  • ಹಂಚಿ

    facebooktwittergoogle_plusredditpinterestlinkedinmail